Vanilla Supersymmetry and Beyond

Steven Abel (Durham IPPP)

Overview

Overview

Background/motivation

Vanilla MSSM and beyond
The importance of mediation
Scherk-Schwarz: What a top-down theory ofbroken SUSY looks like

The bierarchy problem

The hierarchy problem

Higgs-like particle discovered in 2012:
Hierarchy problem - why is the Weak Scale so much lower than the Planck Scale - and bow is it protected?

More precisely perturbation theory with a higgs scalar is suspect: very "massive states" dominate any calculation to do with higgs physics.

In fact we don't even need a heavy resonance: this is true for any change (in e.g. beta functions) at a bigh scale.

The bierarchy problem

The bierarchy problem

Candidate symmetries:

The hierarchy problem

Candidate symmetries:

1. Higgs is a Goldstone mode of some broken global symmetry (like the pions in chiral symmetry breaking) with breaking scale of a few TeV

The hierarchy problem

Candidate symmetries:

1. Higgs is a Goldstone mode of some broken global symmetry (like the pions in chiral symmetry breaking) with breaking scale of a few TeV
2. Scaling symmetry - Higgs is the Goldstone mode of a broken scale invariance (a.k.a. dilaton) (a trivial perturbative example of this is the Standard Model with vanishing higgs mass, but it can occur in nonperturbative models based on AdS/CFT)

The bierarchy problem

Candidate symmetries:

1. Higgs is a Goldstone mode of some broken global symmetry (like the pions in chiral symmetry breaking) with breaking scale of a few TeV
2. Scaling symmetry - Higgs is the Goldstone mode of a broken scale invariance (a.k.a. dilaton) (a trivial perturbative example of this is the Standard Model with vanishing higgs mass, but it can occur in nonperturbative models based on AdS/CFT)
3. Supersymmetry - relates boson to fermions. Divergences cancel level by level. Phenomenology requires soft (a.k.a. dimensionful) breaking.

The bierarchy problem

Candidate symmetries:

1. Higgs is a Goldstone mode of some broken global symmetry (like the pions in chiral symmetry breaking) with breaking scale of a few TeV
2. Scaling symmetry - Higgs is the Goldstone mode of a broken scale invariance (a.k.a. dilaton) (a trivial perturbative example of this is the Standard Model with vanishing higgs mass, but it can occur in nonperturbative models based on AdS/CFT)
3. Supersymmetry - relates boson to fermions. Divergences cancel level by level. Phenomenology requires soft (a.k.a. dimensionful) breaking.
4. Misaligned Supersymmetry - the "magic symmetry" that makes even non-supersymmetric non-tachyonic string theory finite. Dimensional supersymmetry breaking in the effective theory, but not soft(!)

What is really going on ...

SUSYin 2 slides

Superpotential:

- The "F-term" (highest dimension component) of a chiral superfield transforms under SUSY as a total derivative.
- Any function of chiral superfields is also a chiral superfield.
- Ergo for invariant interactions, take any function of chiral superfields W ...

$$
L_{m \times}=\left.W\right|_{\theta \theta}+\text { h.c. } \quad\left(\begin{array}{l}
\text { gives } \\
\end{array}=\left|\frac{\partial W}{\partial \Phi_{i}}\right|^{2}\right)
$$

Example: top Yukawa

The effect

$H_{u}=$	h_{u}	\tilde{h}_{u}	$F_{h_{u}}$
$Q=$	\tilde{q}	q	F_{Q}
$t_{c}=$	\tilde{t}_{c}	t_{c}	$F_{t_{c}}$

$W_{t o p-Y u k a w a}=\lambda_{t} Q H_{u}$
$L_{t o p-Y u k a w a}=-\lambda_{t} q h_{u} t_{c}-\lambda_{t} \tilde{q}\left(\tilde{h}_{u} t_{c}\right)-\lambda_{t}\left(q \tilde{h}_{u}\right) \tilde{t}_{c}+\lambda_{t}^{2}\left|h_{u} \tilde{t}\right|^{2}+\lambda_{t}^{2}\left|h_{u} \tilde{q}\right|^{2}+\ldots$.

SUSYin 2 slides

Kahler potential:

Generally can define the Kinetic terms as the "D-term" of a real function K,

$$
L_{K E}=\left.K\left(\Phi_{i}, \bar{\Phi}^{j}\right)\right|_{\theta^{2} \bar{\theta}^{2}}=\frac{\partial K}{\partial \Phi_{i} \partial \bar{\Phi}^{j}} \partial_{\mu} \varphi_{i} \partial^{\mu} \varphi^{j *}+\ldots
$$

SUSYin 2 slides

Kahler potential:

Generally can define the Kinetic terms as the "D-term" of a real function K,

$$
L_{K E}=\left.K\left(\Phi_{i}, \bar{\Phi}^{j}\right)\right|_{\theta^{2} \bar{\theta}^{2}}=\frac{\partial K}{\partial \Phi_{i} \partial \bar{\Phi}^{j}} \partial_{\mu} \varphi_{i} \partial^{\mu} \varphi^{j *}+\ldots
$$

Alert: often use same symbol for superfield and its scalar component!!!

The MSSM

For the SM Yukawa couplings need a second higgs and Superpotential

$$
W=\lambda_{u} Q H_{u} U^{c}+\lambda_{d} Q H_{d} D^{c}+\lambda_{e} L H_{d} E^{c}
$$

The MSSM

For the SM Yukawa couplings need a second higgs and Superpotential

$$
W=\lambda_{u} Q H_{u} U^{c}+\lambda_{d} Q H_{d} D^{c}+\lambda_{e} L H_{d} E^{c} \quad+\mu H_{u} H_{d}
$$

The NMSSM

For the SM Yukawa couplings need a second higgs and Superpotential

$$
W=\lambda_{u} Q H_{u} U^{c}+\lambda_{d} Q H_{d} D^{c}+\lambda_{e} L H_{d} E^{c}+\lambda S H_{u} H_{d}+\kappa S^{3}
$$

Domain wall problem for NMSSM

The good and bad thing about the NMSSM is its Z3 symmetry: after EWSB the Universe looks like ...

(from SAA, Sarkar, White)

The Generalised NMSSM

If you want to avoid domain wall problems sadly you have to break Z3 but the breaking can be small (SAA, Sarkar, White):

$$
\begin{aligned}
W=\lambda_{u} Q H_{u} U^{c}+\lambda_{d} Q H_{d} D^{c} & +\lambda_{e} L H_{d} E^{c} \\
& +\lambda S H_{u} H_{d}+\lambda S^{3}+S^{4} / M_{P l}
\end{aligned}
$$

The Generalised NMSSM

If you want to avoid domain wall problems sadly you have to break Z3 but the breaking can be small (SAA, Sarkar, White):

$$
\begin{aligned}
W=\lambda_{u} Q H_{u} U^{c}+\lambda_{d} Q H_{d} D^{c} & +\lambda_{e} L H_{d} E^{c} \\
& +\lambda S H_{u} H_{d}+\lambda S^{3}+S^{4} / M_{P l}
\end{aligned}
$$

Unfortunately

The Generalised NMSSM

If you want to avoid domain wall problems sadly you have to break Z 3 but the breaking can be small (SAA, Sarkar, White):

$$
\begin{aligned}
W=\lambda_{u} Q H_{u} U^{c}+\lambda_{d} Q H_{d} D^{c} & +\lambda_{e} L H_{d} E^{c} \\
& +\lambda S H_{u} H_{d}+\lambda S^{3}+S^{4} / M_{P l}
\end{aligned}
$$

Unfortunately

1) it is then hard to see (in field theory) why Planck scale mass terms cannot be added

The Generalised NMSSM

If you want to avoid domain wall problems sadly you have to break Z3 but the breaking can be small (SAA, Sarkar, White):

$$
\begin{aligned}
W=\lambda_{u} Q H_{u} U^{c}+\lambda_{d} Q H_{d} D^{c} & +\lambda_{e} L H_{d} E^{c} \\
& +\lambda S H_{u} H_{d}+\lambda S^{3}+S^{4} / M_{P l}
\end{aligned}
$$

Unfortunately

1) it is then hard to see (in field theory) why Planck scale mass terms cannot be added
2) generally the term we just added leads to S-tadpoles that generally destabilise the weak scale up to 7 loops!

The Generalised NMSSM

If you want to avoid domain wall problems sadly you have to break Z3 but the breaking can be small (SAA, Sarkar, White):

$$
\begin{aligned}
W=\lambda_{u} Q H_{u} U^{c}+\lambda_{d} Q H_{d} D^{c} & +\lambda_{e} L H_{d} E^{c} \\
& +\lambda S H_{u} H_{d}+\lambda S^{3}+S^{4} / M_{P l}
\end{aligned}
$$

Unfortunately

1) it is then hard to see (in field theory) why Planck scale mass terms cannot be added
2) generally the term we just added leads to S-tadpoles that generally destabilise the weak scale up to 7 loops!

The Generalised NMSSM

If you want to avoid domain wall problems sadly you have to break Z3 but the breaking can be small (SAA, Sarkar, White):

$$
\begin{aligned}
W=\lambda_{u} Q H_{u} U^{c}+\lambda_{d} Q H_{d} D^{c} & +\lambda_{e} L H_{d} E^{c} \\
& +\lambda S H_{u} H_{d}+\lambda S^{3}+S^{4} / M_{P l}
\end{aligned}
$$

Unfortunately

1) it is then hard to see (in field theory) why Planck scale mass terms cannot be added
2) generally the term we just added leads to S-tadpoles that generally destabilise the weak scale up to 7 loops!

There is a solution: a symmetry that imposes only even terms in K and odd terms in W (SAA):
Such symmetries are typically either R-symmetries or modular symmetries.

The Generalised NMSSM

Several examples in literature (e.g. in SAA and Pangiotakopoulos, Pilaftsis)
The upshot is there is no large naturalness benefit from the accidental Z3 although the singlet may be good for other things (alleviating fine-tuning):

$$
\begin{aligned}
W= & \lambda_{u} Q H_{u} U^{c}+\lambda_{d} Q H_{d} D^{c}+\lambda_{e} L H_{d} E^{c} \\
& +\lambda S H_{u} H_{d}+\lambda S^{3}+S^{4} / M_{P l}+\mu H_{u} H_{d}+\mu^{\prime} S^{2}
\end{aligned}
$$

It raises Higgs mass (e.g. Ghilencea, Ross, Schmidt-Hoberg) and also gives portal couplings
(- The last term comes about from the Giudice Masierio mechanism: e.g. For a heterotic string theory with a T 2 torus factor: the torus metric is

$$
G_{i j}=\frac{T_{2}}{U_{2}}\left(\begin{array}{cc}
1 & U_{1} \\
U_{1} & |U|^{2}
\end{array}\right)
$$

where $i U=U_{1}+i U_{2}$

$$
i T=T_{1}+i T_{2}
$$

we then find

$$
K / M_{P l}^{2}=-\log (S+\bar{S})-\log \left((T+\bar{T})(U+\bar{U})-\left(H_{U}+\bar{H}_{D}\right)\left(H_{D}+\bar{H}_{U}\right)\right)
$$

(1) The last term comes about from the Giudice Masierio mechanism: e.g. For a heterotic string theory with a T 2 torus factor: the torus metric is

$$
G_{i j}=\frac{T_{2}}{U_{2}}\left(\begin{array}{cc}
1 & U_{1} \\
U_{1} & |U|^{2}
\end{array}\right)
$$

where $i U=U_{1}+i U_{2}$

$$
i T=T_{1}+i T_{2}
$$

we then find

$$
K / M_{P l}^{2}=-\log (S+\bar{S})-\log \left((T+\bar{T})(U+\bar{U})-\left(H_{U}+\bar{H}_{D}\right)\left(H_{D}+\bar{H}_{U}\right)\right)
$$

(- The last term comes about from the Giudice Masierio mechanism: e.g. For a heterotic string theory with a T 2 torus factor: the torus metric is

$$
G_{i j}=\frac{T_{2}}{U_{2}}\left(\begin{array}{cc}
1 & U_{1} \\
U_{1} & |U|^{2}
\end{array}\right)
$$

where $i U=U_{1}+i U_{2}$

$$
i T=T_{1}+i T_{2}
$$

we then find

$$
K / M_{P l}^{2}=-\log (S+\bar{S})-\log \left((T+\bar{T})(U+\bar{U})-\left(H_{U}+\bar{H}_{D}\right)\left(H_{D}+\bar{H}_{U}\right)\right)
$$

(1) Stringy bonus: $H_{U} \rightarrow H_{U}+C, H_{D} \rightarrow H_{D}-C^{*} \quad$ shift symmetry implies that the light higgs is (Hebecker, Knochel, Weigand; Luo, Zwirner)

$$
h=\frac{1}{\sqrt{2}}\left(H_{U}-\bar{H}_{D}\right)
$$

Lightning Pheno summary

Successes ...

Major success! Unification of gauge couplings looks better (see Martin review 9709356)

Lightning Pheno summary

Successes ...

Another major success! EWSB is driven by the large top Yukawa via RG effects -

Lightning Pheno summary

Physical spectrum (mass eigenstates) comes from a mixture of the gauge eigenstates:

Names	Spin	P_{R}	Gauge Eigenstates	Mass Eigenstates
Higgs bosons	0	+1	$H_{u}^{0} H_{d}^{0} H_{u}^{+} H_{d}^{-}$	$h^{0} H^{0} A^{0} H^{ \pm}$
squarks	0	-1	$\begin{array}{ccccc} \widetilde{u}_{L} & \widetilde{u}_{R} & \widetilde{d}_{L} & \widetilde{d}_{R} \\ \widetilde{s}_{L} & \widetilde{s}_{R} & \widetilde{c}_{L} & \widetilde{c}_{R} \\ \widetilde{t}_{L} & \widetilde{t}_{R} & \widetilde{b}_{L} & \widetilde{b}_{R} \end{array}$	$\begin{gathered} \text { (same) } \\ \text { (same) } \\ \tilde{t}_{1} \widetilde{t}_{2} \widetilde{b}_{1} \widetilde{b}_{2} \end{gathered}$
sleptons	0	-1	$\begin{array}{cccc} \widetilde{e}_{L} & \widetilde{e}_{R} & \widetilde{\nu}_{e} \\ \widetilde{\mu}_{L} & \widetilde{\mu}_{R} & \widetilde{\nu}_{\mu} \\ \widetilde{\tau}_{L} & \widetilde{\tau}_{R} & \widetilde{\nu}_{\tau} \end{array}$	$\begin{array}{r} \text { (same) } \\ \text { (same) } \\ \widetilde{\tau}_{1} \widetilde{\tau}_{2} \widetilde{\nu}_{\tau} \end{array}$
neutralinos	1/2	-1	\widetilde{B}^{0} \widetilde{W}^{0} \widetilde{H}_{u}^{0} \widetilde{H}_{d}^{0} 	$\begin{array}{llll}\widetilde{N}_{1} & \widetilde{N}_{2} & \widetilde{N}_{3} & \widetilde{N}_{4}\end{array}$
charginos	1/2	-1	$\widetilde{W}^{ \pm} \widetilde{H}_{u}^{+} \widetilde{H}_{d}^{-}$	$\widetilde{C}_{1}^{ \pm} \widetilde{C}_{2}^{ \pm}$
gluino	1/2	-1	\widetilde{g}	(same)
goldstino (gravitino)	$\begin{gathered} \hline 1 / 2 \\ (3 / 2) \\ \hline \end{gathered}$	-1	\widetilde{G}	(same)

Lightning Pheno summary

Failure ...

SUSY-breaking soft so we don't lose the famous cancellation of divergences But no explanation of form of soft-supersymmetry breaking

$$
\begin{aligned}
\mathcal{L}_{\mathrm{soft}}^{\mathrm{MSSM}}= & -\frac{1}{2}\left(M_{3} \widetilde{g} \widetilde{g}+M_{2} \widetilde{W} \widetilde{W}+M_{1} \widetilde{B} \widetilde{B}+\text { c.c. }\right) \\
& -\left(\widetilde{\bar{u}} \mathbf{a}_{\mathbf{u}} \widetilde{Q} H_{u}-\widetilde{\bar{d}} \mathbf{a}_{\mathbf{d}} \widetilde{Q} H_{d}-\widetilde{\bar{e}} \mathbf{a}_{\mathbf{e}} \widetilde{L} H_{d}+\text { c.c. }\right) \\
& -\widetilde{Q}^{\dagger} \mathbf{m}_{\mathbf{Q}}^{2} \widetilde{Q}-\widetilde{L}^{\dagger} \mathbf{m}_{\mathbf{L}}^{2} \widetilde{L}-\widetilde{\bar{u}} \mathbf{m}_{\mathbf{\mathbf { u }}}^{\mathbf{2}} \widetilde{\bar{u}}^{\dagger}-\widetilde{\bar{d}} \mathbf{m} \frac{\mathbf{2}}{\mathbf{d}} \widetilde{\bar{d}}^{\dagger}-\widetilde{\bar{e}} \mathbf{m}_{\mathbf{e}}^{\mathbf{2}} \widetilde{\bar{e}}^{\dagger} \\
& -m_{H_{u}}^{2} H_{u}^{*} H_{u}-m_{H_{d}} H_{d}^{*} H_{d}-\left(b H_{u} H_{d}+\text { c.c. }\right) .
\end{aligned}
$$

Many constraints on the form of the SUSY breaking: e.g. $\mu \rightarrow e \gamma$ - often assumed universal

The idea of mediation

Or in DESY .

The idea of meditation

Or in DESY ..

The idea of meditation

www.thefreedictionary.com ...
(I) "A contemplative discourse, usually on a religious or philosophical subject."
(II) "A form of religion practiced by Eastern mystics who stare fixedly at their own navels to induce a mystical trance. Also known as omphalism."

The idea of mediation

Assume SUSY is broken in a non-MSSM sector:

$$
v=\left|\frac{\partial W}{\partial \Phi_{i}}\right|^{2}
$$

The idea of mediation

Simple example of SUSY breaking model: O'Raighfeartaigh

$$
W_{\text {susy-break }}=h \varphi \varphi_{1}^{2}+m \varphi_{1} \varphi_{2}-\mu^{2} \varphi
$$

$$
\begin{aligned}
F_{\varphi} & =\left(\frac{\partial W}{\partial \varphi}\right)^{*}=h \varphi_{1}^{2}-\mu^{2} \\
F_{\varphi_{1}} & =2 h \varphi \varphi_{1}+m \varphi_{2} \\
F_{\varphi_{2}} & =m \varphi_{1}
\end{aligned}
$$

Clearly no solution that has all F-terms zero hence $\quad V=\left|\frac{\partial W}{\partial \Phi_{i}}\right|^{2}>0$
In this model a linear combination of φ_{2}, φ is a Goldstino (pseudo-flat scalar direction and massless fermion)

In supergravity (when we gauge the whole superspace) the Goldstino is eaten by the gravitino

The idea of mediation

Visible sector breaking (no mediation): Very low scale breaking with generally SUSY breaking masses ...

$$
M^{2} \sim F
$$

Supertrace sum rules (Dimopoulos Georgi) mean breaking directly in the visible sector is phenomenologically difficult:

$$
S T r\left(M^{2}\right)=0 \longrightarrow m_{\tilde{d}}^{2}+m_{\tilde{s}}^{2}+m_{\tilde{b}}^{2} \sim(5 \mathrm{GeV})^{2}
$$

The idea of mediation

Gauge mediation: Low scale mediation. If SUSY is not hidden then this will be the dominant effect. Giudice Rattazzi Phys Rep 1999

$$
(f . \tilde{f}) \varphi=(f . \tilde{f})\left(\varphi+\theta^{2} F\right)
$$

Universal form for gaugino and sfermion masses - of same order $M \sim F / M_{f}$

The idea of mediation

Gauge mediation: Low scale mediation. If SUSY is not hidden then this will be the dominant effect. Giudice Rattazzi Phys Rep 1999

$$
\begin{aligned}
M_{\tilde{\lambda}_{i}} & =k_{i} \frac{\alpha_{i}}{4 \pi} \frac{F}{M} \\
m_{\tilde{f}}^{2} & =2 \sum_{i=1}^{3} C_{i} k_{i}\left(\frac{\alpha_{i}}{4 \pi} \frac{F}{M}\right)^{2}
\end{aligned}
$$

(a)

(b)

(c)

(g)

(d)

(h)

The idea of mediation

Gravity mediation: High scale mediation. If SUSY is "hidden" (typical string theory assumption and easiest to achieve).

SUSY breaking masses of order $\quad M \sim F / M_{P l}$

The idea of mediation

Direct Gauge mediation: Try to embed the messengers in the SUSY breaking dynamics.

SUSY breaking dynamics now important; can have much smaller gaugino masses

Poppitz Trivedi (1996)
Izawa, Momura, Tobe, Yanagida (1997)
Csaki, Shirman, Terning (2006)
Kitano Ooguri Ookouchi (2006)
SAA, Durnford, Jaeckel, Khoze (2007)
SAA, Jaeckel, Khoze, Matos (2008)

Not-cheating:
 Dynamical SUSY Breaking and the importance of R-symmetry

Dynamical SUSY breaking

ISS (2006) renewed interest in DSB
(Intriligator Seiberg Shih)

$$
\begin{array}{cc}
\mathcal{N}=1 \text { gauge } & \operatorname{SU}(N) \\
F_{Q} \text { quark and antiquarks } & Q, \tilde{Q} \\
\text { Superpotential } & W_{\text {elec }}=m_{Q} Q \tilde{Q}
\end{array}
$$

Dynamical SUSY breaking

Th'm: Nelson-Seiberg

In a generic theory dynamical SUSY breaking requires an R-symmetry:

$$
\begin{aligned}
\theta & \rightarrow e^{i \alpha} \theta \\
W & \rightarrow \\
\Phi_{i} & \rightarrow e^{2 i \alpha} W \\
& \rightarrow e^{i R_{i} \alpha} \Phi_{i}
\end{aligned}
$$

Th'm: Nelson-Seiberg

In a generic theory dynamical SUSY breaking requires an R-symmetry:

But gaugino mass terms $M_{\lambda} \lambda^{\alpha} \lambda_{\alpha}$ break R-symmetry: conflict

Th'm: Nelson-Seiberg

In a generic theory dynamical SUSY breaking requires an R-symmetry:

But gaugino mass terms $M_{\lambda} \lambda^{\alpha} \lambda_{\alpha}$ break R-symmetry: conflict

The Ordinary GM paradigm cheats by writing $(f . \tilde{f}) \Phi=(f . \tilde{f})\left(M+\theta^{2} F\right)$

Th'm: Nelson-Seiberg

The origin of ISS is metastable because of an anomalous R-symmetry

Th'm: Nelson-Seiberg

Looked promising and lots of excitement ...

1) Long lived vacuum because automatically very shallow
2) R-symmetry breaking as well albeit anomalous, but ...
... sadly gaugino masses still zero. So require extra R-symmetry breaking, but then still need to worry about stability of SUSY breaking minimum.

Th'm: Nelson-Seiberg

Two possible options for doing phenomenology:

1) Explicit R-breaking

$$
W=W_{R-\text { sym }}+\varepsilon W_{R-\text { breaking }}
$$

a global SUSY minimum develops $\mathcal{O}\left(1 / \varepsilon^{\text {power }}\right)$ y in field space

$$
M_{\lambda} \propto \varepsilon^{\text {power }}
$$

2) Spontaneous R-breaking

Explicit Breaking example

How to get an R -breaking gaugino mass without destabilising vacuum? ISS is based on electric/magnetic Seiberg duals - suppose the messenger sector breaks R-symmetry maximally in the electric theory:

$$
W_{\text {elec }}=m_{Q} Q \tilde{Q}+\frac{\lambda}{M_{P l}} Q \tilde{Q} f \tilde{f}+M f \tilde{f}
$$

$$
W_{c l}=W_{c l}^{I S S}+\frac{\lambda \Lambda}{M_{P l}} \Phi f \tilde{f}+M f \tilde{f}
$$

Explicit Breaking example

How to get an R -breaking gaugino mass without destabilising vacuum? ISS is based on electric/magnetic Seiberg duals - suppose the messenger sector breaks R-symmetry maximally in the electric theory:

$$
W_{\text {elec }}=m_{Q} Q \tilde{Q}+\frac{\lambda}{M_{P l}} Q \tilde{Q} f \tilde{f}+M f \tilde{f}
$$

$$
W_{c l}=W_{c l}^{I S S}+\frac{\lambda}{M_{P l}} \Phi f \tilde{f}+M f \tilde{f}
$$

$:=\varepsilon$

Explicit Breaking example

How to get an R -breaking gaugino mass without destabilising vacuum? ISS is based on electric/magnetic Seiberg duals - suppose the messenger sector breaks R-symmetry maximally in the electric theory:

$$
W_{\text {elec }}=m_{Q} Q \tilde{Q}+\frac{\lambda}{M_{P l}} Q \tilde{Q} f \tilde{f}+M f \tilde{f}
$$

$$
W_{c l}=W_{c l}^{I S S}+\frac{\lambda \Lambda}{M_{P l}} \Phi f \tilde{f}+M f \tilde{f}
$$

$:=\varepsilon$

Emergent R-symmetry

Clues from String Theory? String models with SUSY breaking and Scherk-Schwarz

General Remark

Non-SUSY strings are in general unstable (dilaton tadpole) we need SUSY breaking order parameter to gain control:

General Remark

Non-SUSY strings are in general unstable (dilaton tadpole) we need SUSY breaking order parameter to gain control:

General Remark

Non-SUSY strings are in general unstable (dilaton tadpole) we need SUSY breaking order parameter to gain control:

Deform theory to end up HERE

- Can do this by applying Scherk-Schwarz type deformation: a deformation that preserves only a discrete subgroup of a $\mathrm{U}(1) \mathrm{w} / \mathrm{s}$ symmetry $\mathbf{Q}_{\mathbf{e}}$ that at least partly involves the continuous U(1) R-symmetry
- Can do this by applying Scherk-Schwarz type deformation: a deformation that preserves only a discrete subgroup of a $U(1)$ w/s symmetry $\mathbf{Q}_{\mathbf{e}}$ that at least partly involves the continuous U(1) R-symmetry
- The order parameter is $\mathbf{1 / R a d i u s .}$
- Can do this by applying Scherk-Schwarz type deformation: a deformation that preserves only a discrete subgroup of a $\mathrm{U}(1) \mathrm{w} / \mathrm{s}$ symmetry $\mathbf{Q}_{\mathbf{e}}$ that at least partly involves the continuous U(1) R-symmetry
- The order parameter is $1 /$ Radius.
- For SUSY breaking to be spontaneous, the world-sheet supercurrent must be preserved under the discrete transformations but not commute with the local generator $\mathbf{Q}_{\mathbf{e}}$

$$
\left[T_{F}(z), \mathbf{Q}_{e}(z)\right] \neq 0
$$

e.g. in Heterotic string define everything in terms of internal charge lattice:
${ }_{\text {Let }} \mathbf{Q}_{e}=\mathbf{e} \cdot \mathbf{Q}$

Partition function deformed according to (Rohm, Kounnas, Rostand, Ferrara, Porratti, Zwirner)

$$
\begin{gathered}
Z_{\text {model }}=\sum_{\alpha, \beta, n, m} \operatorname{Trg} q^{\left[\mathbf{L}_{0}^{\prime}\right]} \bar{q}^{\left[\overline{\mathbf{L}}_{0}\right]} \\
{\mathbf{\mathbf { L } ^ { \prime }}}_{0}^{\prime}=\frac{1}{2}\left[\mathbf{Q}_{L}-\mathbf{e}_{L}\left(n_{1}+n_{2}\right)\right]^{2}+\frac{1}{4}\left[\frac{m_{1}+\mathbf{e} \cdot \mathbf{Q}-\frac{1}{2}\left(n_{1}+n_{2}\right) \mathbf{e}^{2}}{r_{1}}+n_{1} r_{1}\right]^{2} \\
+\frac{1}{4}\left[\frac{m_{2}+\mathbf{e} \cdot \mathbf{Q}-\frac{1}{2}\left(n_{1}+n_{2}\right) \mathbf{e}^{2}}{r_{2}}+n_{2} r_{2}\right]^{2}-1+\text { other oscillator cont's } \\
{\overline{\mathbf{L}^{\prime}}}_{0}=\frac{1}{2}\left[\mathbf{Q}_{R}-\mathbf{e}_{R}\left(n_{1}+n_{2}\right)\right]^{2}+\frac{1}{4}\left[\frac{m_{1}+\mathbf{e} \cdot \mathbf{Q}-\frac{1}{2}\left(n_{1}+n_{2}\right) \mathbf{e}^{2}}{r_{1}}-n_{1} r_{1}\right]^{2} \\
+\frac{1}{4}\left[\frac{m_{2}+\mathbf{e} \cdot \mathbf{Q}-\frac{1}{2}\left(n_{1}+n_{2}\right) \mathbf{e}^{2}}{r_{2}}-n_{2} r_{2}\right]^{2}-\frac{1}{2}+\text { other oscillator cont's }
\end{gathered}
$$

e.g. in Heterotic string define everything in terms of internal charge lattice:

Let $\mathbf{Q}_{e}=\mathbf{e} \cdot \mathbf{Q}$

Partition function deformed according to (Rohm, Kounnas, Rostand, Ferrara, Porratti, Zwirner)

Charge lattice shifted by e

$$
\begin{aligned}
\mathbf{L}_{0}^{\prime} & =\frac{1}{2}\left[\mathbf{Q}_{L}-\mathbf{e}_{L}\left(n_{1}+n_{2}\right)\right]^{2}+\frac{1}{4}\left[\frac{m_{1}+\mathbf{e} \cdot \mathbf{Q}-\frac{1}{2}\left(n_{1}+n_{2}\right) \mathbf{e}^{2}}{r_{1}}+n_{1} r_{1}\right]^{2} \\
& +\frac{1}{4}\left[\frac{m_{2}+\mathbf{e} \cdot \mathbf{Q}-\frac{1}{2}\left(n_{1}+n_{2}\right) \mathbf{e}^{2}}{r_{2}}+n_{2} r_{2}\right]^{2}-1+\text { other oscillator cont's } \\
{\overline{\mathbf{L}^{\prime}}}_{0} & =\frac{1}{2}\left[\mathbf{Q}_{R}-\mathbf{e}_{R}\left(n_{1}+n_{2}\right)\right]^{2}+\frac{1}{4}\left[\frac{m_{1}+\mathbf{e} \cdot \mathbf{Q}-\frac{1}{2}\left(n_{1}+n_{2}\right) \mathbf{e}^{2}}{r_{1}}-n_{1} r_{1}\right]^{2} \\
& +\frac{1}{4}\left[\frac{m_{2}+\mathbf{e} \cdot \mathbf{Q}-\frac{1}{2}\left(n_{1}+n_{2}\right) \mathbf{e}^{2}}{r_{2}}-n_{2} r_{2}\right]^{2}-\frac{1}{2}+\text { other oscillator cont's }
\end{aligned}
$$

e.g. in Heterotic string define everything in terms of internal charge lattice:

Let $\mathbf{Q}_{e}=\mathbf{e} \cdot \mathbf{Q}$

Partition function deformed according to (Rohm, Kounnas, Rostand, Ferrara, Porratti, Zwirner)

$$
Z_{\text {model }}=\sum_{\alpha, \beta, n, m} \operatorname{Trg} q^{\left[\mathbf{L}_{0}\right]} \bar{q}^{\left[\overrightarrow{\mathbf{L}}_{0}\right]}
$$

Charge lattice shifted by e
KK number shifted by e

$$
\begin{aligned}
\mathbf{L}^{\prime}{ }_{0} & =\frac{1}{2}\left[\mathbf{Q}_{L}-\mathbf{e}_{L}\left(n_{1}+n_{2}\right)\right]^{2}+\frac{1}{4}\left[\frac{m_{1}+\mathbf{e} \cdot \mathbf{Q}-\frac{1}{2}\left(n_{1}+n_{2}\right) \mathbf{e}^{2}}{r_{1}}+n_{1} r_{1}\right]^{2} \\
& +\frac{1}{4}\left[\frac{m_{2}+\mathbf{e} \cdot \mathbf{Q}-\frac{1}{2}\left(n_{1}+n_{2}\right) \mathbf{e}^{2}}{r_{2}}+n_{2} r_{2}\right]^{2}-1+\text { other oscillator cont's } \\
{\overline{\mathbf{L}^{\prime}}{ }_{0}}= & \frac{1}{2}\left[\mathbf{Q}_{R}-\mathbf{e}_{R}\left(n_{1}+n_{2}\right)\right]^{2}+\frac{1}{4}\left[\frac{m_{1}+\mathbf{e} \cdot \mathbf{Q}-\frac{1}{2}\left(n_{1}+n_{2}\right) \mathbf{e}^{2}}{r_{1}}-n_{1} r_{1}\right]^{2} \\
& +\frac{1}{4}\left[\frac{m_{2}+\mathbf{e} \cdot \mathbf{Q}-\frac{1}{2}\left(n_{1}+n_{2}\right) \mathbf{e}^{2}}{r_{2}}-n_{2} r_{2}\right]^{2}-\frac{1}{2}+\text { other oscillator cont's }
\end{aligned}
$$

e.g. in Heterotic string define everything in terms of internal charge lattice:

Let $\mathbf{Q}_{e}=\mathbf{e} \cdot \mathbf{Q}$

Partition function deformed according to (Rohm, Kounnas, Rostand, Ferrara, Porratti, Zwirner)

$$
Z_{\text {model }}=\sum_{\alpha, \beta, n, m} \operatorname{Trg} q^{\left[\mathbf{L}_{0}^{\prime}\right]} \bar{q}^{\left[\overline{\mathbf{L}}_{0}^{\prime}\right]}
$$

Charge lattice shifted by e
KK number shifted by e

$$
\begin{aligned}
\mathbf{L}^{\prime}{ }_{0} & =\frac{1}{2}\left[\mathbf{Q}_{L}-\mathbf{e}_{L}\left(n_{1}+n_{2}\right)\right]^{2}+\frac{1}{4}\left[\frac{m_{1}+\mathbf{e} \cdot \mathbf{Q}-\frac{1}{2}\left(n_{1}+n_{2}\right) \mathbf{e}^{2}}{r_{1}}+n_{1} r_{1}\right]^{2} \\
& +\frac{1}{4}\left[\frac{m_{2}+\mathbf{e} \cdot \mathbf{Q}-\frac{1}{2}\left(n_{1}+n_{2}\right) \mathbf{e}^{2}}{r_{2}}+n_{2} r_{2}\right]^{2}-1+\text { other oscillator cont's } \\
{\overline{\mathbf{L}^{\prime}}{ }_{0}}= & \frac{1}{2}\left[\mathbf{Q}_{R}-\mathbf{e}_{R}\left(n_{1}+n_{2}\right)\right]^{2}+\frac{1}{4}\left[\frac{m_{1}+\mathbf{e} \cdot \mathbf{Q}-\frac{1}{2}\left(n_{1}+n_{2}\right) \mathbf{e}^{2}}{r_{1}}-n_{1} r_{1}\right]^{2} \\
& +\frac{1}{4}\left[\frac{m_{2}+\mathbf{e} \cdot \mathbf{Q}-\frac{1}{2}\left(n_{1}+n_{2}\right) \mathbf{e}^{2}}{r_{2}}-n_{2} r_{2}\right]^{2}-\frac{1}{2}+\text { other oscillator cont's }
\end{aligned}
$$

Models with small Cosm. Const.

Can find sophisticated e's embedded both in R-symmetry and gauge degrees of freedom to get models with Fermi-Bose degeneracy (SAA+Dienes+Mavroudi)

Models with small Cosm. Const.

Can find sophisticated e's embedded both in R-symmetry and gauge degrees of freedom to get models with Fermi-Bose degeneracy (SAA+Dienes+Mavroudi)

$$
N_{b}^{0}=N_{f}^{0} \Longrightarrow
$$

Models with small Cosm. Const.

Can find sophisticated e's embedded both in R-symmetry and gauge degrees of freedom to get models with Fermi-Bose degeneracy (SAA+Dienes+Mavroudi)

$$
N_{b}^{0}=N_{f}^{0} \Longrightarrow
$$

$$
\Lambda \approx\left(N_{b}^{1}-N_{f}^{1}\right) R^{-3 / 2} e^{-4 \pi R m_{1}}
$$

Models with small Cosm. Const.

Best option we find sofar complete SM generations, 11 Higgs pairs, SM "Superpartners" but not SUSY (no massless gauginos, gravitinos)

Models with small Cosm. Const.

Best option we find sofar complete SM generations, 11 Higgs pairs, SM "Superpartners" but not SUSY (no massless gauginos, gravitinos)

| tate | $U(1) U(1) U(1) S O(4) U(3) U(2) U(1) U(1) U(1) U(1) S O(4) U(1) U(1) U(1) U(1)$ | Y |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Models with small Cosm. Const.

Best option we find so far complete SM generations, 11 Higgs pairs, SM "Superpartners" but not SUSY (no massless gauginos, gravitinos)

State	$U(1)$	$U(1)$	$U(1)$	$S O(4)$	$U(3)$	$U(2)$	$U(1)$	$U(1)$	$U(1)$	$U(1)$	$S O(4)$	$U(1)$	$U(1)$

$q^{(1)}$	$-1 / 2$	\cdot	$-1 / 2$	\cdot	$\mathbf{3}$	$\mathbf{2}$	$1 / 2$	\cdot	$1 / 6$								
$q^{(2)}$	$-1 / 2$	\cdot	$1 / 2$	\cdot	$\mathbf{3}$	$\mathbf{2}$	$1 / 2$	\cdot	$1 / 6$								
$q_{1}^{(3)}$	\cdot	$1 / 2$	\cdot	\cdot	$\mathbf{3}$	$\mathbf{2}$	\cdot	\cdot	$-1 / 2$	\cdot	\cdot	\cdot	\cdot	\cdot	\cdot	$1 / 6$	
$\tilde{q}^{(1)}$	$1 / 2$	\cdot	$-1 / 2$	\cdot	$\mathbf{3}$	$\mathbf{2}$	$1 / 2$	\cdot	\cdot	\cdot	\cdot		\cdot	\cdot	\cdot	\cdot	$1 / 6$
$\tilde{q}^{(2)}$	$1 / 2$	\cdot	$1 / 2$	\cdot	$\mathbf{3}$	$\mathbf{2}$	$1 / 2$	\cdot	$1 / 6$								
$\tilde{q}^{(3)} \ldots$	\cdot	$1 / 2$	\cdot	\cdot	$\mathbf{3}$	$\mathbf{2}$	\cdot	\cdot	$-1 / 2$	\cdot	\cdot	\cdot	\cdot	\cdot	\cdot	$1 / 6$	

Different charges!! c.f. folded SUSY with a twist (Craig et al)

Phenomenology

Phenomenology

A phenomenological model would look generically like ...

Phenomenology

Phenomenology

In a UV complete theory can calculate couplings and higgs masses from first principles
(1) They are finite (at one-loop)

Phenomenology

In a UV complete theory can calculate couplings and higgs masses from first principles
(1) They are finite (at one-loop)
(1) Leading contribution similar to the CC calculation but counts fields that couple to the Higgs

Phenomenology

In a UV complete theory can calculate couplings and higgs masses from first principles
(1) They are finite (at one-loop)
(- Leading contribution similar to the CC calculation but counts fields that couple to the Higgs
(1) While the CC is exponentially suppressed the mass isn't (necessarily)

Phenomenology

In a UV complete theory can calculate couplings and higgs masses from first principles
(1) They are finite (at one-loop)

- Leading contribution similar to the CC calculation but counts fields that couple to the Higgs
(1) While the CC is exponentially suppressed the mass isn't (necessarily)

$$
\begin{aligned}
M_{H_{1}}^{2} & =\frac{1}{16 \pi^{2}} \int_{\frac{1}{\mu^{2}} \approx 1}^{\infty} \frac{d \tau_{2}}{4 \tau_{2}^{5}} \sum_{\ell=o d d, i} Y^{2}\left(N_{f H}^{i}-N_{b H}^{i}\right)|\vec{\ell}|^{2} e^{-\frac{\pi}{\tau_{2}}|\vec{\ell}|^{2}} e^{-\pi \tau_{2} \alpha^{\prime} m_{i}^{2}} \\
& \approx \frac{2}{\alpha^{\prime}} \frac{Y^{2}}{16 \pi^{2}}\left(N_{f H}^{0}-N_{b H}^{0}\right) \frac{\pi^{2}}{320 r_{1}^{6}} .
\end{aligned}
$$

Summary

Summary

SUSY is a beautiful and fundamental idea that is likely to have some place BSM

Summary

SUSY is a beautiful and fundamental idea that is likely to have some place BSM

Summary

SUSY is a beautiful and fundamental idea that is likely to have some place BSM
The Higgs is in the right place for something close to the MSSM most likely with an expanded Higgs sector.

Summary

SUSY is a beautiful and fundamental idea that is likely to have some place BSM
The Higgs is in the right place for something close to the MSSM most likely with an expanded Higgs sector.

SMMMMRODy

SUSY is a beautiful and fundamental idea that is likely to have some place BSM
The Higgs is in the right place for something close to the MSSM most likely with an expanded Higgs sector.

Maybe not vanilla phenomenology (indeed flavour was hinting for a while that it was not) - e.g. folded SUSY of some expanded content.

SMMMMRODy

SUSY is a beautiful and fundamental idea that is likely to have some place BSM
The Higgs is in the right place for something close to the MSSM most likely with an expanded Higgs sector.

Maybe not vanilla phenomenology (indeed flavour was hinting for a while that it was not) - e.g. folded SUSY of some expanded content.

SMMMMRADy

SUSY is a beautiful and fundamental idea that is likely to have some place BSM
The Higgs is in the right place for something close to the MSSM most likely with an expanded Higgs sector.

Maybe not vanilla phenomenology (indeed flavour was hinting for a while that it was not) - e.g. folded SUSY of some expanded content.

But also: expectations based on naturalness have often turned out to be not quite right.

SMMMMRADy

SUSY is a beautiful and fundamental idea that is likely to have some place BSM
The Higgs is in the right place for something close to the MSSM most likely with an expanded Higgs sector.

Maybe not vanilla phenomenology (indeed flavour was hinting for a while that it was not) - e.g. folded SUSY of some expanded content.

But also: expectations based on naturalness have often turned out to be not quite right.

SHMMMRADy

SUSY is a beautiful and fundamental idea that is likely to have some place BSM
The Higgs is in the right place for something close to the MSSM most likely with an expanded Higgs sector.

Maybe not vanilla phenomenology (indeed flavour was hinting for a while that it was not) - e.g. folded SUSY of some expanded content.

But also: expectations based on naturalness have often turned out to be not quite right.
Have fun!

SHMMMRADy

SUSY is a beautiful and fundamental idea that is likely to have some place BSM
The Higgs is in the right place for something close to the MSSM most likely with an expanded Higgs sector.

Maybe not vanilla phenomenology (indeed flavour was hinting for a while that it was not) - e.g. folded SUSY of some expanded content.

But also: expectations based on naturalness have often turned out to be not quite right.
Have fun!

SHMMMRADy

SUSY is a beautiful and fundamental idea that is likely to have some place BSM
The Higgs is in the right place for something close to the MSSM most likely with an expanded Higgs sector.

Maybe not vanilla phenomenology (indeed flavour was hinting for a while that it was not) - e.g. folded SUSY of some expanded content.

But also: expectations based on naturalness have often turned out to be not quite right.
Have fun!

SHMMMRADy

SUSY is a beautiful and fundamental idea that is likely to have some place BSM
The Higgs is in the right place for something close to the MSSM most likely with an expanded Higgs sector.

Maybe not vanilla phenomenology (indeed flavour was hinting for a while that it was not) - e.g. folded SUSY of some expanded content.

But also: expectations based on naturalness have often turned out to be not quite right.
Have fun!

