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The hierarchy problem



Higgs-like particle discovered in 2012:

Hierarchy problem - why is the Weak Scale so much lower than the Planck Scale 
- and how is it protected?

More precisely perturbation theory with a higgs scalar is suspect: very “massive 
states” dominate any calculation to do with higgs physics. 

In fact we don’t even need a heavy resonance: this is true for any change (in e.g. 
beta functions) at a high scale.   
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2. Scaling symmetry - Higgs is the Goldstone mode of a broken scale invariance (a.k.a. dilaton) (a trivial 

perturbative example of this is the Standard Model with vanishing higgs mass, but it can occur in 

nonperturbative models based on AdS/CFT)  

3. Supersymmetry - relates boson to fermions. Divergences cancel level by level. Phenomenology requires 

soft (a.k.a. dimensionful) breaking.

4. Misaligned Supersymmetry - the “magic symmetry’’ that makes even non-supersymmetric non-tachyonic 

string theory finite. Dimensional supersymmetry breaking in the effective theory, but not soft(!)

The hierarchy problem



What is really going on …

IDEA: MEDIATION OF EXACT SCALE BREAKING S.ABEL, A.M ’13

Use a modular structure for the UV completion
Split spontaneous breaking of scale invariance from SM sector
Assume SM and Scale Breaking Sector (Hidden) are connected only via
gauge interactions (enhancement of scale symmetry in limit g ! 0)
) Add a loop of protection w.r.t. previous arguments

fc

Scale Invariance

Scale Invariant SM

UV interacting fixed point

Breaking

EWSB

Scale invariance breaking is communicated to the Higgs via loops effects
) Relevant operators proportional to fc are generate in Higgs potential
The true dilaton resides in the hidden sector and has mass ⇠ fc

Alberto Mariotti (IPPP Durham) GMESB 3-02-2014 10 / 23

at RG Fixed point possibly enforced by extra symmetry



Superpotential: 

- The “F-term” (highest dimension component) of a chiral superfield transforms 
under SUSY as a total derivative.  

-  Any function of chiral superfields is also a chiral superfield. 
-  Ergo for invariant interactions, take any function of chiral superfields W … 

through a finite transformation, ξα+ ξα+ ... =

θα? This can be written,

Φ = eδθ ϕ

Another exercise;

Φ = (1+ δθ +
1
2!δ

2
θ + ...)ϕ(x)

= ϕ(y) +
√
2θχ(y) + θθF(y)

where yµ = xµ + iθσµθ. Note that θθ × θα = 0

because only two components in θα and they

anticommute. i.e. Φ(θ, y). Any function of Φ

has the same transformation properties – i.e.

its θθ term is a total derivative.

So the F -term of any function of superfields

(superpotential) is a suitable Lagrangian;

L = W |θθ + h.c.int

Example: top Yukawa  

giving

Lm = −m2|ϕ|2 −mχχ−mχχ

Example 2) Top Yukawa coupling, and higgs

masses...

Superfields - with usual SU(3)xSU(2)xU(1) charges;

Hu = hu h̃u Fhu
Q = q̃ q FQ
tc = t̃c tc Ftc

Wtop−Y ukawa = λtQHutc

Ltop−Y ukawa = −λtqhutc−λtq̃(h̃utc)−λt(qh̃u)t̃c+

λ2t |hut̃|2+λ2t |huq̃|2+.... gives the promised can-

cellations to Higgs mass.
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Kahler potential: 

Generally can define the Kinetic terms as the “D-term” of a real function K,  
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For the SM Yukawa couplings need a second higgs and Superpotential
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The NMSSM



The good and bad thing about the NMSSM is its Z3 symmetry: after EWSB the Universe 
looks like …

Domain wall problem for NMSSM

Figure 3

(from SAA, Sarkar, White)



If you want to avoid domain wall problems sadly you have to break Z3 but the breaking can 
be small (SAA, Sarkar, White):
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Unfortunately 
1) it is then hard to see (in field theory) why Planck scale mass terms cannot be added 
2) generally the term we just added leads to S-tadpoles that generally destabilise the weak 

scale up to 7 loops! 

There is a solution: a symmetry that imposes only even terms in K and odd 
terms in W (SAA): 
Such symmetries are typically either R-symmetries or modular symmetries. 
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Several examples in literature  (e.g. in SAA and Pangiotakopoulos, Pilaftsis)  
The upshot is there is no large naturalness benefit from the accidental Z3 
although the singlet may be good for other things (alleviating fine-tuning): 

+µHuHd + µ0S2

It raises Higgs mass (e.g. Ghilencea, Ross, Schmidt-Hoberg) and also gives 
portal couplings 



 The last term comes about from the Giudice Masierio mechanism: e.g. For a heterotic 

string theory with a T2 torus factor: the torus metric is 

    where 

   we then find 

chance of stabilising it in a calculable way at the field theory level.

Given the typical spectrum, it may seem surprising that the light sector in such a theory can

be described by spontaneously broken supergravity, even though the spectrum at excited levels is

grossly non-supersymmetric. However it is consistent to do this, because the physical situation is

analogous to the breaking of gauge symmetry by the Hositani mechanism, where there is a separate

Goldstone mechanism (and corresponding Goldstone mode) operating in the zero modes and at each

KK level. In the case of spontaneous SUSY breaking in string theory therefore, one can utilize this

fact in addition to the remarkable decoupling properties of the heavy spectrum, which persist even

in the presence of supersymmetry breaking thanks to the modular invariance of the world-sheet.

We can therefore proceed by describing the effective low energy theory. Recall that the tree-level

gravity and Yang Mills parts of the action are,

S =

∫

d4x
VD−4

g2c

(

α′−4R+ α′−3F 2
)

, (II.1)

where VD−4 is the compactification volume and gc is the string coupling. We shall assume (as in

ref.[US]) a highly anisotropic compactification of the form T2/Z2 ⊗K3, with the T2 factor having

a large volume, and the K3 manifold giving N = 1 in 6D and having string-sized dimensions. For

convenience we take the volume of the K3 to be precisely one in string units. (In ref.[US] the

compactification to 6D was achieved by using the fermionic formulation limit of the K3, but the

particular form of the 6D theory will not be relevant for our discussion.)

For later use, we also recall the coupling expansion for n−point diagrams in heterotic string theory

which behaves as gn−χ
c where χ = 2− g is the Euler number, and the usual tree-level relations

g−2
tree = g−2

c vD−4

M2
P = g−2

c vD−4α
′−1, (II.2)

where vD−4 = VD−4α′−3 is the volume normalised with respect to the fundamental string scale and

gtree is the tree-level Yang-Mills coupling.

Now for the effective SUGRA theory. Far above the scale 1/R we may neglect the split-

ting in the spectrum and build the theory from the unbroken N = 1 supergravity [SUGRA

REVIEW,ANT,MOHAUPT,hep-th/9409095,9405002]. We briefly recap the known results which

are similar to the supersymmetric models considered in [IBANEZMARCHESANO]. The general T2

torus in the absence of Wilson lines (which will eventually correspond to untwisted “Higgses”), has

a metric given by Gij = T2

U2

⎛

⎝

1 U1

U1 |U |2

⎞

⎠ and Gij = 1
T2U2

⎛

⎝

|U |2 −U1

−U1 1

⎞

⎠. In order to be in line

4

with the SUGRA literature we are using the convention that

iU = U1 + iU2

iT = T1 + iT2, (II.3)

and thus we will write for example 2T2 = T + T̄ , and detG = T 2
2 . We will henceforth set Bij = 0.

In this formalism the gauge kinetic term can be written

fa = S +
1

8π2

(

b̃a + δGS
)

log η(iT )2

b̃ = C(Ga)−
∑

Q

T (Ra
Q)(1 + 2nQ), (II.4)

with S being defined as the holomorphic tree-level coupling, i.e. g−2
tree = ℜ(S). The coefficient

(

b̃a + δGS
)

turns out to be the beta functions of the N = 2 sub-sector of the theory living on

the T2 torus, and indeed the log η(iT )2 piece in the gauge kinetic term encapsulates the one-loop

quantum corrections of these modes. In particular at large radii one recovers the expected volume

dependence corresponding to power law running of the gauge coupling, of which much more later.

Finally the nQ are the modular weights of the fields under the T -duality which we shall describe

in a moment. (We will consider only the T and U moduli for the large T2 factor here. For a

T2 ⊗ T2 ⊗ T2 compactification one would simply add a contribution from each sub-torus.)

We would like to include untwisted fields, and in particular of course massless scalars that we

would like to play the role of Higgses. As seen in ref.[US], either scalars or fermions can remain

massless depending on the choice of boundary condition. However there are always massless scalars

corresponding to the the extra-dimensional off-diagonal (i.e. broken) components of gauge bosons in

the NS-NS sector. These are associated with continuous Wilson line moduli along the two cycles of

the T2. The Kahler manifold involving the T2 and Wilson line moduli is a SO(2, r)/SO(2)×SO(r)

coset space describing deformations of the Lorentzian Narain lattice modded out by gauge/Lorentz

rotations. The modulus U is unaffected by the Wilson line moduli, but one should replace T2 in the

metric according to

T2 → T2 − ΦΦ̄/U2, (II.5)

where Φ is a linear combination of the untwisted Higgs fields 2Φ =
(

HU + H̄D
)

[MOHAUPT,ANTONIADISTAYLORBRIGNOLEIBANEZSCHEICH,BR-IB-MUN]. Importantly

for later use we will need
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chance of stabilising it in a calculable way at the field theory level.

Given the typical spectrum, it may seem surprising that the light sector in such a theory can

be described by spontaneously broken supergravity, even though the spectrum at excited levels is

grossly non-supersymmetric. However it is consistent to do this, because the physical situation is

analogous to the breaking of gauge symmetry by the Hositani mechanism, where there is a separate

Goldstone mechanism (and corresponding Goldstone mode) operating in the zero modes and at each

KK level. In the case of spontaneous SUSY breaking in string theory therefore, one can utilize this

fact in addition to the remarkable decoupling properties of the heavy spectrum, which persist even

in the presence of supersymmetry breaking thanks to the modular invariance of the world-sheet.

We can therefore proceed by describing the effective low energy theory. Recall that the tree-level

gravity and Yang Mills parts of the action are,

S =

∫

d4x
VD−4

g2c

(

α′−4R+ α′−3F 2
)

, (II.1)

where VD−4 is the compactification volume and gc is the string coupling. We shall assume (as in

ref.[US]) a highly anisotropic compactification of the form T2/Z2 ⊗K3, with the T2 factor having

a large volume, and the K3 manifold giving N = 1 in 6D and having string-sized dimensions. For

convenience we take the volume of the K3 to be precisely one in string units. (In ref.[US] the

compactification to 6D was achieved by using the fermionic formulation limit of the K3, but the

particular form of the 6D theory will not be relevant for our discussion.)

For later use, we also recall the coupling expansion for n−point diagrams in heterotic string theory

which behaves as gn−χ
c where χ = 2− g is the Euler number, and the usual tree-level relations

g−2
tree = g−2

c vD−4

M2
P = g−2

c vD−4α
′−1, (II.2)

where vD−4 = VD−4α′−3 is the volume normalised with respect to the fundamental string scale and

gtree is the tree-level Yang-Mills coupling.

Now for the effective SUGRA theory. Far above the scale 1/R we may neglect the split-

ting in the spectrum and build the theory from the unbroken N = 1 supergravity [SUGRA

REVIEW,ANT,MOHAUPT,hep-th/9409095,9405002]. We briefly recap the known results which

are similar to the supersymmetric models considered in [IBANEZMARCHESANO]. The general T2

torus in the absence of Wilson lines (which will eventually correspond to untwisted “Higgses”), has

a metric given by Gij = T2

U2

⎛

⎝

1 U1

U1 |U |2

⎞

⎠ and Gij = 1
T2U2

⎛

⎝

|U |2 −U1

−U1 1

⎞

⎠. In order to be in line

4

with the SUGRA literature we are using the convention that

iU = U1 + iU2

iT = T1 + iT2, (II.3)

and thus we will write for example 2T2 = T + T̄ , and detG = T 2
2 . We will henceforth set Bij = 0.

In this formalism the gauge kinetic term can be written

fa = S +
1

8π2

(

b̃a + δGS
)

log η(iT )2

b̃ = C(Ga)−
∑

Q

T (Ra
Q)(1 + 2nQ), (II.4)

with S being defined as the holomorphic tree-level coupling, i.e. g−2
tree = ℜ(S). The coefficient

(

b̃a + δGS
)

turns out to be the beta functions of the N = 2 sub-sector of the theory living on

the T2 torus, and indeed the log η(iT )2 piece in the gauge kinetic term encapsulates the one-loop

quantum corrections of these modes. In particular at large radii one recovers the expected volume

dependence corresponding to power law running of the gauge coupling, of which much more later.
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At tree-level (i.e. setting the Green-Schwarz term δ = 0), inserting into the potential we find that

Kij̄KiKj̄|W |2 − 3|W |2 = 0 thanks to the no-scale structure. Then with W =
√
2(iU − 1)M3

P l

the only other possible non-zero contributions after supersymmetry breaking could come from U

derivatives of W ; using K j̄iKi = −2(S2, T2, U2, Φ̄,Φ) we find

V ⊃ eK
(

Kj̄W̄K j̄UWU + W̄ŪK
Ū iKiW + W̄ŪK

ŪUWU

)

= eK
(

−(U + Ū)(Ū − i)− (U + Ū)(U + i) + (U + Ū)2
)

= 0. (II.29)

III. SCALES

So far all Higgs states remain massless at tree level as expected. Including the Green-Schwarz

contribution a little work gives

V = − δ

2Y
m2

3/2M
2
P l = −δ

4
m2

3/2M
2
s , (III.1)

where m2
3/2 contains the full dynamical dependence on the moduli fields.

We now note a purely stringy effect, albeit one that can be observed in the string effective action: a

potentially dominant contribution to the Higgs masses comes from the dependence of the gravitino

mass itself on the Higgs. Expanding, we find that the physical Higgs mass matrix is

m2
H = −δ

4

M2
s

M2
P l

m2
3/2

⎛

⎝

1 eiθµ

e−iθµ 1

⎞

⎠+O(δ2). (III.2)

With standard mediation m3/2 would be at most ∼ TeV and this would represent a contribution

that was loop-suppressed with respect to the weak scale. However if we are considering m3/2 ≫ TeV

these contributions could indeed be significant. Thus so far all scalar directions remain massless

at tree-level even after supersymmetry breaking but at one-loop there is a single light higgs corre-

sponding to the massless eigenvalue of the above matrix. This remains the case when one includes

the D-term contributions which go as

D2 =
g2

2
(|HU |2 − |HD|2)2. (III.3)

The light (orthogonal) state h = 1√
2
(HU −H̄D) is identified as the SM higgs and it remains massless

to leading order, defining the tan β = 1 decoupling limit.The first contribution to the mass of h must

involve the N = 1 sector since this explicitly breaks the shift symmetry. The largest contribution

is from the one-loop diagram with two Yukawas and fermions or scalars in the loop. Note however

10

The corresponding Kahler potential becomes

K/M2
P l = − log Y − log 4(T2U2 − ΦΦ̄), (II.7)

and the dilaton combination Y is

Y = S + S̄ +
1

8π2
δGS log 4(T2U2 − ΦΦ̄). (II.8)

As mentioned above, the theory enjoys an exact discrete target-space symmetry which is a subgroup

of O(16 + d, d, Z), defining automorphisms of the Narain lattice under large deformations [e.g. A.

Giveon, M. Porrati and E. Rabinovici, hep-th 9401139, ANT, MOUHAUPT]. Singling out the

T -modular invariance subgroup SL(2,Z)T , the fields transform as

T → aT − ib

icT + d
,

U → U − ic
HUHD

icT + d

S → S +
1

8π2
δGS log(icT + d)

HU,D →
HU,D

icT + d
, (II.9)

with a, b, c, d ∈ Z and ad− bc = 1, under which the various terms transform according to

T + T̄ → T + T̄

|icT + d|2

η(iT )2 → (icT + d) η(iT )2

|η(iT )|4
(

T + T̄
)

→ |η(iT )|4
(

T + T̄
)

, (II.10)

while K → K + log |icT + d|2, implying that the superpotential has to have weight −1 under this

transformation, and Y is invariant. It is these exact symmetries that constrain the low-energy

effective action to obey larger continuous ones. These include for example the same symmetry as

above but with a, b, c, d ∈ R, and also the shift-symmetry HU → HU + C, HD → HD − C∗ for

constant C.

Having set-up the N = 1 theory, we now show that spontaneous supersymmetry breaking corre-

sponds to a U dependence in the superpotential that explicitly breaks the modular invariance. We

can see this (as in ref.[FERRARA]) by determining the gravitino mass given in the effective theory

by

m2
3/2 = eK/M2

Pl
|W |2

M4
P l

. (II.11)
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(Antoniadis, Gava, Narain, Taylor; 

Cardoso, Luest, Mohaupt)


(Hebecker, Knochel, Weigand; Luo, Zwirner)

 Stringy bonus:                                                               shift symmetry implies that the 

light higgs is  



Major success! Unification of gauge couplings looks better (see Martin review 9709356) 

Figure 5.8: RG evolution of the
inverse gauge couplings α−1

a (Q)
in the Standard Model (dashed
lines) and the MSSM (solid lines).
In the MSSM case, the sparti-
cle mass thresholds are varied be-
tween 250 GeV and 1 TeV, and
α3(mZ) between 0.113 and 0.123.
Two-loop effects are included.
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quite small except for couplings involving the top, bottom, and tau flavors. Therefore, the (scalar)3

couplings and scalar squared-mass mixings should be quite negligible for the squarks and sleptons
of the first two families. Furthermore, RG evolution does not introduce new CP-violating phases.
Therefore, if universality can be arranged to hold at the input scale, supersymmetric contributions to
flavor-changing and CP-violating observables can be acceptably small in comparison to present limits
(although quite possibly measurable in future experiments).

One good reason to be optimistic that such a program can succeed is the celebrated apparent
unification of gauge couplings in the MSSM [110]. The 1-loop RG equations for the Standard Model
gauge couplings g1, g2, g3 are

βga ≡ d

dt
ga =

1

16π2
bag

3
a, (b1, b2, b3) =

⎧
⎨

⎩
(41/10, −19/6, −7) Standard Model

(33/5, 1, −3) MSSM
(5.21)

where t = ln(Q/Q0), with Q the RG scale. The MSSM coefficients are larger because of the extra
MSSM particles in loops. The normalization for g1 here is chosen to agree with the canonical covariant
derivative for grand unification of the gauge group SU(3)C × SU(2)L × U(1)Y into SU(5) or SO(10).
Thus in terms of the conventional electroweak gauge couplings g and g′ with e = g sin θW = g′ cos θW ,
one has g2 = g and g1 =

√
5/3g′. The quantities αa = g2

a/4π have the nice property that their
reciprocals run linearly with RG scale at one-loop order:

d

dt
α−1

a = − ba

2π
(a = 1, 2, 3) (5.22)

Figure 5.8 compares the RG evolution of the α−1
a , including two-loop effects, in the Standard Model

(dashed lines) and the MSSM (solid lines). Unlike the Standard Model, the MSSM includes just the
right particle content to ensure that the gauge couplings can unify, at a scale MU ∼ 2 × 1016 GeV.
While the apparent unification of gauge couplings at MU might be just an accident, it may also be
taken as a strong hint in favor of a grand unified theory (GUT) or superstring models, both of which
can naturally accommodate gauge coupling unification below MP. Furthermore, if this hint is taken
seriously, then we can reasonably expect to be able to apply a similar RG analysis to the other MSSM
couplings and soft masses as well. The next section discusses the form of the necessary RG equations.
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Another major success! EWSB is driven by the large top Yukawa via RG effects - 
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Figure 7.4: RG evolution of scalar and gaugino mass parameters in the MSSM with typical minimal
supergravity-inspired boundary conditions imposed at Q0 = 2.5× 1016 GeV. The parameter µ2 + m2

Hu

runs negative, provoking electroweak symmetry breaking.

a reasonable approximation, the entire mass spectrum in minimal supergravity models is determined
by only five unknown parameters: m2

0, m1/2, A0, tan β, and Arg(µ), while in the simplest gauge-
mediated supersymmetry breaking models one can pick parameters Λ, Mmess, N5, ⟨F ⟩, tan β, and
Arg(µ). Both frameworks are highly predictive. Of course, it is easy to imagine that the essential
physics of supersymmetry breaking is not captured by either of these two scenarios in their minimal
forms. For example, the anomaly mediated contributions could play a role, perhaps in concert with
the gauge-mediation or Planck-scale mediation mechanisms.

Figure 7.4 shows the RG running of scalar and gaugino masses in a typical model based on the
minimal supergravity boundary conditions imposed at Q0 = 2.5 × 1016 GeV. [The parameter values
used for this illustration were m0 = 80 GeV, m1/2 = 250 GeV, A0 = −500 GeV, tan β = 10, and
sign(µ)= +.] The running gaugino masses are solid lines labeled by M1, M2, and M3. The dot-dashed
lines labeled Hu and Hd are the running values of the quantities (µ2 + m2

Hu
)1/2 and (µ2 + m2

Hd
)1/2,

which appear in the Higgs potential. The other lines are the running squark and slepton masses,
with dashed lines for the square roots of the third family parameters m2

d3
, m2

Q3
, m2

u3
, m2

L3
, and m2

e3

(from top to bottom), and solid lines for the first and second family sfermions. Note that µ2 + m2
Hu

runs negative because of the effects of the large top Yukawa coupling as discussed above, providing for
electroweak symmetry breaking. At the electroweak scale, the values of the Lagrangian soft parameters
can be used to extract the physical masses, cross-sections, and decay widths of the particles, and other
observables such as dark matter abundances and rare process rates. There are a variety of publicly
available programs that do these tasks, including radiative corrections; see for example [204]-[213],[194].

Figure 7.5 shows deliberately qualitative sketches of sample MSSM mass spectrum obtained from
three different types of models assumptions. The first is the output from a minimal supergravity-
inspired model with relatively low m2

0 compared to m2
1/2 (in fact the same model parameters as used

for fig. 7.4). This model features a near-decoupling limit for the Higgs sector, and a bino-like Ñ1

LSP, nearly degenerate wino-like Ñ2, C̃1, and higgsino-like Ñ3, Ñ4, C̃2. The gluino is the heaviest
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Names Spin PR Gauge Eigenstates Mass Eigenstates

Higgs bosons 0 +1 H0
u H0

d H+
u H−

d h0 H0 A0 H±

ũL ũR d̃L d̃R (same)

squarks 0 −1 s̃L s̃R c̃L c̃R (same)

t̃L t̃R b̃L b̃R t̃1 t̃2 b̃1 b̃2

ẽL ẽR ν̃e (same)

sleptons 0 −1 µ̃L µ̃R ν̃µ (same)

τ̃L τ̃R ν̃τ τ̃1 τ̃2 ν̃τ

neutralinos 1/2 −1 B̃0 W̃ 0 H̃0
u H̃0

d Ñ1 Ñ2 Ñ3 Ñ4

charginos 1/2 −1 W̃± H̃+
u H̃−

d C̃±
1 C̃±

2

gluino 1/2 −1 g̃ (same)

goldstino
(gravitino)

1/2
(3/2) −1 G̃ (same)

Table 7.1: The undiscovered particles in the Minimal Supersymmetric Standard Model (with sfermion
mixing for the first two families assumed to be negligible).

implying that a squark or charged slepton gets a VEV, breaking SU(3)C or electromagnetism. Since
this is clearly unacceptable, one can put bounds on the (scalar)3 couplings, or equivalently on the
parameter A0 in minimal supergravity models. Even if all of the squared-mass eigenvalues are positive,
the presence of large (scalar)3 couplings can yield global minima of the scalar potential, with non-zero
squark and/or charged slepton VEVs, which are disconnected from the vacuum that conserves SU(3)C
and electromagnetism [202]. However, it is not always immediately clear whether the mere existence
of such disconnected global minima should really disqualify a set of model parameters, because the
tunneling rate from our “good” vacuum to the “bad” vacua can easily be longer than the age of the
universe [203].

7.5 Summary: the MSSM sparticle spectrum

In the MSSM there are 32 distinct masses corresponding to undiscovered particles, not including the
gravitino. In this section we have explained how the masses and mixing angles for these particles can
be computed, given an underlying model for the soft terms at some input scale. Assuming only that
the mixing of first- and second-family squarks and sleptons is negligible, the mass eigenstates of the
MSSM are listed in Table 7.1. A complete set of Feynman rules for the interactions of these particles
with each other and with the Standard Model quarks, leptons, and gauge bosons can be found in
refs. [25, 182]. Feynman rules based on two-component spinor notation have also recently been given
in [199].

Specific models for the soft terms typically predict the masses and the mixing angles angles for
the MSSM in terms of far fewer parameters. For example, in the minimal supergravity models, the
only free parameters not already measured by experiment are m2

0, m1/2, A0, µ, and b. In gauge-
mediated supersymmetry breaking models, the free parameters include at least the scale Λ, the typical
messenger mass scale Mmess, the integer number N5 of copies of the minimal messengers, the goldstino
decay constant ⟨F ⟩, and the Higgs mass parameters µ and b. After RG evolving the soft terms down
to the electroweak scale, one can demand that the scalar potential gives correct electroweak symmetry
breaking. This allows us to trade |µ| and b (or B0) for one parameter tan β, as in eqs. (7.9)-(7.8). So, to
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SUSY-breaking soft so we don’t lose the famous cancellation of divergences 
But no explanation of form of soft-supersymmetry breaking 

Failure ...

Model particles and the Higgs bosons have even R-parity (PR = +1), while all of the squarks, sleptons,
gauginos, and higgsinos have odd R-parity (PR = −1).

The R-parity odd particles are known as “supersymmetric particles” or “sparticles” for short, and
they are distinguished by a tilde (see Tables 1.1 and 1.2). If R-parity is exactly conserved, then there can
be no mixing between the sparticles and the PR = +1 particles. Furthermore, every interaction vertex
in the theory contains an even number of PR = −1 sparticles. This has three extremely important
phenomenological consequences:

• The lightest sparticle with PR = −1, called the “lightest supersymmetric particle” or LSP, must
be absolutely stable. If the LSP is electrically neutral, it interacts only weakly with ordinary
matter, and so can make an attractive candidate [73] for the non-baryonic dark matter that
seems to be required by cosmology.

• Each sparticle other than the LSP must eventually decay into a state that contains an odd number
of LSPs (usually just one).

• In collider experiments, sparticles can only be produced in even numbers (usually two-at-a-time).

We define the MSSM to conserve R-parity or equivalently matter parity. While this decision seems
to be well-motivated phenomenologically by proton decay constraints and the hope that the LSP will
provide a good dark matter candidate, it might appear somewhat artificial from a theoretical point of
view. After all, the MSSM would not suffer any internal inconsistency if we did not impose matter
parity conservation. Furthermore, it is fair to ask why matter parity should be exactly conserved,
given that the discrete symmetries in the Standard Model (ordinary parity P , charge conjugation C,
time reversal T , etc.) are all known to be inexact symmetries. Fortunately, it is sensible to formulate
matter parity as a discrete symmetry that is exactly conserved. In general, exactly conserved, or
“gauged” discrete symmetries [74] can exist provided that they satisfy certain anomaly cancellation
conditions [75] (much like continuous gauged symmetries). One particularly attractive way this could
occur is if B−L is a continuous gauge symmetry that is spontaneously broken at some very high energy
scale. A continuous U(1)B−L forbids the renormalizable terms that violate B and L [76, 77], but this
gauge symmetry must be spontaneously broken, since there is no corresponding massless vector boson.
However, if gauged U(1)B−L is only broken by scalar VEVs (or other order parameters) that carry
even integer values of 3(B−L), then PM will automatically survive as an exactly conserved discrete
remnant subgroup [77]. A variety of extensions of the MSSM in which exact R-parity conservation is
guaranteed in just this way have been proposed (see for example [77, 78]).

It may also be possible to have gauged discrete symmetries that do not owe their exact conservation
to an underlying continuous gauged symmetry, but rather to some other structure such as can occur
in string theory. It is also possible that R-parity is broken, or is replaced by some alternative discrete
symmetry. We will briefly consider these as variations on the MSSM in section 10.1.

5.3 Soft supersymmetry breaking in the MSSM

To complete the description of the MSSM, we need to specify the soft supersymmetry breaking terms.
In section 4, we learned how to write down the most general set of such terms in any supersymmetric
theory. Applying this recipe to the MSSM, we have:

LMSSM
soft = −1

2

(
M3g̃g̃ + M2W̃W̃ + M1B̃B̃ + c.c.

)

−
(
ũau Q̃Hu − d̃ad Q̃Hd − ẽae L̃Hd + c.c.

)

−Q̃† m2
Q Q̃ − L̃† m2

L L̃ − ũm2
u ũ

† − d̃m2
d

d̃
†
− ẽm2

e ẽ
†

−m2
Hu

H∗
uHu − m2

Hd
H∗

dHd − (bHuHd + c.c.) . (5.12)

36Many constraints on the form of the SUSY breaking: e.g.                    - often assumed universal 

In eq. (5.12), M3, M2, and M1 are the gluino, wino, and bino mass terms. Here, and from now on,
we suppress the adjoint representation gauge indices on the wino and gluino fields, and the gauge
indices on all of the chiral supermultiplet fields. The second line in eq. (5.12) contains the (scalar)3

couplings [of the type aijk in eq. (4.1)]. Each of au, ad, ae is a complex 3 × 3 matrix in family space,
with dimensions of [mass]. They are in one-to-one correspondence with the Yukawa couplings of the
superpotential. The third line of eq. (5.12) consists of squark and slepton mass terms of the (m2)ji type
in eq. (4.1). Each of m2

Q, m2
u, m2

d
, m2

L, m2
e is a 3 × 3 matrix in family space that can have complex

entries, but they must be hermitian so that the Lagrangian is real. (To avoid clutter, we do not put
tildes on the Q in m2

Q, etc.) Finally, in the last line of eq. (5.12) we have supersymmetry-breaking

contributions to the Higgs potential; m2
Hu

and m2
Hd

are squared-mass terms of the (m2)ji type, while b

is the only squared-mass term of the type bij in eq. (4.1) that can occur in the MSSM.§ As argued in
the Introduction, we expect

M1, M2, M3, au, ad, ae ∼ msoft, (5.13)

m2
Q, m2

L, m2
u, m2

d
, m2

e , m2
Hu

, m2
Hd

, b ∼ m2
soft, (5.14)

with a characteristic mass scale msoft that is not much larger than 1000 GeV. The expression eq. (5.12)
is the most general soft supersymmetry-breaking Lagrangian of the form eq. (4.1) that is compatible
with gauge invariance and matter parity conservation in the MSSM.

Unlike the supersymmetry-preserving part of the Lagrangian, the above LMSSM
soft introduces many

new parameters that were not present in the ordinary Standard Model. A careful count [79] reveals
that there are 105 masses, phases and mixing angles in the MSSM Lagrangian that cannot be rotated
away by redefining the phases and flavor basis for the quark and lepton supermultiplets, and that
have no counterpart in the ordinary Standard Model. Thus, in principle, supersymmetry breaking (as
opposed to supersymmetry itself) appears to introduce a tremendous arbitrariness in the Lagrangian.

5.4 Hints of an Organizing Principle

Fortunately, there is already good experimental evidence that some powerful organizing principle must
govern the soft supersymmetry breaking Lagrangian. This is because most of the new parameters in
eq. (5.12) imply flavor mixing or CP violating processes of the types that are severely restricted by
experiment [80]-[105].

For example, suppose that m2
e is not diagonal in the basis (ẽR, µ̃R, τ̃R) of sleptons whose superpart-

ners are the right-handed parts of the Standard Model mass eigenstates e, µ, τ . In that case, slepton
mixing occurs, so the individual lepton numbers will not be conserved, even for processes that only
involve the sleptons as virtual particles. A particularly strong limit on this possibility comes from the
experimental bound on the process µ → eγ, which could arise from the one-loop diagram shown in
Figure 5.6a. The symbol “×” on the slepton line represents an insertion coming from −(m2

e)21µ̃∗
RẽR

in LMSSM
soft , and the slepton-bino vertices are determined by the weak hypercharge gauge coupling [see

Figures 3.3g,h and eq. (3.72)]. The result of calculating this diagram gives [82, 85], approximately,

Br(µ → eγ) =

⎛

⎝
|m2

µ̃∗
R ẽR

|
m2

ℓ̃R

⎞

⎠
2 (

100 GeV

mℓ̃R

)4

10−6 ×

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

15 for mB̃ ≪ mℓ̃R
,

5.6 for mB̃ = 0.5mℓ̃R
,

1.4 for mB̃ = mℓ̃R
,

0.13 for mB̃ = 2mℓ̃R
,

(5.15)

where it is assumed for simplicity that both ẽR and µ̃R are nearly mass eigenstates with almost degener-
ate squared masses m2

ℓ̃R
, that m2

µ̃∗
R ẽR

≡ (m2
e)21 = [(m2

e)12]∗ can be treated as a perturbation, and that

§The parameter called b here is often seen elsewhere as Bµ or m2
12 or m2

3.
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(a)

γ

e−µ− B̃

µ̃R ẽR

(b)

γ

e−µ−

W̃−

ν̃µ ν̃e

(c)

γ

e−µ− B̃

µ̃L ẽR

Figure 5.6: Some of the diagrams that contribute to the process µ− → e−γ in models with lepton
flavor-violating soft supersymmetry breaking parameters (indicated by ×). Diagrams (a), (b), and (c)
contribute to constraints on the off-diagonal elements of m2

e , m2
L, and ae, respectively.

g̃ g̃

d̃R s̃R

s̃∗R d̃∗R

d s

s̄ d̄

(a)

g̃ g̃

d̃L s̃L

s̃∗R d̃∗R

d s

s̄ d̄

(b)

g̃ g̃

d̃L s̃R

s̃∗R d̃∗L

d s

s̄ d̄

(c)

Figure 5.7: Some of the diagrams that contribute to K0 ↔ K
0

mixing in models with strangeness-
violating soft supersymmetry breaking parameters (indicated by ×). These diagrams contribute to
constraints on the off-diagonal elements of (a) m2

d
, (b) the combination of m2

d
and m2

Q, and (c) ad.

the bino B̃ is nearly a mass eigenstate. This result is to be compared to the present experimental upper
limit Br(µ → eγ)exp < 1.2 × 10−11 from [106]. So, if the right-handed slepton squared-mass matrix
m2

e were “random”, with all entries of comparable size, then the prediction for Br(µ → eγ) would be
too large even if the sleptons and bino masses were at 1 TeV. For lighter superpartners, the constraint
on µ̃R, ẽR squared-mass mixing becomes correspondingly more severe. There are also contributions to
µ → eγ that depend on the off-diagonal elements of the left-handed slepton squared-mass matrix m2

L,
coming from the diagram shown in fig. 5.6b involving the charged wino and the sneutrinos, as well as
diagrams just like fig. 5.6a but with left-handed sleptons and either B̃ or W̃ 0 exchanged. Therefore,
the slepton squared-mass matrices must not have significant mixings for ẽL, µ̃L either.

Furthermore, after the Higgs scalars get VEVs, the ae matrix could imply squared-mass terms that
mix left-handed and right-handed sleptons with different lepton flavors. For example, LMSSM

soft contains
ẽaeL̃Hd + c.c. which implies terms −⟨H0

d⟩(ae)12ẽ∗Rµ̃L − ⟨H0
d⟩(ae)21µ̃∗

RẽL + c.c. These also contribute
to µ → eγ, as illustrated in fig. 5.6c. So the magnitudes of (ae)12 and (ae)21 are also constrained
by experiment to be small, but in a way that is more strongly dependent on other model parameters
[85]. Similarly, (ae)13, (ae)31 and (ae)23, (ae)32 are constrained, although more weakly [86], by the
experimental limits on Br(τ → eγ) and Br(τ → µγ).

There are also important experimental constraints on the squark squared-mass matrices. The

strongest of these come from the neutral kaon system. The effective Hamiltonian for K0 ↔ K
0

mixing
gets contributions from the diagrams in Figure 5.7, among others, if LMSSM

soft contains terms that mix
down squarks and strange squarks. The gluino-squark-quark vertices in Figure 5.7 are all fixed by
supersymmetry to be of QCD interaction strength. (There are similar diagrams in which the bino and
winos are exchanged, which can be important depending on the relative sizes of the gaugino masses.)
For example, suppose that there is a non-zero right-handed down-squark squared-mass mixing (m2

d
)21 in

the basis corresponding to the quark mass eigenstates. Assuming that the supersymmetric correction
to ∆mK ≡ mKL − mKS following from fig. 5.7a and others does not exceed, in absolute value, the
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Assume SUSY is broken in a non-MSSM sector: 
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Simple example of SUSY breaking model: O’Raighfeartaigh

〈

T
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boundary

J z∆−d = J4d
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Clearly no solution that has all F-terms zero hence                                    > 0
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extension beyond the conventional MSSM, merely an ISS-like O’Raifeartaigh potential for the Higgs

sector and some extra generations of Higgs fields to cause SU(2)L to become strongly coupled at ΛL.

At first sight our proposal seems bound to fail because of two familiar “no-go” theorems. The

first is the theorem by Nelson and Seiberg [14] that SUSY breaking in a generic theory requires an

R-symmetry (where generic means that all operators that are allowed by symmetries appear in the

superpotential). This appears to exclude the possibility of non-zero gaugino Majorana masses since

they are inconsistent with an unbroken R-symmetry. A spontaneously broken R-symmetry on the

other hand implies a massless R−axion which is disallowed on cosmological grounds [15]. The second

is a no-go theorem [16] coming from the well-known sum-rule STr(M2) = 0. This relation holds at

tree-level even when SUSY is spontaneously broken, and can be applied to differently charged fields

independently, so that for example it predicts m2
d̃

+ m2
s̃ + m2

b̃
∼ (5GeV)2, obviously completely at

odds with experiment [17]. To avoid this tree-level mass relation one has to generate SUSY breaking

terms of order ∼TeV at one-loop or higher. This implies that the F -term vev responsible for SUSY

breaking must be at least 100 TeV2 as is the case in gauge mediated SUSY breaking for example. Say

the vev of the Higgs fields breaking electroweak symmetry is µ ∼ g−1
2 MW . Then since we want to

induce SUSY breaking and electroweak symmetry breaking with the same field this implies F = hµ2

where h is some coupling constant which clearly has to be much greater than one. How can such large

couplings - and this is the essence of the problem - be consistent in a calculable theory? We will show

that both of these theorems are evaded by the special properties of MSB models.

The first crucial point is that, as pointed out by ISS, metastable models do not have to adhere

to the Nelson-Seiberg theorem because they have supersymmetric vacua, and indeed in ISS-type

models they violate it in an interesting way; the theory at the metastable minimum resembles a

standard O’Raifeartaigh model, SUSY is broken and there is a global R-symmetry. However the

global supersymmetric minima are recovered by a nonperturbative dynamical term that is generated

by the SU(2)L gauge symmetry. The R-symmetry is anomalous under this SU(2)L group and therefore

the dynamical term does not respect it. This strongly suggests that other sectors of the theory may

dynamically produce R-symmetry violating operators as well whilst leaving supersymmetry intact

(as for example the magnetic theory does in the supersymmetric minima). Depending on how the

breaking is mediated to the magnetic theory, one does not expect all possible operators to be generated

at leading order. The resulting effective superpotential of the IR theory can be only approximately

nongeneric, and metastability can still be preserved. (Note that we emphasize “at leading order”; if

those operators that destabilize the metastable minimum are small enough, then the decay time of

the false vacuum is still sufficiently long to avoid the possibility of decay within the lifetime of the

Universe.) The nett effect can be the lifting of the R-axion masses, and the radiative generation of

large gaugino masses.

In ISS-type models, the breaking of both gauge symmetry and SUSY at the metastable minimum,
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Visible sector breaking (no mediation): Very low scale breaking with generally 
SUSY breaking masses …

M2 ⇠ F

The idea of mediation
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Universal form for gaugino and sfermion masses - of same order

Gauge mediation: Low scale mediation. If SUSY is not hidden then this will be 
the dominant effect.  
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Figure 5: Two-loop diagrams contributing to the sfermion masses. The long dashed (solid) line is a
bosonic (fermionic) messenger. Standard model sfermions are depicted by short dashed lines.

additional minus-sign between chiral and antichiral fields. In field space this corresponds to a
vertex that is proportional to a matrix VD = diag(1, 1,−1,−1). We therefore obtain,

Fig. 5(g) =
∑

i,m

(QT VDQ)i,mJ(m̂0,m, m̂0,i)(Q
T VDQ)m,i, (69)

where J is the appropriate two-loop integral for Fig. 5(g) which can be found in [40].

Finally, in 5(h) we have a mixed boson/fermion loop. The subdiagram containing the
messengers is similar to the diagram for the gaugino mass. The only difference is the direction of
the arrows on the gaugino lines. Indeed the one-loop sub-diagram corresponds to a contribution
to the kinetic term rather than a mass term for the gauginos. (The mass term will of course
contribute as well but will be suppressed by quark masses.) Using Eq. (43) we find,

Fig. 5(h) =
∑

ik

(|U †
i1Q1k + U †

i2Q2k|2 + |Q†
k3V1i + Q†

k4V2i|2)L(m̂1/2,i, m̂
2
0,k) , (70)

where L is again the appropriate loop integral from [40].

Summing over all diagrams we find the sfermion masses which are typically significantly
larger than the gaugino masses calculated earlier. Indeed, the scalar masses roughly follow the
estimate

m2
f̃
∼

g4

(16π2)2
µ2. (71)

This is precisely the leading order effect which in our direct mediation scenario is absent for the
gaugino masses.

So far we have taken into account the ρ, Z (or similarly the σ,M) contributions which as we
just explained give a non-vanishing leading order effect. In distinction to our earlier calculation
of the gaugino masses we do not need to include the sub-dominant contributions from other
messengers (which were massless at tree-level)9.

9Inclusion of such effects would be actually not completely straightforward because our mass-insertion tech-
nique breaks down when used in the two-loop diagrams for the scalars. The reason for this can be traced to the
non-cancelation of the UV cutoff dependent terms. This problem would disappear if one performs a complete
higher-loop calculation. In any case since the leading order result for scalars was non-vanishing we do not expect
any significant changes from this.

20

Tr(τ⟨FΦ⟩)

Tr(τ⟨Φ⟩)

Figure 1: One-loop contribution to the gaugino masses from messengers f , f̃ . The dashed (solid)
line is a bosonic (fermionic) messenger. The blob on the scalar line indicates an insertion of the
F -term VEV into the propagator of the scalar messengers and the cross denotes an insertion
of the R-symmetry breaking VEV into the propagator of the fermionic messengers.

This can be seen to result from the minimization of the tree-level potential with respect to A
for a given B VEV:

∂V

∂A
= λBTr(F †

Φ) = 0 . (30)

Thus (at tree-level) the mediation of SUSY-breaking to the visible sector requires non-degenerate
couplings τii, and indeed we can write

Tr(τFΦ) = h(τµ2 − τ̄µ2) . (31)

That is, only if both τ and µ have non-degeneracy can there be unsuppressed SUSY breaking
mediation, even though SUSY breaking per se requires non-degeneracy only in the latter.

However, as we have said, when the full minimization is performed, tree-level relations such
as Tr(F †

Φ) = 0 are no longer expected to hold (for example, with the unconstrained values in the

table we find Tr(F †
Φ) = −0.034µ2

X ): typically one finds Tr(F †
Φ) = µ2/(16π2), since the effective

F -term for mediation is one-loop suppressed. Thus when the τ are degenerate one can still get

mλ ∼ µ2

16π2Mf

g2

(16π2) ∼ 1 TeV if µ2/Mf ∼ 107 GeV.

3.2 Direct gauge mediation

Now, let us compute gaugino masses for the direct gauge mediation scenario from the meson-
deformed ISS sector. We first consider the effects of those direct messengers which obtain R-
symmetry breaking masses at tree-level and which couple directly to the largest F -terms. These
transform in the fundamental representation of the SM gauge groups, and this constitutes a
strictly one-loop and formally leading order effect. Then we will include additional, formally
higher-loop, contributions from the pseudo-Goldstone modes transforming in both adjoint and
(bi-)fundamental representations of the Standard Model gauge groups. It will turn out that the
latter contributions can be of the same order.

3.2.1 Strict one-loop contributions to gaugino masses

To present a general discussion relevant for any deformation of the ISS model, by mesons,
baryons or otherwise, we shall consider models of the form

W = hΦijϕi.ϕ̃j − hµ2
ijΦji + Wmeson−def(Aa, Φ) + Wbaryon−def(Aa,φ, φ̃) (32)
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Gauge mediation: Low scale mediation. If SUSY is not hidden then this will be 
the dominant effect.  
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Gravity mediation: High scale mediation. If SUSY is “hidden” (typical string 
theory assumption and easiest to achieve).
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MSSM 
sector

SUSY 
sector

SUSY breaking dynamics now important; can have much smaller gaugino masses 
Poppitz Trivedi (1996) .... 
Izawa, Momura, Tobe, Yanagida (1997) 
Csaki, Shirman, Terning (2006) 
Kitano Ooguri Ookouchi (2006) 
SAA, Durnford, Jaeckel, Khoze (2007) 
SAA, Jaeckel, Khoze, Matos (2008) 

Direct Gauge mediation: Try to embed the messengers in the SUSY breaking 
dynamics.  
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Not-cheating: 
Dynamical SUSY Breaking and 
the importance of R-symmetry



ISS (2006) renewed interest in DSB (Intriligator Seiberg Shih)
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Characteristics of the IR theory

Near origin ignoring Wdyn we have an R-symmetry =⇒ |vac⟩+:

FMi
j

= h (qi.q̃
j − µ2

ISSδj
i ) ̸= 0

cannot be satisfied since qi.q̃j has rank n = FQ − N < FQ.

But Wdyn breaks this R-symmetry (anomalously) =⇒ |vac⟩0:
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The origin of ISS is metastable because of an anomalous R-symmetry
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Looked promising and lots of excitement ... 

1) Long lived vacuum because automatically very shallow 

2) R-symmetry breaking as well albeit anomalous, but ... 

                                                                                                                                                                       

Th’m: Nelson-Seiberg  

... sadly gaugino masses still zero. So require extra R-symmetry breaking,  
but then still need to worry about stability of SUSY breaking minimum.



Two possible options for doing phenomenology: 

1) Explicit R-breaking 

     
    a global SUSY minimum develops                          away in field space  
      

                                                                                                                                                                       2) Spontaneous R-breaking  

Th’m: Nelson-Seiberg



Explicit Breaking example
Murayama and Nomura 2007

How to get an R-breaking gaugino mass without destabilising vacuum? 
ISS is based on electric/magnetic Seiberg duals - suppose the messenger sector 
breaks R-symmetry maximally in the electric theory: 
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Explicit Breaking example
Murayama and Nomura 2007

How to get an R-breaking gaugino mass without destabilising vacuum? 
ISS is based on electric/magnetic Seiberg duals - suppose the messenger sector 
breaks R-symmetry maximally in the electric theory: 
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Clues from String Theory?
String models with SUSY breaking and 

Scherk-Schwarz



Non-SUSY strings are in general unstable (dilaton tadpole)
we need SUSY breaking order parameter to gain control:

General Remark



e.g. Begin HERE

Non-SUSY strings are in general unstable (dilaton tadpole)
we need SUSY breaking order parameter to gain control:

General Remark



Deform theory to end up HERE

Non-SUSY strings are in general unstable (dilaton tadpole)
we need SUSY breaking order parameter to gain control:

General Remark





• Can do this by applying Scherk-Schwarz type deformation: a deformation that 

preserves only a discrete subgroup of a U(1) w/s symmetry Qe that at least partly 

involves the continuous U(1) R-symmetry



• Can do this by applying Scherk-Schwarz type deformation: a deformation that 

preserves only a discrete subgroup of a U(1) w/s symmetry Qe that at least partly 

involves the continuous U(1) R-symmetry

• The order parameter is 1/Radius.



• Can do this by applying Scherk-Schwarz type deformation: a deformation that 

preserves only a discrete subgroup of a U(1) w/s symmetry Qe that at least partly 

involves the continuous U(1) R-symmetry

• The order parameter is 1/Radius.

• For SUSY breaking to be spontaneous, the world-sheet supercurrent must be preserved 

under the discrete transformations but not commute with the local generator Qe

[TF (z),Qe(z)] 6= 0



Partition function deformed according to

16

the identity (I), the vector (V ), the spinor (S), and the conjugate spinor (C). In general, these representations have
conformal dimensions {hI , hV , hS , hC} = {0, 1/2, n/8, n/8}, and their corresponding characters are given by

�I = 1

2

(#
3

n + #
4

n)/⌘n = qhI�c/24 (1 + n(2n� 1) q + ...)

�V = 1

2

(#
3

n � #
4

n)/⌘n = qhV �c/24 (2n+ ...)

�S = 1

2

(#
2

n + i�n#
1

n)/⌘n = qhS�c/24 (2n�1 + ...)

�C = 1

2

(#
2

n � i�n#
1

n)/⌘n = qhC�c/24 (2n�1 + ...) (3.11)

where the central charge is c = n at a�ne level k = 1. The vanishing of #
1

implies that �S and �C have identical
q-expansions; this is a reflection of the conjugation symmetry between the spinor and conjugate spinor representations.
When SO(2n) represents a transverse spacetime Lorentz group, the distinction between S and C can be interpreted
as being equivalent to relative spacetime chirality; the choice of which spacetime chirality is to be associated with S or
C is a matter of convention. Note that the special case SO(8) has a further triality symmetry under which the vector
and spinor representations are indistinguishable. Thus, for SO(8), we find that �V = �S . Indeed, this is nothing but
the identity already given below Eq. (??) in terms of #i-functions.

Given these SO(2n) characters, we can now write down the partition functions of our three relevant heterotic
string theories in D = 10. We adopt the convention that right-moving degrees of freedom (associated with the
supersymmetric side of the heterotic string) are collected in anti-holomorphic characters �V of the transverse SO(8)
Lorentz group, while the left-moving degrees of freedom are collected in the holomorphic characters �i�j of SO(16)⇥
SO(16), with i, j 2 {I, V, S, C}.

Let us begin with the supersymmetric SO(32) heterotic string, which has the partition function

Z
model

= Z(8)

boson

(�V � �S)
�

�2

I + �2

V + �2

S + �2

C

�

. (3.12)

The spacetime supersymmetry follows from the factor (�V � �S) coming from the right-movers: in terms of actual
SO(8) Lorentz representations, this means that any left-moving SO(32) state from the left-movers simultaneously
comes not only as a spacetime Lorentz vector but also as a spacetime Lorentz spinor. As a useful exercise in reading
partition functions, let us explicitly read o↵ the massless states in this theory. The heterotic string has vacuum
energies (ER, EL) = (�1/2,�1), so we are looking for states which have (hR, hL) = (1/2, 1) to make massless states.
For the right-movers, both the SO(8) vector (V) and spinor (S) have h = 1/2, which is why their ground states (the
vector and spinor representations) describe the spacetime Lorentz symmetries of the massless fields. Let us now look
at the left-movers. Here each � is an SO(16) character, so �I has h = 0 while �V has h = 1/2 and �S,C have h = 1.
Therefore massless states can only come from the ground state of �I�I (along with left-moving coordinate excitations
to produce h = 1), from the first descendants of �I�I (with no external coordinate excitations), or the ground state of
�V �V (again with no external coordinate excitations). The first group of states produces a left-moving vector which,
when tensored with the right-moving tensor and/or spinor, produces the supergravity multiplet. The second group of
states is a bit more complicated. As discussed below Eq. (3.11), the first descendant of the identity sector is always the
adjoint. Thus the first descendants of �I�I transform in the (adj,1)� (1,adj) representation of SO(16) ⇥ SO(16),
and tensored with the right-movers these are either spacetime vectors or spacetime spinors. Likewise, the ground
state of �V �V transforms as (vec,vec). Thus the third group of states are spacetime vectors or spinors transforming
as (vec,vec). Together, these latter two groups of states fill out the adjoint of SO(32). Thus, we learn that the
massless states in this theory consist of simply the supergravity multiplet as well as the gauge bosons (and gauginos)
of SO(32).

The E
8

⇥ E
8

heterotic string is similar. Its partition function is given by

Z(8)

boson

(�V � �S) (�I + �S)
2 . (3.13)

Again spacetime supersymmetry is clear, as is the supergravity multiplet coming from �I�I . The gauge bosons (and
gauginos) of SO(16)⇥ SO(16) come from the first descendants within �I�I while the ground states associated with
the cross terms �I�S and �S�I produce spacetime vector and spinor states transforming as (spinor,1)� (1, spinor)
of SO(16)⇥ SO(16). This enhances the gauge group to E

8

⇥ E
8

, and we see that there are no other massless states
in this theory. In passing, we further note that the SO(16) characters satisfy an identity

�I�S + �S�I = �2

V + �2

C (3.14)

which holds at the level of their q-expansions. This implies that Eqs. (3.12) and (3.13) are actually equal at the level
of their q-expansions. This in turn implies the well-known fact that the ten-dimensional supersymmetric SO(32) and
E

8

⇥ E
8

heterotic strings have the same bosonic and fermionic state degeneracies at each mass level.
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of the tachyon-free, non-supersymmetric model (with the primes indicating that they are CDC deformations of the
supersymmetric expressions). We can follow the procedure in [? ? ? ] but with two additional compactified bosonic
coordinates X5, X6 with radii R

1

= r
1

/
p
↵0 and R

2

= r
2

/
p
↵0. Defining the respective winding and Kaluza-Klein

numbers to be n
1,2 and m

1,2, the general forms of the Virasoro operators are found to be
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� L
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= L
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� L

0

(6.18)

where the L
0

, L
0

are the Virasoro operators of the N = 1 supersymmetric model in four-dimensions (i.e. the operators
with e = 0). (Note that we are using the usual convention that the dot-product e.Q is Lorentzian, while eR,L and
QR,L refer to just the right- or left-moving elements. In addition as per the general discussion above, the Q and e

are in the complex basis of Table ??.)
From these expressions one may easily read o↵ the e↵ect of the CDC on the particle spectrum. First in the NS-NS

sector it is clear that no massless states receive masses since all the charges overlapping e are zero, and all winding and
KK masses are unshifted. However in the V

1

sector, there are 4 charges overlapping e which can be ± 1

2

, depending
on the chirality.

In order to see which states remain massless it is convenient to work with a slightly di↵erent set of basis vectors
which is the same as the original one but with b

3

, b
4

! b
3

, V
4

= b
3

+ b
4

= � 1

2

[00 101 101|..]. In terms of these vectors,
the GSO projections on the gravitinos include
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where the N above corresponds to the non-Ramond degrees of freedom, and
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1

= k
01

+ k
10

= 0 mod(1). (6.20)

The V
4

projection removes those gravitinos of the N = 2 theory that have

1

4
(1� ��34��56) = k

14

mod (1) (6.21)

to leave an N = 1 theory. At the same time from the expression of the Virasoro operators (??), the CDC shifts gives
masses to those states with non-zero charges overlapping e:

↵0
m

2 = |e ·Q|2
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e.g. in Heterotic string define everything in terms of internal charge lattice:  

Let 

(Rohm, Kounnas, Rostand, Ferrara, Porratti, Zwirner) 
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the identity (I), the vector (V ), the spinor (S), and the conjugate spinor (C). In general, these representations have
conformal dimensions {hI , hV , hS , hC} = {0, 1/2, n/8, n/8}, and their corresponding characters are given by

�I = 1

2

(#
3

n + #
4

n)/⌘n = qhI�c/24 (1 + n(2n� 1) q + ...)

�V = 1

2

(#
3

n � #
4

n)/⌘n = qhV �c/24 (2n+ ...)

�S = 1

2

(#
2

n + i�n#
1

n)/⌘n = qhS�c/24 (2n�1 + ...)

�C = 1

2

(#
2

n � i�n#
1

n)/⌘n = qhC�c/24 (2n�1 + ...) (3.11)

where the central charge is c = n at a�ne level k = 1. The vanishing of #
1

implies that �S and �C have identical
q-expansions; this is a reflection of the conjugation symmetry between the spinor and conjugate spinor representations.
When SO(2n) represents a transverse spacetime Lorentz group, the distinction between S and C can be interpreted
as being equivalent to relative spacetime chirality; the choice of which spacetime chirality is to be associated with S or
C is a matter of convention. Note that the special case SO(8) has a further triality symmetry under which the vector
and spinor representations are indistinguishable. Thus, for SO(8), we find that �V = �S . Indeed, this is nothing but
the identity already given below Eq. (??) in terms of #i-functions.

Given these SO(2n) characters, we can now write down the partition functions of our three relevant heterotic
string theories in D = 10. We adopt the convention that right-moving degrees of freedom (associated with the
supersymmetric side of the heterotic string) are collected in anti-holomorphic characters �V of the transverse SO(8)
Lorentz group, while the left-moving degrees of freedom are collected in the holomorphic characters �i�j of SO(16)⇥
SO(16), with i, j 2 {I, V, S, C}.

Let us begin with the supersymmetric SO(32) heterotic string, which has the partition function

Z
model

= Z(8)

boson

(�V � �S)
�

�2

I + �2

V + �2

S + �2

C

�

. (3.12)

The spacetime supersymmetry follows from the factor (�V � �S) coming from the right-movers: in terms of actual
SO(8) Lorentz representations, this means that any left-moving SO(32) state from the left-movers simultaneously
comes not only as a spacetime Lorentz vector but also as a spacetime Lorentz spinor. As a useful exercise in reading
partition functions, let us explicitly read o↵ the massless states in this theory. The heterotic string has vacuum
energies (ER, EL) = (�1/2,�1), so we are looking for states which have (hR, hL) = (1/2, 1) to make massless states.
For the right-movers, both the SO(8) vector (V) and spinor (S) have h = 1/2, which is why their ground states (the
vector and spinor representations) describe the spacetime Lorentz symmetries of the massless fields. Let us now look
at the left-movers. Here each � is an SO(16) character, so �I has h = 0 while �V has h = 1/2 and �S,C have h = 1.
Therefore massless states can only come from the ground state of �I�I (along with left-moving coordinate excitations
to produce h = 1), from the first descendants of �I�I (with no external coordinate excitations), or the ground state of
�V �V (again with no external coordinate excitations). The first group of states produces a left-moving vector which,
when tensored with the right-moving tensor and/or spinor, produces the supergravity multiplet. The second group of
states is a bit more complicated. As discussed below Eq. (3.11), the first descendant of the identity sector is always the
adjoint. Thus the first descendants of �I�I transform in the (adj,1)� (1,adj) representation of SO(16) ⇥ SO(16),
and tensored with the right-movers these are either spacetime vectors or spacetime spinors. Likewise, the ground
state of �V �V transforms as (vec,vec). Thus the third group of states are spacetime vectors or spinors transforming
as (vec,vec). Together, these latter two groups of states fill out the adjoint of SO(32). Thus, we learn that the
massless states in this theory consist of simply the supergravity multiplet as well as the gauge bosons (and gauginos)
of SO(32).

The E
8

⇥ E
8

heterotic string is similar. Its partition function is given by

Z(8)

boson

(�V � �S) (�I + �S)
2 . (3.13)

Again spacetime supersymmetry is clear, as is the supergravity multiplet coming from �I�I . The gauge bosons (and
gauginos) of SO(16)⇥ SO(16) come from the first descendants within �I�I while the ground states associated with
the cross terms �I�S and �S�I produce spacetime vector and spinor states transforming as (spinor,1)� (1, spinor)
of SO(16)⇥ SO(16). This enhances the gauge group to E

8

⇥ E
8

, and we see that there are no other massless states
in this theory. In passing, we further note that the SO(16) characters satisfy an identity

�I�S + �S�I = �2

V + �2

C (3.14)

which holds at the level of their q-expansions. This implies that Eqs. (3.12) and (3.13) are actually equal at the level
of their q-expansions. This in turn implies the well-known fact that the ten-dimensional supersymmetric SO(32) and
E

8

⇥ E
8

heterotic strings have the same bosonic and fermionic state degeneracies at each mass level.

X

↵,�,n,m

Trgq[L0]q[L0]

Charge lattice shifted by e

34

of the tachyon-free, non-supersymmetric model (with the primes indicating that they are CDC deformations of the
supersymmetric expressions). We can follow the procedure in [? ? ? ] but with two additional compactified bosonic
coordinates X5, X6 with radii R
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p
↵0 and R
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where the L
0

, L
0

are the Virasoro operators of the N = 1 supersymmetric model in four-dimensions (i.e. the operators
with e = 0). (Note that we are using the usual convention that the dot-product e.Q is Lorentzian, while eR,L and
QR,L refer to just the right- or left-moving elements. In addition as per the general discussion above, the Q and e

are in the complex basis of Table ??.)
From these expressions one may easily read o↵ the e↵ect of the CDC on the particle spectrum. First in the NS-NS

sector it is clear that no massless states receive masses since all the charges overlapping e are zero, and all winding and
KK masses are unshifted. However in the V

1

sector, there are 4 charges overlapping e which can be ± 1

2

, depending
on the chirality.

In order to see which states remain massless it is convenient to work with a slightly di↵erent set of basis vectors
which is the same as the original one but with b
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[00 101 101|..]. In terms of these vectors,
the GSO projections on the gravitinos include
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where the N above corresponds to the non-Ramond degrees of freedom, and
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projection removes those gravitinos of the N = 2 theory that have
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to leave an N = 1 theory. At the same time from the expression of the Virasoro operators (??), the CDC shifts gives
masses to those states with non-zero charges overlapping e:
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the identity (I), the vector (V ), the spinor (S), and the conjugate spinor (C). In general, these representations have
conformal dimensions {hI , hV , hS , hC} = {0, 1/2, n/8, n/8}, and their corresponding characters are given by
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n)/⌘n = qhI�c/24 (1 + n(2n� 1) q + ...)
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n)/⌘n = qhC�c/24 (2n�1 + ...) (3.11)

where the central charge is c = n at a�ne level k = 1. The vanishing of #
1

implies that �S and �C have identical
q-expansions; this is a reflection of the conjugation symmetry between the spinor and conjugate spinor representations.
When SO(2n) represents a transverse spacetime Lorentz group, the distinction between S and C can be interpreted
as being equivalent to relative spacetime chirality; the choice of which spacetime chirality is to be associated with S or
C is a matter of convention. Note that the special case SO(8) has a further triality symmetry under which the vector
and spinor representations are indistinguishable. Thus, for SO(8), we find that �V = �S . Indeed, this is nothing but
the identity already given below Eq. (??) in terms of #i-functions.

Given these SO(2n) characters, we can now write down the partition functions of our three relevant heterotic
string theories in D = 10. We adopt the convention that right-moving degrees of freedom (associated with the
supersymmetric side of the heterotic string) are collected in anti-holomorphic characters �V of the transverse SO(8)
Lorentz group, while the left-moving degrees of freedom are collected in the holomorphic characters �i�j of SO(16)⇥
SO(16), with i, j 2 {I, V, S, C}.

Let us begin with the supersymmetric SO(32) heterotic string, which has the partition function

Z
model

= Z(8)

boson

(�V � �S)
�

�2

I + �2

V + �2

S + �2

C

�

. (3.12)

The spacetime supersymmetry follows from the factor (�V � �S) coming from the right-movers: in terms of actual
SO(8) Lorentz representations, this means that any left-moving SO(32) state from the left-movers simultaneously
comes not only as a spacetime Lorentz vector but also as a spacetime Lorentz spinor. As a useful exercise in reading
partition functions, let us explicitly read o↵ the massless states in this theory. The heterotic string has vacuum
energies (ER, EL) = (�1/2,�1), so we are looking for states which have (hR, hL) = (1/2, 1) to make massless states.
For the right-movers, both the SO(8) vector (V) and spinor (S) have h = 1/2, which is why their ground states (the
vector and spinor representations) describe the spacetime Lorentz symmetries of the massless fields. Let us now look
at the left-movers. Here each � is an SO(16) character, so �I has h = 0 while �V has h = 1/2 and �S,C have h = 1.
Therefore massless states can only come from the ground state of �I�I (along with left-moving coordinate excitations
to produce h = 1), from the first descendants of �I�I (with no external coordinate excitations), or the ground state of
�V �V (again with no external coordinate excitations). The first group of states produces a left-moving vector which,
when tensored with the right-moving tensor and/or spinor, produces the supergravity multiplet. The second group of
states is a bit more complicated. As discussed below Eq. (3.11), the first descendant of the identity sector is always the
adjoint. Thus the first descendants of �I�I transform in the (adj,1)� (1,adj) representation of SO(16) ⇥ SO(16),
and tensored with the right-movers these are either spacetime vectors or spacetime spinors. Likewise, the ground
state of �V �V transforms as (vec,vec). Thus the third group of states are spacetime vectors or spinors transforming
as (vec,vec). Together, these latter two groups of states fill out the adjoint of SO(32). Thus, we learn that the
massless states in this theory consist of simply the supergravity multiplet as well as the gauge bosons (and gauginos)
of SO(32).

The E
8

⇥ E
8

heterotic string is similar. Its partition function is given by

Z(8)

boson

(�V � �S) (�I + �S)
2 . (3.13)

Again spacetime supersymmetry is clear, as is the supergravity multiplet coming from �I�I . The gauge bosons (and
gauginos) of SO(16)⇥ SO(16) come from the first descendants within �I�I while the ground states associated with
the cross terms �I�S and �S�I produce spacetime vector and spinor states transforming as (spinor,1)� (1, spinor)
of SO(16)⇥ SO(16). This enhances the gauge group to E

8

⇥ E
8

, and we see that there are no other massless states
in this theory. In passing, we further note that the SO(16) characters satisfy an identity

�I�S + �S�I = �2

V + �2

C (3.14)

which holds at the level of their q-expansions. This implies that Eqs. (3.12) and (3.13) are actually equal at the level
of their q-expansions. This in turn implies the well-known fact that the ten-dimensional supersymmetric SO(32) and
E

8

⇥ E
8

heterotic strings have the same bosonic and fermionic state degeneracies at each mass level.
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of the tachyon-free, non-supersymmetric model (with the primes indicating that they are CDC deformations of the
supersymmetric expressions). We can follow the procedure in [? ? ? ] but with two additional compactified bosonic
coordinates X5, X6 with radii R

1

= r
1

/
p
↵0 and R

2

= r
2

/
p
↵0. Defining the respective winding and Kaluza-Klein

numbers to be n
1,2 and m

1,2, the general forms of the Virasoro operators are found to be

L

0
0

=
1

2
[QL � eL(n1

+ n
2

)]2 +
1

4



m
1

+ e ·Q� 1

2

(n
1

+ n
2

)e2

r
1

+ n
1

r
1

�

2

+
1

4



m
2

+ e ·Q� 1

2

(n
1

+ n
2

)e2

r
2

+ n
2

r
2

�

2

� 1 + other oscillator cont’s

(6.15)

L

0
0

=
1

2
[QR � eR(n1

+ n
2

)]2 +
1

4



m
1

+ e ·Q� 1

2

(n
1

+ n
2

)e2

r
1

� n
1

r
1

�

2

+
1

4



m
2

+ e ·Q� 1

2

(n
1

+ n
2

)e2

r
2

� n
2

r
2

�

2

� 1

2
+ other oscillator cont’s (6.16)

L

0
0

+ L

0
0

= L

0

+ L

0

+
1

2



e ·Q� (n
1

+ n
2

)

2
e

2

�

2

✓

1

r
1

2

+
1

r
2

2

◆

� (n
1

+ n
2

) (eL ·QL + eR ·QR)

+
1

2
(n

1

+ n
2

)2
�

e

2

L + e

2

R

�

+

✓

m
1

r
1

+
m

2

r
2

◆

e ·Q� (n
1

+ n
2

)

2
e

2

�

(6.17)

L

0
0

� L

0
0

= L

0

� L

0

(6.18)

where the L
0

, L
0

are the Virasoro operators of the N = 1 supersymmetric model in four-dimensions (i.e. the operators
with e = 0). (Note that we are using the usual convention that the dot-product e.Q is Lorentzian, while eR,L and
QR,L refer to just the right- or left-moving elements. In addition as per the general discussion above, the Q and e

are in the complex basis of Table ??.)
From these expressions one may easily read o↵ the e↵ect of the CDC on the particle spectrum. First in the NS-NS

sector it is clear that no massless states receive masses since all the charges overlapping e are zero, and all winding and
KK masses are unshifted. However in the V

1

sector, there are 4 charges overlapping e which can be ± 1

2

, depending
on the chirality.

In order to see which states remain massless it is convenient to work with a slightly di↵erent set of basis vectors
which is the same as the original one but with b

3

, b
4

! b
3

, V
4

= b
3

+ b
4

= � 1

2

[00 101 101|..]. In terms of these vectors,
the GSO projections on the gravitinos include

V
0

.N +
1

4
(1� � 34� 56��34��56) = k

01

+
1

2
� V

0

.V
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4
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4
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41
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4
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1

mod (1), (6.19)

where the N above corresponds to the non-Ramond degrees of freedom, and

V
4

.V
1

= k
14

+ k
41

=
1

2
V
0

.V
1

= k
01

+ k
10

= 0 mod(1). (6.20)

The V
4

projection removes those gravitinos of the N = 2 theory that have

1

4
(1� ��34��56) = k

14

mod (1) (6.21)

to leave an N = 1 theory. At the same time from the expression of the Virasoro operators (??), the CDC shifts gives
masses to those states with non-zero charges overlapping e:
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Partition function deformed according to

16

the identity (I), the vector (V ), the spinor (S), and the conjugate spinor (C). In general, these representations have
conformal dimensions {hI , hV , hS , hC} = {0, 1/2, n/8, n/8}, and their corresponding characters are given by

�I = 1

2

(#
3

n + #
4

n)/⌘n = qhI�c/24 (1 + n(2n� 1) q + ...)

�V = 1

2

(#
3

n � #
4

n)/⌘n = qhV �c/24 (2n+ ...)

�S = 1

2

(#
2

n + i�n#
1

n)/⌘n = qhS�c/24 (2n�1 + ...)

�C = 1

2

(#
2

n � i�n#
1

n)/⌘n = qhC�c/24 (2n�1 + ...) (3.11)

where the central charge is c = n at a�ne level k = 1. The vanishing of #
1

implies that �S and �C have identical
q-expansions; this is a reflection of the conjugation symmetry between the spinor and conjugate spinor representations.
When SO(2n) represents a transverse spacetime Lorentz group, the distinction between S and C can be interpreted
as being equivalent to relative spacetime chirality; the choice of which spacetime chirality is to be associated with S or
C is a matter of convention. Note that the special case SO(8) has a further triality symmetry under which the vector
and spinor representations are indistinguishable. Thus, for SO(8), we find that �V = �S . Indeed, this is nothing but
the identity already given below Eq. (??) in terms of #i-functions.

Given these SO(2n) characters, we can now write down the partition functions of our three relevant heterotic
string theories in D = 10. We adopt the convention that right-moving degrees of freedom (associated with the
supersymmetric side of the heterotic string) are collected in anti-holomorphic characters �V of the transverse SO(8)
Lorentz group, while the left-moving degrees of freedom are collected in the holomorphic characters �i�j of SO(16)⇥
SO(16), with i, j 2 {I, V, S, C}.

Let us begin with the supersymmetric SO(32) heterotic string, which has the partition function

Z
model

= Z(8)

boson

(�V � �S)
�

�2

I + �2

V + �2

S + �2

C

�

. (3.12)

The spacetime supersymmetry follows from the factor (�V � �S) coming from the right-movers: in terms of actual
SO(8) Lorentz representations, this means that any left-moving SO(32) state from the left-movers simultaneously
comes not only as a spacetime Lorentz vector but also as a spacetime Lorentz spinor. As a useful exercise in reading
partition functions, let us explicitly read o↵ the massless states in this theory. The heterotic string has vacuum
energies (ER, EL) = (�1/2,�1), so we are looking for states which have (hR, hL) = (1/2, 1) to make massless states.
For the right-movers, both the SO(8) vector (V) and spinor (S) have h = 1/2, which is why their ground states (the
vector and spinor representations) describe the spacetime Lorentz symmetries of the massless fields. Let us now look
at the left-movers. Here each � is an SO(16) character, so �I has h = 0 while �V has h = 1/2 and �S,C have h = 1.
Therefore massless states can only come from the ground state of �I�I (along with left-moving coordinate excitations
to produce h = 1), from the first descendants of �I�I (with no external coordinate excitations), or the ground state of
�V �V (again with no external coordinate excitations). The first group of states produces a left-moving vector which,
when tensored with the right-moving tensor and/or spinor, produces the supergravity multiplet. The second group of
states is a bit more complicated. As discussed below Eq. (3.11), the first descendant of the identity sector is always the
adjoint. Thus the first descendants of �I�I transform in the (adj,1)� (1,adj) representation of SO(16) ⇥ SO(16),
and tensored with the right-movers these are either spacetime vectors or spacetime spinors. Likewise, the ground
state of �V �V transforms as (vec,vec). Thus the third group of states are spacetime vectors or spinors transforming
as (vec,vec). Together, these latter two groups of states fill out the adjoint of SO(32). Thus, we learn that the
massless states in this theory consist of simply the supergravity multiplet as well as the gauge bosons (and gauginos)
of SO(32).

The E
8

⇥ E
8

heterotic string is similar. Its partition function is given by

Z(8)

boson

(�V � �S) (�I + �S)
2 . (3.13)

Again spacetime supersymmetry is clear, as is the supergravity multiplet coming from �I�I . The gauge bosons (and
gauginos) of SO(16)⇥ SO(16) come from the first descendants within �I�I while the ground states associated with
the cross terms �I�S and �S�I produce spacetime vector and spinor states transforming as (spinor,1)� (1, spinor)
of SO(16)⇥ SO(16). This enhances the gauge group to E

8

⇥ E
8

, and we see that there are no other massless states
in this theory. In passing, we further note that the SO(16) characters satisfy an identity

�I�S + �S�I = �2

V + �2

C (3.14)

which holds at the level of their q-expansions. This implies that Eqs. (3.12) and (3.13) are actually equal at the level
of their q-expansions. This in turn implies the well-known fact that the ten-dimensional supersymmetric SO(32) and
E

8

⇥ E
8

heterotic strings have the same bosonic and fermionic state degeneracies at each mass level.
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of the tachyon-free, non-supersymmetric model (with the primes indicating that they are CDC deformations of the
supersymmetric expressions). We can follow the procedure in [? ? ? ] but with two additional compactified bosonic
coordinates X5, X6 with radii R

1

= r
1

/
p
↵0 and R

2

= r
2

/
p
↵0. Defining the respective winding and Kaluza-Klein

numbers to be n
1,2 and m

1,2, the general forms of the Virasoro operators are found to be
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where the L
0

, L
0

are the Virasoro operators of the N = 1 supersymmetric model in four-dimensions (i.e. the operators
with e = 0). (Note that we are using the usual convention that the dot-product e.Q is Lorentzian, while eR,L and
QR,L refer to just the right- or left-moving elements. In addition as per the general discussion above, the Q and e

are in the complex basis of Table ??.)
From these expressions one may easily read o↵ the e↵ect of the CDC on the particle spectrum. First in the NS-NS

sector it is clear that no massless states receive masses since all the charges overlapping e are zero, and all winding and
KK masses are unshifted. However in the V

1

sector, there are 4 charges overlapping e which can be ± 1

2

, depending
on the chirality.

In order to see which states remain massless it is convenient to work with a slightly di↵erent set of basis vectors
which is the same as the original one but with b
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, b
4

! b
3

, V
4

= b
3

+ b
4

= � 1

2

[00 101 101|..]. In terms of these vectors,
the GSO projections on the gravitinos include
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where the N above corresponds to the non-Ramond degrees of freedom, and
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The V
4

projection removes those gravitinos of the N = 2 theory that have

1

4
(1� ��34��56) = k

14

mod (1) (6.21)

to leave an N = 1 theory. At the same time from the expression of the Virasoro operators (??), the CDC shifts gives
masses to those states with non-zero charges overlapping e:
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Spectrum

State U(1) U(1) U(1) SO(4) U(3) U(2) U(1) U(1) U(1) U(1) SO(4) U(1) U(1) U(1) U(1) Y

Higgses

h
(1)
u . . . . . 2 �1 . . . . . . . . 1/2

h
(2)
u . . . . . 2 �1 . . . . . . . . 1/2

h
(3)
u . . . . . 2 �1/4 1/4 1/4 . . 1/2 �1/2 �1/2 1/2 1/2

h
(4)
u . . . . . 2 �1/4 1/4 1/4 . . �1/2 �1/2 1/2 �1/2 1/2

h
(5)
u . . . . . 2 �1/4 1/4 1/4 . . �1/2 1/2 1/2 1/2 1/2

h
(6)
u . . . . . 2 �1/4 1/4 1/4 . . 1/2 1/2 �1/2 �1/2 1/2

h
(7)
u �1/2 . . . . 2 . . . �1/2 . . �1/2 �1/2 . 1/2

h
(8)
u 1/2 . . . . 2 . . . �1/2 . . �1/2 1/2 . 1/2

h
(9)
u . . �1/2 . . 2 �1/4 �1/4 �1/4 1/2 . 1/2 . . �1/2 1/2

h
(10)
u . . 1/2 . . 2 �1/4 �1/4 �1/4 1/2 . 1/2 . . �1/2 1/2

h
(11)
u . 1/2 . . . 2 1/4 �1/4 1/4 1/2 . . . 1/2 . 1/2

h
(1)
d

. . . . . 2 1 . . . . . . . . �1/2

h
(2)
d

. . . . . 2 1 . . . . . . . . �1/2

h
(3)
d

. . . . . 2 1/4 �1/4 �1/4 . . �1/2 �1/2 1/2 1/2 �1/2

h
(4)
d

. . . . . 2 1/4 �1/4 �1/4 . . 1/2 �1/2 �1/2 �1/2 �1/2

h
(5)
d

. . . . . 2 1/4 �1/4 �1/4 . . 1/2 1/2 �1/2 1/2 �1/2

h
(6)
d

. . . . . 2 1/4 �1/4 �1/4 . . �1/2 1/2 1/2 �1/2 �1/2

h
(7)
d

�1/2 . . . . 2 . . . 1/2 . . 1/2 �1/2 . �1/2

h
(8)
d

1/2 . . . . 2 . . . 1/2 . . 1/2 1/2 . �1/2

h
(9)
d

. . �1/2 . . 2 1/4 1/4 1/4 �1/2 . �1/2 . . 1/2 �1/2

h
(10)
d

. . 1/2 . . 2 1/4 1/4 1/4 �1/2 . �1/2 . . 1/2 �1/2

h
(11)
d

. �1/2 . . . 2 �1/4 1/4 �1/4 �1/2 . . . �1/2 . �1/2

Matter

q(1) �1/2 . �1/2 . 3 2 1/2 . . . . . . . . 1/6

q(2) �1/2 . 1/2 . 3 2 1/2 . . . . . . . . 1/6

q(3) . 1/2 . . 3 2 . . �1/2 . . . . . . 1/6

`(1) . . �1/2 . . 2 1/4 1/4 1/4 �1/2 . 1/2 . . �1/2 �1/2

`(2) . . 1/2 . . 2 1/4 1/4 1/4 �1/2 . 1/2 . . �1/2 �1/2

`(3) . . . . . 2 1/4 �1/4 �1/4 . . 1/2 �1/2 1/2 �1/2 �1/2

`(4) . . . . . 2 1/4 �1/4 �1/4 . . �1/2 1/2 �1/2 �1/2 �1/2

`(5) �1/2 . . . . 2 . . . 1/2 . . 1/2 1/2 . �1/2

`(6) . �1/2 . . . 2 �1/4 1/4 �1/4 �1/2 . . . �1/2 . �1/2

uc(1)
1/2 . �1/2 . 3 . 1/2 . . . . . . . . �2/3

uc(2)
1/2 . 1/2 . 3 . 1/2 . . . . . . . . �2/3

uc(3) . 1/2 . . 3 . . . �1/2 . . . . . . �2/3

dc(1) . . �1/2 . 3 . 1/4 1/4 1/4 �1/2 . �1/2 . . 1/2 1/3

dc(2) . . 1/2 . 3 . 1/4 1/4 1/4 �1/2 . �1/2 . . 1/2 1/3

dc(3) . . . . 3 . 1 . . . . . . . . 1/3

dc(4) . . . . 3 . 1/4 �1/4 �1/4 . . �1/2 �1/2 1/2 1/2 1/3

dc(5) . . . . 3 . 1/4 �1/4 �1/4 . . 1/2 1/2 �1/2 1/2 1/3

dc(6) 1/2 . . . 3 . . . . 1/2 . . 1/2 1/2 . 1/3

dc(7) . �1/2 . . 3 . �1/4 1/4 �1/4 �1/2 . . . �1/2 . 1/3

ec(1) 1/2 . �1/2 . . . 1/2 . . . . . . . . 1
ec(2) 1/2 . 1/2 . . . 1/2 . . . . . . . . 1
ec(3) . 1/2 . . . . . . �1/2 . . . . . . 1
⌫c(1) . . 1/2 . . . 3/4 �1/4 �1/4 1/2 . �1/2 . . 1/2 .

⌫c(2) . . �1/2 . . . 3/4 �1/4 �1/4 1/2 . �1/2 . . 1/2 .

⌫c(3) . . . . . . 3/4 1/4 1/4 . . �1/2 1/2 �1/2 1/2 .

⌫c(4) . . . . . . 3/4 1/4 1/4 . . 1/2 �1/2 1/2 1/2 .

⌫c(5)
1/2 . . . . . 1 . . �1/2 . . �1/2 �1/2 . .

3

Spectrum

State U(1) U(1) U(1) SO(4) U(3) U(2) U(1) U(1) U(1) U(1) SO(4) U(1) U(1) U(1) U(1) Y

Higgses

h
(1)
u . . . . . 2 �1 . . . . . . . . 1/2

h
(2)
u . . . . . 2 �1 . . . . . . . . 1/2

h
(3)
u . . . . . 2 �1/4 1/4 1/4 . . 1/2 �1/2 �1/2 1/2 1/2

h
(4)
u . . . . . 2 �1/4 1/4 1/4 . . �1/2 �1/2 1/2 �1/2 1/2

h
(5)
u . . . . . 2 �1/4 1/4 1/4 . . �1/2 1/2 1/2 1/2 1/2

h
(6)
u . . . . . 2 �1/4 1/4 1/4 . . 1/2 1/2 �1/2 �1/2 1/2

h
(7)
u �1/2 . . . . 2 . . . �1/2 . . �1/2 �1/2 . 1/2

h
(8)
u 1/2 . . . . 2 . . . �1/2 . . �1/2 1/2 . 1/2

h
(9)
u . . �1/2 . . 2 �1/4 �1/4 �1/4 1/2 . 1/2 . . �1/2 1/2

h
(10)
u . . 1/2 . . 2 �1/4 �1/4 �1/4 1/2 . 1/2 . . �1/2 1/2

h
(11)
u . 1/2 . . . 2 1/4 �1/4 1/4 1/2 . . . 1/2 . 1/2

h
(1)
d

. . . . . 2 1 . . . . . . . . �1/2

h
(2)
d

. . . . . 2 1 . . . . . . . . �1/2

h
(3)
d

. . . . . 2 1/4 �1/4 �1/4 . . �1/2 �1/2 1/2 1/2 �1/2

h
(4)
d

. . . . . 2 1/4 �1/4 �1/4 . . 1/2 �1/2 �1/2 �1/2 �1/2

h
(5)
d

. . . . . 2 1/4 �1/4 �1/4 . . 1/2 1/2 �1/2 1/2 �1/2

h
(6)
d

. . . . . 2 1/4 �1/4 �1/4 . . �1/2 1/2 1/2 �1/2 �1/2

h
(7)
d

�1/2 . . . . 2 . . . 1/2 . . 1/2 �1/2 . �1/2

h
(8)
d

1/2 . . . . 2 . . . 1/2 . . 1/2 1/2 . �1/2

h
(9)
d

. . �1/2 . . 2 1/4 1/4 1/4 �1/2 . �1/2 . . 1/2 �1/2

h
(10)
d

. . 1/2 . . 2 1/4 1/4 1/4 �1/2 . �1/2 . . 1/2 �1/2

h
(11)
d

. �1/2 . . . 2 �1/4 1/4 �1/4 �1/2 . . . �1/2 . �1/2

Matter

q(1) �1/2 . �1/2 . 3 2 1/2 . . . . . . . . 1/6

q(2) �1/2 . 1/2 . 3 2 1/2 . . . . . . . . 1/6

q(3) . 1/2 . . 3 2 . . �1/2 . . . . . . 1/6

`(1) . . �1/2 . . 2 1/4 1/4 1/4 �1/2 . 1/2 . . �1/2 �1/2

`(2) . . 1/2 . . 2 1/4 1/4 1/4 �1/2 . 1/2 . . �1/2 �1/2

`(3) . . . . . 2 1/4 �1/4 �1/4 . . 1/2 �1/2 1/2 �1/2 �1/2

`(4) . . . . . 2 1/4 �1/4 �1/4 . . �1/2 1/2 �1/2 �1/2 �1/2

`(5) �1/2 . . . . 2 . . . 1/2 . . 1/2 1/2 . �1/2

`(6) . �1/2 . . . 2 �1/4 1/4 �1/4 �1/2 . . . �1/2 . �1/2

uc(1)
1/2 . �1/2 . 3 . 1/2 . . . . . . . . �2/3

uc(2)
1/2 . 1/2 . 3 . 1/2 . . . . . . . . �2/3

uc(3) . 1/2 . . 3 . . . �1/2 . . . . . . �2/3

dc(1) . . �1/2 . 3 . 1/4 1/4 1/4 �1/2 . �1/2 . . 1/2 1/3

dc(2) . . 1/2 . 3 . 1/4 1/4 1/4 �1/2 . �1/2 . . 1/2 1/3

dc(3) . . . . 3 . 1 . . . . . . . . 1/3

dc(4) . . . . 3 . 1/4 �1/4 �1/4 . . �1/2 �1/2 1/2 1/2 1/3

dc(5) . . . . 3 . 1/4 �1/4 �1/4 . . 1/2 1/2 �1/2 1/2 1/3

dc(6) 1/2 . . . 3 . . . . 1/2 . . 1/2 1/2 . 1/3

dc(7) . �1/2 . . 3 . �1/4 1/4 �1/4 �1/2 . . . �1/2 . 1/3

ec(1) 1/2 . �1/2 . . . 1/2 . . . . . . . . 1
ec(2) 1/2 . 1/2 . . . 1/2 . . . . . . . . 1
ec(3) . 1/2 . . . . . . �1/2 . . . . . . 1
⌫c(1) . . 1/2 . . . 3/4 �1/4 �1/4 1/2 . �1/2 . . 1/2 .

⌫c(2) . . �1/2 . . . 3/4 �1/4 �1/4 1/2 . �1/2 . . 1/2 .

⌫c(3) . . . . . . 3/4 1/4 1/4 . . �1/2 1/2 �1/2 1/2 .

⌫c(4) . . . . . . 3/4 1/4 1/4 . . 1/2 �1/2 1/2 1/2 .

⌫c(5)
1/2 . . . . . 1 . . �1/2 . . �1/2 �1/2 . .
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Spectrum – continued from previous page
U(1) U(1) U(1) SO(4) U(3) U(2) U(1) U(1) U(1) U(1) SO(4) U(1) U(1) U(1) U(1) Y

⌫c(6) . . . . . . . . . . . 1 . . 1 .

⌫c(7) . 1/2 . . . . 1/2 �1/2 . 1/2 . 1/2 �1/2 . �1/2 .

⌫c(8) . . . . . . . . . . . �1 . . 1 .

Partners

`c(1) . . . . . 2 �1/4 1/4 1/4 . . �1/2 �1/2 �1/2 �1/2 1/2

`c(2) . . . . . 2 �1/4 1/4 1/4 . . 1/2 1/2 1/2 �1/2 1/2

`c(3) �1/2 . . . . 2 . . . �1/2 . . �1/2 1/2 . 1/2

d(1) . . . . 3 . �1 . . . . . . . . �1/3

d(2) . . . . 3 . �1/4 1/4 1/4 . . 1/2 �1/2 �1/2 1/2 �1/3

d(3) . . . . 3 . �1/4 1/4 1/4 . . �1/2 1/2 1/2 1/2 �1/3

d(4) 1/2 . . . 3 . . . . �1/2 . . �1/2 1/2 . �1/3

⌫(1) . . . . . . �3/4 �1/4 �1/4 . . 1/2 1/2 1/2 1/2 .

⌫(2) . . . . . . �3/4 �1/4 �1/4 . . �1/2 �1/2 �1/2 1/2 .

⌫(3)
1/2 . . . . . �1 . . 1/2 . . 1/2 �1/2 . .

⌫(4) . 1/2 . . . . 1/2 �1/2 . 1/2 . �1/2 �1/2 . 1/2 .

Smatter

q̃(1) 1/2 . �1/2 . 3 2 1/2 . . . . . . . . 1/6

q̃(2) 1/2 . 1/2 . 3 2 1/2 . . . . . . . . 1/6

q̃(3) . 1/2 . . 3 2 . . �1/2 . . . . . . 1/6

ũc(1) �1/2 . �1/2 . 3 . 1/2 . . . . . . . . �2/3

ũc(2) �1/2 . 1/2 . 3 . 1/2 . . . . . . . . �2/3

ũc(3) . 1/2 . . 3 . . . �1/2 . . . . . . �2/3

d̃c(1) . . . . 3 . 1/4 �1/4 �1/4 . . 1/2 �1/2 1/2 �1/2 1/3

d̃c(2) . . . . 3 . 1/4 �1/4 �1/4 . . �1/2 �1/2 �1/2 1/2 1/3

d̃c(3) . . . . 3 . 1/4 �1/4 �1/4 . . �1/2 1/2 �1/2 �1/2 1/3

d̃c(4) . . . . 3 . 1/4 �1/4 �1/4 . . 1/2 1/2 1/2 1/2 1/3

d̃c(5) �1/2 . . . 3 . . . . 1/2 . . 1/2 1/2 . 1/3

d̃c(6) 1/2 . . . 3 . . . . 1/2 . . 1/2 �1/2 . 1/3

d̃c(7) . . �1/2 . 3 . 1/4 1/4 1/4 �1/2 . 1/2 . . �1/2 1/3

d̃c(8) . . 1/2 . 3 . 1/4 1/4 1/4 �1/2 . 1/2 . . �1/2 1/3

d̃c(9) . �1/2 . . 3 . �1/4 1/4 �1/4 �1/2 . . . �1/2 . 1/3

ẽc(1) �1/2 . �1/2 . . . 1/2 . . . . . . . . 1
ẽc(2) �1/2 . 1/2 . . . 1/2 . . . . . . . . 1
ẽc(3) . 1/2 . . . . . . �1/2 . . . . . . 1

Singlets

Renormalisable Yukawas

W3 = h(1)
u q(1)uc(2) + h(1)

u q(2)uc(1) + h(1)
u `(1)⌫c(1) + h(1)

u `(2)⌫c(2) + h(1)
u `(3)⌫c(3) + h(1)

u `(4)⌫c(4) + h(1)
u `(5)⌫c(5) + h(4)

u `(4)⌫c(6) +

h(5)
u `(6)⌫c(7) + h(6)

u `(3)⌫c(8) + h(9)
u `(2)⌫c(8) + h(10)

u `(1)⌫c(8) + h
(1)
d `c(1)⌫(1) + h

(1)
d `c(2)⌫(2) + h

(1)
d `c(3)⌫(3) + h

(4)
d `c(2)⌫c(8) +

h
(6)
d `c(1)⌫c(6) + h

(11)
d `c(2)⌫(4) (11)

Models with small Cosm. Const.



Best option we find so far complete SM generations, 11 Higgs pairs, 

SM “Superpartners” but not SUSY (no massless gauginos, gravitinos)  

3

Spectrum

State U(1) U(1) U(1) SO(4) U(3) U(2) U(1) U(1) U(1) U(1) SO(4) U(1) U(1) U(1) U(1) Y

Higgses

h
(1)
u . . . . . 2 �1 . . . . . . . . 1/2

h
(2)
u . . . . . 2 �1 . . . . . . . . 1/2

h
(3)
u . . . . . 2 �1/4 1/4 1/4 . . 1/2 �1/2 �1/2 1/2 1/2

h
(4)
u . . . . . 2 �1/4 1/4 1/4 . . �1/2 �1/2 1/2 �1/2 1/2

h
(5)
u . . . . . 2 �1/4 1/4 1/4 . . �1/2 1/2 1/2 1/2 1/2

h
(6)
u . . . . . 2 �1/4 1/4 1/4 . . 1/2 1/2 �1/2 �1/2 1/2

h
(7)
u �1/2 . . . . 2 . . . �1/2 . . �1/2 �1/2 . 1/2

h
(8)
u 1/2 . . . . 2 . . . �1/2 . . �1/2 1/2 . 1/2

h
(9)
u . . �1/2 . . 2 �1/4 �1/4 �1/4 1/2 . 1/2 . . �1/2 1/2

h
(10)
u . . 1/2 . . 2 �1/4 �1/4 �1/4 1/2 . 1/2 . . �1/2 1/2

h
(11)
u . 1/2 . . . 2 1/4 �1/4 1/4 1/2 . . . 1/2 . 1/2

h
(1)
d

. . . . . 2 1 . . . . . . . . �1/2

h
(2)
d

. . . . . 2 1 . . . . . . . . �1/2

h
(3)
d

. . . . . 2 1/4 �1/4 �1/4 . . �1/2 �1/2 1/2 1/2 �1/2

h
(4)
d

. . . . . 2 1/4 �1/4 �1/4 . . 1/2 �1/2 �1/2 �1/2 �1/2

h
(5)
d

. . . . . 2 1/4 �1/4 �1/4 . . 1/2 1/2 �1/2 1/2 �1/2

h
(6)
d

. . . . . 2 1/4 �1/4 �1/4 . . �1/2 1/2 1/2 �1/2 �1/2

h
(7)
d

�1/2 . . . . 2 . . . 1/2 . . 1/2 �1/2 . �1/2

h
(8)
d

1/2 . . . . 2 . . . 1/2 . . 1/2 1/2 . �1/2

h
(9)
d

. . �1/2 . . 2 1/4 1/4 1/4 �1/2 . �1/2 . . 1/2 �1/2

h
(10)
d

. . 1/2 . . 2 1/4 1/4 1/4 �1/2 . �1/2 . . 1/2 �1/2

h
(11)
d

. �1/2 . . . 2 �1/4 1/4 �1/4 �1/2 . . . �1/2 . �1/2

Matter

q(1) �1/2 . �1/2 . 3 2 1/2 . . . . . . . . 1/6

q(2) �1/2 . 1/2 . 3 2 1/2 . . . . . . . . 1/6

q(3) . 1/2 . . 3 2 . . �1/2 . . . . . . 1/6

`(1) . . �1/2 . . 2 1/4 1/4 1/4 �1/2 . 1/2 . . �1/2 �1/2

`(2) . . 1/2 . . 2 1/4 1/4 1/4 �1/2 . 1/2 . . �1/2 �1/2

`(3) . . . . . 2 1/4 �1/4 �1/4 . . 1/2 �1/2 1/2 �1/2 �1/2

`(4) . . . . . 2 1/4 �1/4 �1/4 . . �1/2 1/2 �1/2 �1/2 �1/2

`(5) �1/2 . . . . 2 . . . 1/2 . . 1/2 1/2 . �1/2

`(6) . �1/2 . . . 2 �1/4 1/4 �1/4 �1/2 . . . �1/2 . �1/2

uc(1)
1/2 . �1/2 . 3 . 1/2 . . . . . . . . �2/3

uc(2)
1/2 . 1/2 . 3 . 1/2 . . . . . . . . �2/3

uc(3) . 1/2 . . 3 . . . �1/2 . . . . . . �2/3

dc(1) . . �1/2 . 3 . 1/4 1/4 1/4 �1/2 . �1/2 . . 1/2 1/3

dc(2) . . 1/2 . 3 . 1/4 1/4 1/4 �1/2 . �1/2 . . 1/2 1/3

dc(3) . . . . 3 . 1 . . . . . . . . 1/3

dc(4) . . . . 3 . 1/4 �1/4 �1/4 . . �1/2 �1/2 1/2 1/2 1/3

dc(5) . . . . 3 . 1/4 �1/4 �1/4 . . 1/2 1/2 �1/2 1/2 1/3

dc(6) 1/2 . . . 3 . . . . 1/2 . . 1/2 1/2 . 1/3

dc(7) . �1/2 . . 3 . �1/4 1/4 �1/4 �1/2 . . . �1/2 . 1/3

ec(1) 1/2 . �1/2 . . . 1/2 . . . . . . . . 1
ec(2) 1/2 . 1/2 . . . 1/2 . . . . . . . . 1
ec(3) . 1/2 . . . . . . �1/2 . . . . . . 1
⌫c(1) . . 1/2 . . . 3/4 �1/4 �1/4 1/2 . �1/2 . . 1/2 .

⌫c(2) . . �1/2 . . . 3/4 �1/4 �1/4 1/2 . �1/2 . . 1/2 .

⌫c(3) . . . . . . 3/4 1/4 1/4 . . �1/2 1/2 �1/2 1/2 .

⌫c(4) . . . . . . 3/4 1/4 1/4 . . 1/2 �1/2 1/2 1/2 .

⌫c(5)
1/2 . . . . . 1 . . �1/2 . . �1/2 �1/2 . .

3

Spectrum

State U(1) U(1) U(1) SO(4) U(3) U(2) U(1) U(1) U(1) U(1) SO(4) U(1) U(1) U(1) U(1) Y

Higgses

h
(1)
u . . . . . 2 �1 . . . . . . . . 1/2

h
(2)
u . . . . . 2 �1 . . . . . . . . 1/2

h
(3)
u . . . . . 2 �1/4 1/4 1/4 . . 1/2 �1/2 �1/2 1/2 1/2

h
(4)
u . . . . . 2 �1/4 1/4 1/4 . . �1/2 �1/2 1/2 �1/2 1/2

h
(5)
u . . . . . 2 �1/4 1/4 1/4 . . �1/2 1/2 1/2 1/2 1/2

h
(6)
u . . . . . 2 �1/4 1/4 1/4 . . 1/2 1/2 �1/2 �1/2 1/2

h
(7)
u �1/2 . . . . 2 . . . �1/2 . . �1/2 �1/2 . 1/2

h
(8)
u 1/2 . . . . 2 . . . �1/2 . . �1/2 1/2 . 1/2

h
(9)
u . . �1/2 . . 2 �1/4 �1/4 �1/4 1/2 . 1/2 . . �1/2 1/2

h
(10)
u . . 1/2 . . 2 �1/4 �1/4 �1/4 1/2 . 1/2 . . �1/2 1/2

h
(11)
u . 1/2 . . . 2 1/4 �1/4 1/4 1/2 . . . 1/2 . 1/2

h
(1)
d

. . . . . 2 1 . . . . . . . . �1/2

h
(2)
d

. . . . . 2 1 . . . . . . . . �1/2

h
(3)
d

. . . . . 2 1/4 �1/4 �1/4 . . �1/2 �1/2 1/2 1/2 �1/2

h
(4)
d

. . . . . 2 1/4 �1/4 �1/4 . . 1/2 �1/2 �1/2 �1/2 �1/2

h
(5)
d

. . . . . 2 1/4 �1/4 �1/4 . . 1/2 1/2 �1/2 1/2 �1/2

h
(6)
d

. . . . . 2 1/4 �1/4 �1/4 . . �1/2 1/2 1/2 �1/2 �1/2

h
(7)
d

�1/2 . . . . 2 . . . 1/2 . . 1/2 �1/2 . �1/2

h
(8)
d

1/2 . . . . 2 . . . 1/2 . . 1/2 1/2 . �1/2

h
(9)
d

. . �1/2 . . 2 1/4 1/4 1/4 �1/2 . �1/2 . . 1/2 �1/2

h
(10)
d

. . 1/2 . . 2 1/4 1/4 1/4 �1/2 . �1/2 . . 1/2 �1/2

h
(11)
d

. �1/2 . . . 2 �1/4 1/4 �1/4 �1/2 . . . �1/2 . �1/2

Matter

q(1) �1/2 . �1/2 . 3 2 1/2 . . . . . . . . 1/6

q(2) �1/2 . 1/2 . 3 2 1/2 . . . . . . . . 1/6

q(3) . 1/2 . . 3 2 . . �1/2 . . . . . . 1/6

`(1) . . �1/2 . . 2 1/4 1/4 1/4 �1/2 . 1/2 . . �1/2 �1/2

`(2) . . 1/2 . . 2 1/4 1/4 1/4 �1/2 . 1/2 . . �1/2 �1/2

`(3) . . . . . 2 1/4 �1/4 �1/4 . . 1/2 �1/2 1/2 �1/2 �1/2

`(4) . . . . . 2 1/4 �1/4 �1/4 . . �1/2 1/2 �1/2 �1/2 �1/2

`(5) �1/2 . . . . 2 . . . 1/2 . . 1/2 1/2 . �1/2

`(6) . �1/2 . . . 2 �1/4 1/4 �1/4 �1/2 . . . �1/2 . �1/2

uc(1)
1/2 . �1/2 . 3 . 1/2 . . . . . . . . �2/3

uc(2)
1/2 . 1/2 . 3 . 1/2 . . . . . . . . �2/3

uc(3) . 1/2 . . 3 . . . �1/2 . . . . . . �2/3

dc(1) . . �1/2 . 3 . 1/4 1/4 1/4 �1/2 . �1/2 . . 1/2 1/3

dc(2) . . 1/2 . 3 . 1/4 1/4 1/4 �1/2 . �1/2 . . 1/2 1/3

dc(3) . . . . 3 . 1 . . . . . . . . 1/3

dc(4) . . . . 3 . 1/4 �1/4 �1/4 . . �1/2 �1/2 1/2 1/2 1/3

dc(5) . . . . 3 . 1/4 �1/4 �1/4 . . 1/2 1/2 �1/2 1/2 1/3

dc(6) 1/2 . . . 3 . . . . 1/2 . . 1/2 1/2 . 1/3

dc(7) . �1/2 . . 3 . �1/4 1/4 �1/4 �1/2 . . . �1/2 . 1/3

ec(1) 1/2 . �1/2 . . . 1/2 . . . . . . . . 1
ec(2) 1/2 . 1/2 . . . 1/2 . . . . . . . . 1
ec(3) . 1/2 . . . . . . �1/2 . . . . . . 1
⌫c(1) . . 1/2 . . . 3/4 �1/4 �1/4 1/2 . �1/2 . . 1/2 .

⌫c(2) . . �1/2 . . . 3/4 �1/4 �1/4 1/2 . �1/2 . . 1/2 .

⌫c(3) . . . . . . 3/4 1/4 1/4 . . �1/2 1/2 �1/2 1/2 .

⌫c(4) . . . . . . 3/4 1/4 1/4 . . 1/2 �1/2 1/2 1/2 .

⌫c(5)
1/2 . . . . . 1 . . �1/2 . . �1/2 �1/2 . .

4

Spectrum – continued from previous page
U(1) U(1) U(1) SO(4) U(3) U(2) U(1) U(1) U(1) U(1) SO(4) U(1) U(1) U(1) U(1) Y

⌫c(6) . . . . . . . . . . . 1 . . 1 .

⌫c(7) . 1/2 . . . . 1/2 �1/2 . 1/2 . 1/2 �1/2 . �1/2 .

⌫c(8) . . . . . . . . . . . �1 . . 1 .

Partners

`c(1) . . . . . 2 �1/4 1/4 1/4 . . �1/2 �1/2 �1/2 �1/2 1/2

`c(2) . . . . . 2 �1/4 1/4 1/4 . . 1/2 1/2 1/2 �1/2 1/2

`c(3) �1/2 . . . . 2 . . . �1/2 . . �1/2 1/2 . 1/2

d(1) . . . . 3 . �1 . . . . . . . . �1/3

d(2) . . . . 3 . �1/4 1/4 1/4 . . 1/2 �1/2 �1/2 1/2 �1/3

d(3) . . . . 3 . �1/4 1/4 1/4 . . �1/2 1/2 1/2 1/2 �1/3

d(4) 1/2 . . . 3 . . . . �1/2 . . �1/2 1/2 . �1/3

⌫(1) . . . . . . �3/4 �1/4 �1/4 . . 1/2 1/2 1/2 1/2 .

⌫(2) . . . . . . �3/4 �1/4 �1/4 . . �1/2 �1/2 �1/2 1/2 .

⌫(3)
1/2 . . . . . �1 . . 1/2 . . 1/2 �1/2 . .

⌫(4) . 1/2 . . . . 1/2 �1/2 . 1/2 . �1/2 �1/2 . 1/2 .

Smatter

q̃(1) 1/2 . �1/2 . 3 2 1/2 . . . . . . . . 1/6

q̃(2) 1/2 . 1/2 . 3 2 1/2 . . . . . . . . 1/6

q̃(3) . 1/2 . . 3 2 . . �1/2 . . . . . . 1/6

ũc(1) �1/2 . �1/2 . 3 . 1/2 . . . . . . . . �2/3

ũc(2) �1/2 . 1/2 . 3 . 1/2 . . . . . . . . �2/3

ũc(3) . 1/2 . . 3 . . . �1/2 . . . . . . �2/3

d̃c(1) . . . . 3 . 1/4 �1/4 �1/4 . . 1/2 �1/2 1/2 �1/2 1/3

d̃c(2) . . . . 3 . 1/4 �1/4 �1/4 . . �1/2 �1/2 �1/2 1/2 1/3

d̃c(3) . . . . 3 . 1/4 �1/4 �1/4 . . �1/2 1/2 �1/2 �1/2 1/3

d̃c(4) . . . . 3 . 1/4 �1/4 �1/4 . . 1/2 1/2 1/2 1/2 1/3

d̃c(5) �1/2 . . . 3 . . . . 1/2 . . 1/2 1/2 . 1/3

d̃c(6) 1/2 . . . 3 . . . . 1/2 . . 1/2 �1/2 . 1/3

d̃c(7) . . �1/2 . 3 . 1/4 1/4 1/4 �1/2 . 1/2 . . �1/2 1/3

d̃c(8) . . 1/2 . 3 . 1/4 1/4 1/4 �1/2 . 1/2 . . �1/2 1/3

d̃c(9) . �1/2 . . 3 . �1/4 1/4 �1/4 �1/2 . . . �1/2 . 1/3

ẽc(1) �1/2 . �1/2 . . . 1/2 . . . . . . . . 1
ẽc(2) �1/2 . 1/2 . . . 1/2 . . . . . . . . 1
ẽc(3) . 1/2 . . . . . . �1/2 . . . . . . 1

Singlets

Renormalisable Yukawas

W3 = h(1)
u q(1)uc(2) + h(1)

u q(2)uc(1) + h(1)
u `(1)⌫c(1) + h(1)

u `(2)⌫c(2) + h(1)
u `(3)⌫c(3) + h(1)

u `(4)⌫c(4) + h(1)
u `(5)⌫c(5) + h(4)

u `(4)⌫c(6) +

h(5)
u `(6)⌫c(7) + h(6)

u `(3)⌫c(8) + h(9)
u `(2)⌫c(8) + h(10)

u `(1)⌫c(8) + h
(1)
d `c(1)⌫(1) + h

(1)
d `c(2)⌫(2) + h

(1)
d `c(3)⌫(3) + h

(4)
d `c(2)⌫c(8) +

h
(6)
d `c(1)⌫c(6) + h

(11)
d `c(2)⌫(4) (11)

Different charges!! c.f. folded SUSY with 
a twist (Craig et al)

Models with small Cosm. Const.
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}
FIG. 7: The structure of the spectrum of a generic interpolating model with suppressed cosmological constant in the limit of large
interpolating radius. States with masses below Mstring (or below n = 1) consist of massless observable states, massless hidden-
sector states, their would-be superpartners, and their lightest KK excitations. For these lightest states, the net (bosonic minus
fermionic) numbers of degrees of freedom from the hidden sector are exactly equal and opposite to those from the observable
sector for all large radii. Note that this cancellation of net physical-state degeneracies between the observable and hidden
sectors bears no connection with any supersymmetry, either exact or approximate, in the string spectrum. Nevertheless, it is
this conspiracy between the observable and hidden sectors which suppresses the overall cosmological constant and enhances the
stability of these strings. For the heavier states, by contrast, the observable and hidden sectors need no longer supply equal and
opposite numbers of degrees of freedom. The properties of these sectors are nevertheless governed by misaligned-supersymmetry
constraints, and the entire string spectrum continues to satisfy the supertrace relations in Eqs. (2.19) and (2.20). These relations
thereby continue to maintain the finiteness of the overall string theory, even without spacetime supersymmetry.

m1,2+e ·Q−(n1+n2)/2 are very heavy. Let us consider first the winding modes of the massless sector with e ·Q = 0
with N0

b = N0
f . Denoting by Q0 the charges in this sector, we see that at small r different winding modes require a

shift, Q = Q0 + e(n1 + n2), in order to remain light, with a corresponding shift in KK number, mi = − 1
2 (n1 + n2),

to cancel the net KK contribution. Hence at generic but small r only the even winding modes of the e ·Q = 0 states
are light (where we use ‘even’ to refer to n1 + n2).
At this point, one might erroneously conclude that these low-lying states correspond to simply taking the physical

states with e ·Q0 = 0 and mapping them to a set of even winding modes with charge and net KK number given
respectively by Q = Q0 + e(n1 + n2) and mi = − 1

2 (n1 + n2), mimicking what happens for the KK modes at large
radius. However this would not be correct because the shift in Q also affects the GSO projection, i.e., it affects
the factor g in Eq. (6.19) which includes a phase 2πiβV · Q. This phase is shifted by a factor 2πi(n1 + n2)βV · e
with respect to the non-winding sector, and some of the overlaps Vi · e generate 1/4-integer values. Thus while one
particular subset of the winding modes — namely, those with n1 + n2 = 0 mod(4) — still exhibit the N0

b = N0
f

cancellation of the massless sector, the remainder — those with n1 +n2 = 4k+2, k ∈ Z — have different projections
and generally do not exhibit this cancellation. This is evident within the large-a (small-r) plot within Fig. 8, where
we observe that the low-mass states no longer exhibit such cancellations. We therefore do not expect the exponential
suppression of the cosmological constant to be a feature of these models when interpolated to r → 0 or a → ∞.
Meanwhile, the winding modes of the states that were given masses by e ·Q ̸= 0 at large r have different behavior.

Because of the shift in KK number, at small r these states can have low-lying odd winding modes, with m1,2 again
compensating to make the net KK contribution vanish. Denoting by Q1 the charges of the original non-winding
states, we see that the low-lying winding states have charges shifted as Q = Q1 + e(n1 + n2), with

m1,2 + e ·Q− 1

2
(n1 + n2)e

2 = 0 , (8.1)

so there are indeed odd-winding/KK states with no net KK number.

Phenomenology
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interpolating radius. States with masses below Mstring (or below n = 1) consist of massless observable states, massless hidden-
sector states, their would-be superpartners, and their lightest KK excitations. For these lightest states, the net (bosonic minus
fermionic) numbers of degrees of freedom from the hidden sector are exactly equal and opposite to those from the observable
sector for all large radii. Note that this cancellation of net physical-state degeneracies between the observable and hidden
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stability of these strings. For the heavier states, by contrast, the observable and hidden sectors need no longer supply equal and
opposite numbers of degrees of freedom. The properties of these sectors are nevertheless governed by misaligned-supersymmetry
constraints, and the entire string spectrum continues to satisfy the supertrace relations in Eqs. (2.19) and (2.20). These relations
thereby continue to maintain the finiteness of the overall string theory, even without spacetime supersymmetry.

m1,2+e ·Q−(n1+n2)/2 are very heavy. Let us consider first the winding modes of the massless sector with e ·Q = 0
with N0

b = N0
f . Denoting by Q0 the charges in this sector, we see that at small r different winding modes require a

shift, Q = Q0 + e(n1 + n2), in order to remain light, with a corresponding shift in KK number, mi = − 1
2 (n1 + n2),

to cancel the net KK contribution. Hence at generic but small r only the even winding modes of the e ·Q = 0 states
are light (where we use ‘even’ to refer to n1 + n2).
At this point, one might erroneously conclude that these low-lying states correspond to simply taking the physical

states with e ·Q0 = 0 and mapping them to a set of even winding modes with charge and net KK number given
respectively by Q = Q0 + e(n1 + n2) and mi = − 1

2 (n1 + n2), mimicking what happens for the KK modes at large
radius. However this would not be correct because the shift in Q also affects the GSO projection, i.e., it affects
the factor g in Eq. (6.19) which includes a phase 2πiβV · Q. This phase is shifted by a factor 2πi(n1 + n2)βV · e
with respect to the non-winding sector, and some of the overlaps Vi · e generate 1/4-integer values. Thus while one
particular subset of the winding modes — namely, those with n1 + n2 = 0 mod(4) — still exhibit the N0

b = N0
f

cancellation of the massless sector, the remainder — those with n1 +n2 = 4k+2, k ∈ Z — have different projections
and generally do not exhibit this cancellation. This is evident within the large-a (small-r) plot within Fig. 8, where
we observe that the low-mass states no longer exhibit such cancellations. We therefore do not expect the exponential
suppression of the cosmological constant to be a feature of these models when interpolated to r → 0 or a → ∞.
Meanwhile, the winding modes of the states that were given masses by e ·Q ̸= 0 at large r have different behavior.

Because of the shift in KK number, at small r these states can have low-lying odd winding modes, with m1,2 again
compensating to make the net KK contribution vanish. Denoting by Q1 the charges of the original non-winding
states, we see that the low-lying winding states have charges shifted as Q = Q1 + e(n1 + n2), with

m1,2 + e ·Q− 1

2
(n1 + n2)e

2 = 0 , (8.1)

so there are indeed odd-winding/KK states with no net KK number.

A phenomenological model would look generically like … 
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In an expansion in k2, and using the large τ2 limits of Appendix A, one finds that ϑ10 ∼ q1/8 but the remaining
spin-structures are exponentially suppressed, so the sum over spin structures yields precisely one contribution of 4π2τ2
from the second term for every pair of physical states that couples to the Higgs. Hence the leading factor becomes

I ′ = π − 4πτ2i∂τ̄ log
√
ϑakbk(0)ϑalbl(0)

→ 4π2τ2tr

(
1

4πτ2
− Y 2

g2YM

)
, (11.25)

where Y 2/g2YM includes those states coupling to the Higgs in this sector and the trace is understood to be weighted by
the partition function. (Alternatively it can be deduced from the fact that two three point tree-level vertices should
coalesce onto the correct four point vertex at short distance, and also by noting that because this Higgs is really a
component of the 6D gauge field, the term is proportional to the current-current propagator ⟨jajb⟩ .)
Note that here the coupling Y includes the gauge couplings. Putting everything together the amplitude can be

written

A(k,−k) = − (2π)4
g2YM

16π2

∫

F

d2τ

4τ2

∑

α,β,ℓ

(
Y 2

g2YM

− 1

4πτ2

)
|ℓ⃗|2

τ22
Zℓ,0Z

[
α

β

]

. (11.26)

Consider the contribution from massless states in the loop. First recall that when calculating the cosmological constant
we placed an upper limit τ2 → ∞ on the integral. Strictly speaking, at the infra-red limit of the integrals, τ2 ≫ R2,
the initial Poisson resummation is misleading as all KK and winding modes are exponentially suppressed in the
partition function. The integral gives a logarithmic divergence depending on the infra-red cut-off µIR proportional

to
(
N0

bH −N0
fH

)
log (µIRR), where in this case NbH , NfH counts those boson and fermion states that couple to the

Higgs. This is the expected contribution to the logarithmic renormalisation group running of the Higgs mass below
the KK scale. Indeed in a UV finite theory there is one and only one cut-off required, namely the physical (Wilsonian)
infra-red one leading to renormalisation, while issues such as UV divergences and counterterms are simply spurious
artefacts of working within an incomplete theory. Since we are interested in the origin of the Higgs mass we can take
its value in the Poisson resummed expression to be the value at the KK scale, and simply note that there will be
logarithmic RG running between this scale and the physical Higgs mass.
The rest of the computation closely follows that of the cosmological constant. We can split the contributions into

those from massless sectors and those from massive ones. The term going as 1
4πτ2

will be proportional to the overall
cosmological constant and therefore inevitably exponentially suppressed. The contribution from the massless sector
terms to the 4D higgs mass-squareds are then

M2
H1

=
1

16π2

∫ ∞

1
µ2 ≈1

dτ2
4τ52

∑

ℓ=odd,i

Y 2(N i
fH −N i

bH)|ℓ⃗|2e−
π
τ2

|ℓ⃗|2e−πτ2α
′m2

i

≈ 2

α′
Y 2

16π2
(N0

fH −N0
bH)

π2

320r61
. (11.27)

Similarly the contributions from the massive states are

M2
H1

=
2

α′
Y 2

16π2
(N i

fH −N i
bH)

∑

ℓ=odd

|ℓ⃗|−5/2(
√
α′mi)

7/2e−2π
√
α′mi|ℓ⃗|. (11.28)

The first of these expressions does not necessarily vanish even if its equivalent does for the cosmological constant,
because the Higgs couples differently to the states that are projected out by the CDC, so generically (N0

fH−N0
bH) ̸= 0.

As mentioned above, one should bear in mind that one should also include the gauge fields, with Y ≡ gYM .
We can see this explicitly in the case of the Pati-Salam model. Inspecting the Yukawa and gauge couplings, the

matter fields F and their scalar superpartners F̃ both remain in the massless spectrum at leading order, so they do
not contribute to the mass-squared of H1. However both the gauge fields and singlets are projected out in a non-
supersymmetric fashion, with Y 2 involving contraction over the massless pairs H̃3X̃5, H̃5X̃3, H4X7 and AµH1. The
net result is a factor that is essentially the coefficient of the one-loop quadratic divergence of the Higgs mass in the

effective field theory of the massless degrees of freedom, Y 2(N i
fH−N i

bH) ≡ C2(!)g2SU(2)L
+C2(!)g2SU(2)R

−Y 2 = g2
Y M
2 .

Note that naturally the other scalars and in particular the superpartners of the matter multiplets receive similar
contributions.
It is of course of interest to compare energy scales, assuming generic scalar contributions of this type. Let us
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