F-Theory GUTs and Discrete Symmetry Supersymmetry: from M-Theory to the LHC

Andrew K Meadowcroft
University of Southampton

January 11th 2016

What is F-theory?

F-Theory and Symmetries

F-Theory is a 12 Dimensional formulation of Type IIB string theory:

F-Theory and Symmetries

F-Theory is a 12 Dimensional formulation of Type IIB string theory:

- 4 Large spacetime dimensions
- 6 Compactified internal dimensions

F-Theory and Symmetries

F-Theory is a 12 Dimensional formulation of Type IIB string theory:

- 4 Large spacetime dimensions
- 6 Compactified internal dimensions
- 2 Dimensions due to elliptic fibration

F-Theory and Symmetries

F-Theory is a 12 Dimensional formulation of Type IIB string theory:

- 4 Large spacetime dimensions
- 6 Compactified internal dimensions
- 2 Dimensions due to elliptic fibration

The elliptic fibration of the space codes the Gauge Group supported by 7 -branes in the internal manifold - Kodaira.

The maximum symmetry enhancement is E_{8}, which acts as a parent symmetry for any GUT group ...

F-Theory and Symmetries

F-Theory is a 12 Dimensional formulation of Type IIB string theory:

- 4 Large spacetime dimensions
- 6 Compactified internal dimensions
- 2 Dimensions due to elliptic fibration

The elliptic fibration of the space codes the Gauge Group supported by 7 -branes in the internal manifold - Kodaira.

The maximum symmetry enhancement is E_{8}, which acts as a parent symmetry for any GUT group ...

$$
\begin{aligned}
& \mathrm{E}_{8} \supset \mathrm{E}_{6} \times \mathrm{SU}(3)_{\perp} \\
& \mathrm{E}_{8} \supset \mathrm{SO}(10) \times \mathrm{SU}(4)_{\perp} \\
& \mathrm{E}_{8} \supset \mathrm{SU}(5) \times \mathrm{SU}(5)_{\perp}
\end{aligned}
$$

F-Theory and Symmetries

When the elliptic fibre becomes singular, A D7 brane is present and intersecting the GUT-surface. This indicates a symmetry enhancement - a matter curve.

F-Theory and Symmetries

When the elliptic fibre becomes singular, A D7 brane is present and intersecting the GUT-surface. This indicates a symmetry enhancement - a matter curve.

For a given GUT surface, the parent E_{8} descends to give a perpendicular group as well as the GUT group. For example:

$$
E_{8} \rightarrow S U(5)_{G U T} \times S U(5)_{\perp}
$$

F-Theory and Symmetries

When the elliptic fibre becomes singular, A D7 brane is present and intersecting the GUT-surface. This indicates a symmetry enhancement - a matter curve.

For a given GUT surface, the parent E_{8} descends to give a perpendicular group as well as the GUT group. For example:

$$
E_{8} \rightarrow S U(5)_{G U T} \times S U(5)_{\perp}
$$

Depending on how the weights of the perpendicular group identify under "monodromy action" we can have a family symmetry structure accompanying our matter.

F-Theory and Symmetries

The Weierstrass equation for elliptically fibred spaces:

$$
y^{2}=x^{3}+f(z) x+g(z)
$$

This can be written in the so-called Tate form:

$$
y^{2}+\alpha_{1} x y+\alpha_{3} y=x^{3}+\alpha_{2} x^{2}+\alpha_{4} x+\alpha_{6}
$$

The spectral cover equation for $\mathrm{SU}(5)$ is a cleaner, more instructive form of this equation:

$$
\mathcal{C}_{5}: b_{5}+b_{4} s+b_{3} s^{2}+b_{2} s^{3}+b_{1} s^{4}+b_{0} s^{5}
$$

F-Theory and Symmetries

The Weierstrass equation for elliptically fibred spaces:

$$
y^{2}=x^{3}+f(z) x+g(z)
$$

This can be written in the so-called Tate form:

$$
y^{2}+\alpha_{1} x y+\alpha_{3} y=x^{3}+\alpha_{2} x^{2}+\alpha_{4} x+\alpha_{6}
$$

The spectral cover equation for $\operatorname{SU}(5)$ is a cleaner, more instructive form of this equation:

$$
\mathcal{C}_{5}: b_{5}+b_{4} s+b_{3} s^{2}+b_{2} s^{3}+b_{1} s^{4}+b_{0} s^{5}
$$

The roots of this equation can be identified with the weights of the fundamental representation of the perpendicular group, which are paired with the antisymmetric representation of the GUT SU(5) - the 10 s.

F-Theory - Spectral Cover Equation

The 10s of an $S U(5)$ singularity are described by the Spectral cover equation:

$$
\mathcal{C}_{5}: b_{5}+b_{4} s+b_{3} s^{2}+b_{2} s^{3}+b_{1} s^{4}+b_{0} s^{5}=b_{0} \prod_{i=1}^{5}\left(s+t_{i}\right)
$$

The roots of the spectral cover equation are identified as the weights of the 5 of $S U(5)_{\perp}$, which in turn specifies the defining equation of the 10 representation of the GUT group:

$$
\Sigma_{10}: t_{i}=0
$$

F-Theory - Spectral Cover Equation

The $10 s$ of an $S U(5)$ singularity are described by the Spectral cover equation:

$$
\mathcal{C}_{5}: b_{5}+b_{4} s+b_{3} s^{2}+b_{2} s^{3}+b_{1} s^{4}+b_{0} s^{5}=b_{0} \prod_{i=1}^{5}\left(s+t_{i}\right)
$$

The roots of the spectral cover equation are identified as the weights of the 5 of $S U(5)_{\perp}$, which in turn specifies the defining equation of the 10 representation of the GUT group:

$$
\Sigma_{10}: t_{i}=0
$$

Similarly, we have a way to determine our five-curves of the GUT group:

$$
\begin{aligned}
& \sum_{n=1}^{10} c_{n} s^{10-n}=b_{0} \prod_{i<j}\left(s-t_{i}-t_{j}\right) \\
& R=b_{3}^{2} b_{4}-b_{2} b_{3} b_{5}+b_{0} b_{5}^{2} \propto \prod_{i<j}\left(t_{i}+t_{j}\right)
\end{aligned}
$$

F-Theory and Symmetries

$$
\mathcal{C}_{5}=b_{5}+b_{4} s+b_{3} s^{2}+b_{2} s^{3}+b_{1} s^{4}+b_{0} s^{5}=\sum_{k} b_{k} s^{5-k}
$$

In general, the spectral cover equation can be factorised. Depending on how the roots are related, there may be monodromy actions relating the roots. For example, if \mathcal{C}_{5} factorises:

$$
\mathcal{C}_{5} \rightarrow\left(a_{1}+a_{2} s+a_{3} s^{2}\right)\left(a_{4}+a_{5} s\right)\left(a_{6}+a_{7} s\right)\left(a_{8}+a_{9} s\right)=0
$$

F-Theory and Symmetries

$$
\mathcal{C}_{5}=b_{5}+b_{4} s+b_{3} s^{2}+b_{2} s^{3}+b_{1} s^{4}+b_{0} s^{5}=\sum_{k} b_{k} s^{5-k}
$$

In general, the spectral cover equation can be factorised. Depending on how the roots are related, there may be monodromy actions relating the roots. For example, if \mathcal{C}_{5} factorises:

$$
\mathcal{C}_{5} \rightarrow\left(a_{1}+a_{2} s+a_{3} s^{2}\right)\left(a_{4}+a_{5} s\right)\left(a_{6}+a_{7} s\right)\left(a_{8}+a_{9} s\right)=0
$$

Assuming the quadratic part cannot be factorised in the same field as the original b_{k} coefficients, the two roots can be shown to be:

$$
\begin{array}{r}
s_{ \pm}=\frac{-a_{2} \pm \sqrt{w}}{2 a_{3}} \\
w=e^{i \theta}|w| \\
\sqrt{w}=e^{i \theta / 2} \sqrt{|w|}
\end{array}
$$

Under $\theta \rightarrow \theta+2 \pi$, the roots interchange: they are related by the action.

A Model with a D_{4} Monodromy

The \mathcal{C}_{4} Spectral Cover

The most interesting classes of Family symmetry groups are S_{4} and a number of its subgroups. This corresponds to a splitting of the spectral cover:

$$
\begin{aligned}
& \mathcal{C}_{5} \rightarrow \mathcal{C}_{4} \times \mathcal{C}_{1} \\
& \left(a_{1}+a_{2} s+a_{3} s^{2}+a_{4} s^{3}+a_{5} s^{4}\right) \times\left(a_{6}+a_{7} s\right)
\end{aligned}
$$

The quartic part encompasses a monodromy action on four weights of $\mathrm{SU}(5)_{\perp}$. The most general action on four elements is S_{4}

The \mathcal{C}_{4} Spectral Cover

The most interesting classes of Family symmetry groups are S_{4} and a number of its subgroups. This corresponds to a splitting of the spectral cover:

$$
\begin{aligned}
& \mathcal{C}_{5} \rightarrow \mathcal{C}_{4} \times \mathcal{C}_{1} \\
& \left(a_{1}+a_{2} s+a_{3} s^{2}+a_{4} s^{3}+a_{5} s^{4}\right) \times\left(a_{6}+a_{7} s\right)
\end{aligned}
$$

The quartic part encompasses a monodromy action on four weights of $\mathrm{SU}(5)_{\perp}$. The most general action on four elements is S_{4}

D_{4} from F-theory

The equation defining the properties of the matter curves for the 10 s of $\mathrm{SU}(5)$ is the s^{0} term of the spectral cover equation, while the equation for the 5 s arises due to consistency conditions:

$$
\begin{gathered}
b_{5}=a_{1} a_{6} \\
R=\left(a_{2}^{2} a_{7}+a_{2} a_{3} a_{6} \mp a_{0} a_{1} a_{6}^{2}\right)\left(a_{3} a_{6}^{2}+\left(a_{2} a_{6}+a_{1} a_{7}\right) a_{7}\right)
\end{gathered}
$$

D_{4} from F-theory

The equation defining the properties of the matter curves for the 10 s of $\mathrm{SU}(5)$ is the s^{0} term of the spectral cover equation, while the equation for the 5 s arises due to consistency conditions:

$$
\begin{gathered}
b_{5}=a_{1} a_{6} \\
R=\left(a_{2}^{2} a_{7}+a_{2} a_{3} a_{6} \mp a_{0} a_{1} a_{6}^{2}\right)\left(a_{3} a_{6}^{2}+\left(a_{2} a_{6}+a_{1} a_{7}\right) a_{7}\right)
\end{gathered}
$$

Curve	Equation	Homology	N	$\mathrm{SU}(5)_{\perp}$ weight
10_{a}	a_{1}	$\eta-5 c_{1}-\chi$	$-N$	t_{1}
10_{b}	a_{6}	χ	$+N$	t_{5}
5_{c}	$a_{2}^{2} a_{7}+a_{2} a_{3} a_{6} \mp a_{0} a_{1} a_{6}^{2}$	$2 \eta-7 c_{1}-\chi$	$-N$	$2 t_{1}$
5_{d}	$a_{3} a_{6}^{2}+\left(a_{2} a_{6}+a_{1} a_{7}\right) a_{7}$	$\eta-3 c_{1}+\chi$	$+N$	$t_{1}+t_{5}$

D_{4} from F-theory

The spectral cover equation has an additional symetry property that we can also exploit:

$$
\begin{aligned}
\sigma: s & \rightarrow s \mathrm{e}^{i \phi} \\
b_{k} & \rightarrow b_{k} \mathrm{e}^{i(\chi+(k-6) \phi)} \\
\sum_{k} b_{k} s^{5-k} & \rightarrow \mathrm{e}^{i(\chi-\phi)} \sum_{k} b_{k} s^{5-k}
\end{aligned}
$$

D_{4} from F-theory

The spectral cover equation has an additional symetry property that we can also exploit:

$$
\begin{aligned}
\sigma: s & \rightarrow s \mathrm{e}^{i \phi} \\
b_{k} & \rightarrow b_{k} \mathrm{e}^{i(\chi+(k-6) \phi)} \\
\sum_{k} b_{k} s^{5-k} & \rightarrow \mathrm{e}^{i(\chi-\phi)} \sum_{k} b_{k} s^{5-k}
\end{aligned}
$$

When we factorise the spectral cover in any way, the resulting parts must be consistent with this symmetry. Consider:

$$
\begin{gathered}
C_{5} \rightarrow C_{4} \times C_{1} \\
a_{n} \rightarrow \mathrm{e}^{i(3-n) \phi} a_{n}
\end{gathered}
$$

For a given choice of $\phi=\frac{2 \pi}{N}$, the coefficients of the split spectral cover will transform differently. This can be used to give a matter parity in non-ad hoc way.

D_{4} from F-theory

Consider $N=2$:

$$
a_{n} \rightarrow \mathrm{e}^{i(3-n) \pi} a_{n}
$$

This will give a parity that alternates:

$$
\begin{aligned}
& a_{1}, a_{3}, a_{5}, a_{7} \rightarrow- \\
& a_{2}, a_{4}, a_{6} \rightarrow+
\end{aligned}
$$

While the defining equation of the 10 s of the GUT group is:

$$
b_{5}=a_{1} a_{6}
$$

So the curves naturally have different parities.

a_{n}	$N=2$	$N=3$	$N=4$	$N=5$
a_{1}	-	α^{2}	β^{2}	γ^{2}
a_{2}	+	α	β	γ
a_{3}	-	1	1	1
a_{4}	+	α^{2}	β^{3}	γ^{4}
a_{5}	-	α	β^{2}	γ^{3}
a_{6}	+	1	β	γ^{2}
a_{7}	-	α^{2}	1	γ

We are of course free to experiment with other choices for N.

In each case, we also have some freedom to use the phases we discarded for this example. This will shift $a_{1, \ldots, 5}$ or $a_{6,7}$ depending on phase choice.

Klein Groups and Geometric Parity

arXiv:1308.1581 [hep-th]

arXiv:1512.09148 [hep-th]

D_{4} from F-theory

The generators of D_{4} satisfy three relations:

- $A^{4}=1$
- $B^{2}=1$
- $B A B=A^{-1}$ or $A B A=B$

Geometrically speaking, these correspond to the symmetries of a square: a rotation of $\frac{\pi}{4}$ about the centre point (A) and a flip (B).

A quadruplet is not an irreducible representation of D_{4}

D_{4} from F-theory

The generators of D_{4} satisfy three relations:

- $A^{4}=1$
- $B^{2}=1$
- $B A B=A^{-1}$ or $A B A=B$

Geometrically speaking, these correspond to the symmetries of a square: a rotation of $\frac{\pi}{4}$ about the centre point (A) and a flip (B).

A quadruplet is not an irreducible representation of D_{4}

$$
\begin{aligned}
\left(\begin{array}{c}
t_{1} \\
t_{2} \\
t_{3} \\
t_{4}
\end{array}\right) & \rightarrow \frac{1}{2}\left(\begin{array}{c}
t_{1}+t_{2}+t_{3}+t_{4} \\
t_{1}-t_{2}+t_{3}-t_{4} \\
\sqrt{2}\left(t_{1}-t_{3}\right) \\
\sqrt{2}\left(t_{2}-t_{4}\right)
\end{array}\right) \\
& \rightarrow 1_{++}+1_{+-}+2
\end{aligned}
$$

Must assume some form of matter curve multifurcation to reconcile.

D_{4} from F-theory

Low Energy Spectrum	D_{4} rep	$U(1)_{t_{5}}$	Z_{2}
$Q_{3}, u_{3}^{c}, e_{3}^{c}$	1_{+-}	0	-
u_{2}^{c}	1_{++}	1	+
u_{1}^{c}	1_{++}	0	+
$Q_{1,2}, e_{1,2}^{c}$	2	0	-
L_{i}, d_{i}^{c}	1_{+-}	0	-
ν_{3}^{c}	1_{+-}	0	-
$\nu_{1,2}^{c}$	2	0	-
H_{u}	1_{++}	0	+
H_{d}	1_{++}	-1	+

- It is possible to construct a model with low energy MSSM content

D_{4} from F-theory

Low Energy Spectrum	D_{4} rep	$U(1)_{t_{5}}$	Z_{2}
$Q_{3}, u_{3}^{c}, e_{3}^{c}$	1_{+-}	0	-
u_{2}^{c}	1_{++}	1	+
u_{1}^{c}	1_{++}	0	+
$Q_{1,2}, e_{1,2}^{c}$	2	0	-
L_{i}, d_{i}^{c}	1_{+-}	0	-
ν_{3}^{c}	1_{+-}	0	-
$\nu_{1,2}^{c}$	2	0	-
H_{u}	1_{++}	0	+
H_{d}	1_{++}	-1	+

- It is possible to construct a model with low energy MSSM content
- The geometric parity gives some R-parity violating operators at low energies

D_{4} from F-theory

Low Energy Spectrum	D_{4} rep	$U(1)_{t_{5}}$	Z_{2}
$Q_{3}, u_{3}^{c}, e_{3}^{c}$	1_{+-}	0	-
u_{2}^{c}	1_{++}	1	+
u_{1}^{c}	1_{++}	0	+
$Q_{1,2}, e_{1,2}^{c}$	2	0	-
L_{i}, d_{i}^{c}	1_{+-}	0	-
ν_{3}^{c}	1_{+-}	0	-
$\nu_{1,2}^{c}$	2	0	-
H_{u}	1_{++}	0	+
H_{d}	1_{++}	-1	+

- It is possible to construct a model with low energy MSSM content
- The geometric parity gives some R-parity violating operators at low energies
- The only RPV operator type is $10 \cdot \overline{5} \cdot \overline{5} \rightarrow u^{c} d^{c} \tilde{d}^{c}$ - no proton decay, but Neutron-antineutron oscillations.

D_{4} from F-theory

There are three trilinear R-Parity violating couplings:

$$
10 \cdot \overline{5} \cdot \overline{5} \rightarrow Q L \tilde{d}^{c}+u^{c} d^{c} \tilde{d}^{c}+L L \tilde{e}^{c}
$$

No single coupling facilitates proton decay.

D_{4} from F-theory

There are three trilinear R-Parity violating couplings:

$$
10 \cdot \overline{5} \cdot \overline{5} \rightarrow Q L \tilde{d}^{c}+u^{c} d^{c} \tilde{d}^{c}+L L \tilde{e}^{c}
$$

No single coupling facilitates proton decay.

- proton decay (QLD+UDD)

D_{4} from F-theory

There are three trilinear R-Parity violating couplings:

$$
10 \cdot \overline{5} \cdot \overline{5} \rightarrow Q L \tilde{d}^{c}+u^{c} d^{c} \tilde{d}^{c}+L L \tilde{e}^{c}
$$

No single coupling facilitates proton decay.

- proton decay (QLD+UDD)
- Rare meson decays (QLD or QLD+LLE)

D_{4} from F-theory

There are three trilinear R-Parity violating couplings:

$$
10 \cdot \overline{5} \cdot \overline{5} \rightarrow Q L \tilde{d}^{c}+u^{c} d^{c} \tilde{d}^{c}+L L \tilde{e}^{c}
$$

No single coupling facilitates proton decay.

- proton decay (QLD+UDD)
- Rare meson decays (QLD or QLD+LLE)
- $\tau / \mu \rightarrow e \nu_{e} \nu_{\tau / \mu}$ processes (LLE)

D_{4} from F-theory

There are three trilinear R-Parity violating couplings:

$$
10 \cdot \overline{5} \cdot \overline{5} \rightarrow Q L \tilde{d}^{c}+u^{c} d^{c} \tilde{d}^{c}+L L \tilde{e}^{c}
$$

No single coupling facilitates proton decay.

- proton decay (QLD+UDD)
- Rare meson decays (QLD or QLD+LLE)
- $\tau / \mu \rightarrow e \nu_{e} \nu_{\tau / \mu}$ processes (LLE)
- Atomic parity violation (QLD)

D_{4} from F-theory

There are three trilinear R-Parity violating couplings:

$$
10 \cdot \overline{5} \cdot \overline{5} \rightarrow Q L \tilde{d}^{c}+u^{c} d^{c} \tilde{d}^{c}+L L \tilde{e}^{c}
$$

No single coupling facilitates proton decay.

- proton decay (QLD+UDD)
- Rare meson decays (QLD or QLD+LLE)
- $\tau / \mu \rightarrow e \nu_{e} \nu_{\tau / \mu}$ processes (LLE)
- Atomic parity violation (QLD)
- neutron-antineutron oscillations (UDD)

D_{4} from F-theory

Neutron-antineutron oscillations are a seldom considered for BSM physics.

According to Goity and Sher, the dominant process is a boxgraph with W boson and gaugino exchange.

Using this a bound can be set on the coupling $\lambda_{d b u}$, coupling to the third generation. This contribution should be largest due to factors of m_{b}^{2} / m_{W}^{2} in the decay rate.

D_{4} from F-theory

The decay rate for the box process is [hep-ph/9412208]:

$$
\begin{aligned}
& \Gamma=-\frac{3 g^{4} \lambda_{d b u}^{2} M_{\tilde{b}_{L R}}^{2} m_{\tilde{w}}}{8 \pi^{2} M_{\tilde{b}_{L}}^{4} M_{\tilde{b}_{R}}^{4}}|\psi(0)|^{2} \sum_{j, j^{\prime}}^{u, c, t} \xi_{j j^{\prime}} J\left(M_{\tilde{w}}^{2}, M_{W}^{2}, M_{u_{j}}^{2}, M_{\tilde{u}_{j^{\prime}}}^{2}\right) \\
& J\left(m_{1}, m_{2}, m_{3}, m_{4}\right)=\sum_{i=1}^{4} \frac{m_{i}^{4} \ln \left(m_{i}^{2}\right)}{\prod_{k \neq i}\left(m_{i}^{2}-m_{k}^{2}\right)}
\end{aligned}
$$

The experimental bounds on the oscillation time are: $\tau=1 / \Gamma \gtrsim 10^{8}$ Using the data, along with other known inputs, it is possible to calculate the limits on the coupling. We take $M_{\tilde{b}_{L}}=M_{\tilde{b}_{R}}=500 \mathrm{GeV}$, scanning over the parameter space of the stop mass.

Figure: Bounds on $\lambda_{d b u}$ using the latest experimental limits. Blue:
$M_{\tilde{u}}=M_{\tilde{c}}=800 \mathrm{GeV}$, Dashed: $M_{\tilde{u}}=M_{\tilde{c}}=1000 \mathrm{GeV}$, Dotted: $M_{\tilde{u}}=M_{\tilde{c}}=1200 \mathrm{GeV}$.

D_{4} from F-theory

- Based on our calculation, for a stop mass between 500 and $1600 \mathrm{GeV}, \lambda_{d b u}$ lies between 0.1 and ~ 0.5.

D_{4} from F-theory

- Based on our calculation, for a stop mass between 500 and $1600 \mathrm{GeV}, \lambda_{d b u}$ lies between 0.1 and ~ 0.5.
- In F-theory it is possible to calculate Yukawa couplings directly, by calculating the integral of overlapping wavefunctions
- Taking into account mixing effects this particular coupling is estimated to be of the order $\lambda_{d b u} \leq 10^{-1}$ - which is compatible with the experimental value.

D_{4} from F-theory

- Based on our calculation, for a stop mass between 500 and $1600 \mathrm{GeV}, \lambda_{d b u}$ lies between 0.1 and ~ 0.5.
- In F-theory it is possible to calculate Yukawa couplings directly, by calculating the integral of overlapping wavefunctions
- Taking into account mixing effects this particular coupling is estimated to be of the order $\lambda_{d b u} \leq 10^{-1}$ - which is compatible with the experimental value.
- The geometric parity implemented in this model gives rise to unexpected R-parity violating effects, which may provide testable predictions of new physics.

F-Theory and Symmetries

- Diphoton excess from E_{6} in F-theory GUTs

Offers explanation for the 750 GeV bump using an E_{6} inspired model from earlier work [arXiv:1601.00640]-Karozas, King, Leontaris, AKM

- MSSM from F-theory SU(5) with Klein Monodromy Geometric R-parity and application to achieve an SU(5) MSSM [arXiv:1512.09148]-M.Crispin-Rom̃ao, Karozas, King, Leontaris, AKM
- Phenomenological implications of a minimal F-theory GUT with discrete symmetry JHEP 1510 (2015) 041-Karozas, King, Leontaris, AKM

Summary

- The variety of symmetry tools available in F-theory give rise to many unique and interesting classes of model

Summary

- The variety of symmetry tools available in F-theory give rise to many unique and interesting classes of model
- Geometric parity assignments are a promising way to generate Matter parity without adding it by hand

Summary

- The variety of symmetry tools available in F-theory give rise to many unique and interesting classes of model
- Geometric parity assignments are a promising way to generate Matter parity without adding it by hand
- It is possible to make models that replicate the MSSM with no RPV...

Summary

- The variety of symmetry tools available in F-theory give rise to many unique and interesting classes of model
- Geometric parity assignments are a promising way to generate Matter parity without adding it by hand
- It is possible to make models that replicate the MSSM with no RPV...
- and models with interesting signatures - for example neutron-antineutron oscillations without proton decay

F-Theory and Symmetries

- Diphoton excess from E_{6} in F-theory GUTs

Offers explanation for the 750 GeV bump using an E_{6} inspired model from earlier work [arXiv:1601.00640]-Karozas, King, Leontaris, AKM

- MSSM from F-theory SU(5) with Klein Monodromy Geometric R-parity and application to achieve an SU(5) MSSM [arXiv:1512.09148]-M.Crispin-Rom̃ao, Karozas, King, Leontaris, AKM
- Phenomenological implications of a minimal F-theory GUT with discrete symmetry JHEP 1510 (2015) 041-Karozas, King, Leontaris, AKM

Klein Groups and Geometric Parity

Klein Groups and Geometric Parity

arXiv:1308.1581 [hep-th]

arXiv:1512.09148 [hep-th]

Klein Groups and Geometric Parity

	S_{4} cycles	Trans. A_{4}	Trans. V_{4}
4-cycles	$(1234),(1243),(1324),(1342),(1423),(1432)$	No	No
3-cycles	$(123),(124),(132),(134),(142),(143),(234),(243)$	Yes	No
$2+2$-cycles	$(12)(34),(13)(24),(14)(23)$	Yes	Yes
2 -cycles	$(12),(13),(14),(23),(24),(34)$	No	No
1 -cycles	e	Yes	Yes

Klein Groups and Geometric Parity

	S_{4} cycles	Trans. A_{4}	Trans. V_{4}
4-cycles	$(1234),(1243),(1324),(1342),(1423),(1432)$	No	No
3 -cycles	$(123),(124),(132),(134),(142),(143),(234),(243)$	Yes	No
$2+2$-cycles	$(12)(34),(13)(24),(14)(23)$	Yes	Yes
2 -cycles	$(12),(13),(14),(23),(24),(34)$	No	No
1 -cycles	e	Yes	Yes

- Transitive Klein group: $\{(1),(12)(34),(13)(24),(14)(23)\}$

$$
\mathcal{C}_{5}=\mathcal{C}_{4} \times \mathcal{C}_{1}
$$

Klein Groups and Geometric Parity

	S_{4} cycles	Trans. A_{4}	Trans. V_{4}
4-cycles	$(1234),(1243),(1324),(1342),(1423),(1432)$	No	No
3 -cycles	$(123),(124),(132),(134),(142),(143),(234),(243)$	Yes	No
$2+2$-cycles	$(12)(34),(13)(24),(14)(23)$	Yes	Yes
2 -cycles	$(12),(13),(14),(23),(24),(34)$	No	No
1 -cycles	e	Yes	Yes

- Transitive Klein group: $\{(1),(12)(34),(13)(24),(14)(23)\}$

$$
\mathcal{C}_{5}=\mathcal{C}_{4} \times \mathcal{C}_{1}
$$

- Non-transitive Klein group: $\{(1),(12),(34),(12)(34)\}$

$$
\mathcal{C}_{5}=\mathcal{C}_{2} \times \mathcal{C}_{2} \times \mathcal{C}_{1}
$$

Klein Groups and Geometric Parity

Spectral cover equation for a non-transitive Klein monodromy:

$$
\mathcal{C}_{5} \rightarrow \mathcal{C}_{2} \times \mathcal{C}_{2} \times \mathcal{C}_{1}:\left(a_{1}+a_{2} s+a_{3} s^{2}\right)\left(a_{4}+a_{5} s+a_{6} s^{2}\right)\left(a_{7}+a_{8} s\right)
$$

The defining equations for the $\operatorname{SU}(5)$ matter are then:

$$
\begin{aligned}
P_{10}= & a_{1} a_{4} a_{7} \\
P_{5}= & a_{5}\left(a_{6} a_{7}+a_{5} a_{8}\right)\left(a_{6} a_{7}^{2}+a_{8}\left(a_{5} a_{7}+a_{4} a_{8}\right)\right)\left(a_{1}-a_{5} a_{7} c\right) \\
& \left(a_{1}^{2}-a_{1}\left(a_{5} a_{7}+2 a_{4} a_{8}\right) c+a_{4}\left(a_{6} a_{7}^{2}+a_{8}\left(a_{5} a_{7}+a_{4} a_{8}\right)\right) c^{2}\right)
\end{aligned}
$$

Klein Groups and Geometric Parity

Spectral cover equation for a non-transitive Klein monodromy:

$$
\mathcal{C}_{5} \rightarrow \mathcal{C}_{2} \times \mathcal{C}_{2} \times \mathcal{C}_{1}:\left(a_{1}+a_{2} s+a_{3} s^{2}\right)\left(a_{4}+a_{5} s+a_{6} s^{2}\right)\left(a_{7}+a_{8} s\right)
$$

The defining equations for the $\operatorname{SU}(5)$ matter are then:

$$
\begin{aligned}
P_{10}= & a_{1} a_{4} a_{7} \\
P_{5}= & a_{5}\left(a_{6} a_{7}+a_{5} a_{8}\right)\left(a_{6} a_{7}^{2}+a_{8}\left(a_{5} a_{7}+a_{4} a_{8}\right)\right)\left(a_{1}-a_{5} a_{7} c\right) \\
& \left(a_{1}^{2}-a_{1}\left(a_{5} a_{7}+2 a_{4} a_{8}\right) c+a_{4}\left(a_{6} a_{7}^{2}+a_{8}\left(a_{5} a_{7}+a_{4} a_{8}\right)\right) c^{2}\right)
\end{aligned}
$$

Model has three matter curves that are 10 s with different t_{i} charges, and five that are $5 / 5 \mathrm{~s}$. Enough to build a realistic model!

Implement a model with geometric parity based on existing example: Dudas \& Palti [arXiv:1005.5728].

Klein Groups and Geometric Parity

Curve	Charge	Parity	Spectrum
10_{1}	t_{1}	i	$M_{10_{1}} Q+\left(M_{10_{1}}-N_{1}\right) u^{c}+\left(M_{10_{1}}+N_{1}\right) e^{c}$
10_{3}	t_{3}	j	$M_{10_{3}} Q+\left(M_{10_{3}}-N_{2}\right) u^{c}+\left(M_{10_{3}}+N_{2}\right) e^{c}$
10_{5}	t_{5}	k	$M_{10_{5}} Q+\left(M_{105}+N_{1}+N_{2}\right) u^{c}+\left(M_{10_{5}}-N_{1}-N_{2}\right) e^{c}$
51	$-2 t_{1}$	jk	$M_{5_{1}} \overline{\bar{c}}{ }^{\text {c }}+\left(M_{5_{1}}-N_{1}\right) \bar{L}$
513	$-t_{1}-t_{3}$	+	$M_{5_{13}} \frac{d^{c}}{}+\left(M_{513}+2 N_{1}\right) \bar{L}$
5_{15}	$-t_{1}-t_{5}$	i	$M_{515} \overline{\text { dc }}+\left(M_{5_{15}}+N_{1}\right) \bar{L}$
5_{35}	$-t_{3}-t_{5}$	j	$M_{535} \bar{d}^{c}+\left(M_{535}-2 N_{1}-N_{2}\right) \bar{L}$
53	$-2 t_{3}$	-j	$M_{53} \overline{\text { d }}{ }^{\text {c }}+\left(M_{53}+N_{2}\right) \bar{L}$

Parameter choices to replicate model of D\&P:

$$
\begin{aligned}
& N_{1}=M_{5_{15}}=M_{5_{35}}=0 \\
& N_{2}=M_{10_{3}}=M_{5_{1}}=1=-M_{10_{5}}=-M_{5_{3}} \\
& M_{10_{1}}=3=-M_{5_{13}}
\end{aligned}
$$

Original model had ad hoc parity assignment

Klein Groups and Geometric Parity

Curve	Charge	Spectrum	All possible assignments							
10_{1}	t_{1}	$3 Q+3 u^{c}+3 e^{c}$	+	-	+	-	+	-	+	-
10_{3}	t_{3}	$Q+2 e^{c}$	+	+	-	-	+	+	-	-
10_{5}	t_{5}	$-Q-2 e^{c}$	+	+	+	+	-	-	-	-
5_{1}	$-2 t_{1}$	$D_{u}+H_{u}$	+	+	-	-	-	-	+	+
5_{13}	$-t_{1}-t_{3}$	$-3 \overline{d^{c}}-3 \bar{L}$	+	+	+	+	+	+	+	+
5_{15}	$-t_{1}-t_{5}$	0	+	-	+	-	+	-	+	-
5_{35}	$-t_{3}-t_{5}$	$-\bar{H}_{d}$	+	+	-	-	+	+	-	-
5_{3}	$-2 t_{3}$	$-\bar{D}_{d}$	-	-	+	+	-	-	+	+

- Yukawa couplings for the matter of the Standard Model?
- Do exotic processes occur at high rates?
- Operators invariant under $\mathrm{SU}(5)_{\perp}$ charges and the Geometric parity?

Klein Groups and Geometric Parity

Tension between exotic masses and Bilinear R-parity violation: The colour triplets D_{u} / D_{d} get masses from:

$$
\begin{gathered}
D_{u} D_{d} \theta_{1} \theta_{1} \theta_{3}, D_{u} D_{d} \theta_{1} \theta_{1} \theta_{6}, D_{u} D_{d} \theta_{1} \theta_{2} \bar{\theta}_{5}, D_{u} D_{d} \theta_{1} \theta_{3} \theta_{8} \\
D_{u} D_{d} \theta_{1} \theta_{6} \theta_{8}, D_{u} D_{d} \theta_{2} \bar{\theta}_{5} \theta_{8}, D_{u} D_{d} \theta_{3} \theta_{8} \theta_{8}, D_{u} D_{d} \theta_{6} \theta_{8} \theta_{8}
\end{gathered}
$$

Klein Groups and Geometric Parity

Tension between exotic masses and Bilinear R-parity violation: The colour triplets D_{u} / D_{d} get masses from:

$$
\begin{gathered}
D_{u} D_{d} \theta_{1} \theta_{1} \theta_{3}, D_{u} D_{d} \theta_{1} \theta_{1} \theta_{6}, D_{u} D_{d} \theta_{1} \theta_{2} \bar{\theta}_{5}, D_{u} D_{d} \theta_{1} \theta_{3} \theta_{8} \\
D_{u} D_{d} \theta_{1} \theta_{6} \theta_{8}, D_{u} D_{d} \theta_{2} \bar{\theta}_{5} \theta_{8}, D_{u} D_{d} \theta_{3} \theta_{8} \theta_{8}, D_{u} D_{d} \theta_{6} \theta_{8} \theta_{8}
\end{gathered}
$$

Bilinear R-Parity Violating terms at lowest order are very dangerous as they facilitate proton decay at fractions of a second ($\tau_{p}>10^{32} \mathrm{yrs}$). These must not be allowed in the spectrum:

$$
H_{u} L \theta_{1}, H_{u} L \theta_{8}, H_{u} L \theta_{1} \theta_{4}, H_{u} L \theta_{4} \theta_{8}, H_{u} L \bar{\theta}_{5} \theta_{7}
$$

Klein Groups and Geometric Parity

Tension between exotic masses and Bilinear R-parity violation: The colour triplets D_{u} / D_{d} get masses from:

$$
\begin{gathered}
D_{u} D_{d} \theta_{1} \theta_{1} \theta_{3}, D_{u} D_{d} \theta_{1} \theta_{1} \theta_{6}, D_{u} D_{d} \theta_{1} \theta_{2} \bar{\theta}_{5}, D_{u} D_{d} \theta_{1} \theta_{3} \theta_{8} \\
D_{u} D_{d} \theta_{1} \theta_{6} \theta_{8}, D_{u} D_{d} \theta_{2} \bar{\theta}_{5} \theta_{8}, D_{u} D_{d} \theta_{3} \theta_{8} \theta_{8}, D_{u} D_{d} \theta_{6} \theta_{8} \theta_{8}
\end{gathered}
$$

Bilinear R-Parity Violating terms at lowest order are very dangerous as they facilitate proton decay at fractions of a second ($\tau_{p}>10^{32} \mathrm{yrs}$). These must not be allowed in the spectrum:

$$
H_{u} L \theta_{1}, H_{u} L \theta_{8}, H_{u} L \theta_{1} \theta_{4}, H_{u} L \theta_{4} \theta_{8}, H_{u} L \bar{\theta}_{5} \theta_{7}
$$

Clear problem: can't eliminate dangerous BRPV terms while also integrating out the D_{u} / D_{d} matter $-\theta_{1}, \theta_{8}$ or both in all $D_{u} D_{d}$ terms. Look elsewhere...

Klein Groups and Geometric Parity

Curve	Charge	Parity	Spectrum
10_{1}	t_{1}	i	$M_{10_{1}} Q+\left(M_{10_{1}}-N_{1}\right) u^{c}+\left(M_{10_{1}}+N_{1}\right) e^{c}$
10_{3}	t_{3}	j	$M_{10_{3}} Q+\left(M_{10_{3}}-N_{2}\right) u^{c}+\left(M_{10_{3}}+N_{2}\right) e^{c}$
10_{5}	t_{5}	k	$M_{10_{5}} Q+\left(M_{10_{5}}+N_{1}+N_{2}\right) u^{c}+\left(M_{10_{5}}-N_{1}-N_{2}\right) e^{c}$
5_{1}	$-2 t_{1}$	$j k$	$M_{5_{1}} d^{c}+\left(M_{5_{1}}-N_{1}\right) \bar{L}$
5_{13}	$-t_{1}-t_{3}$	+	$M_{5_{13}}^{d^{c}}+\left(M_{5_{13}}+2 N_{1}\right) \bar{L}$
5_{15}	$-t_{1}-t_{5}$	i	$M_{5_{1}} \bar{d}{ }^{c}+\left(M_{5_{15}}+N_{1}\right) \bar{L}$
5_{35}	$-t_{3}-t_{5}$	j	$M_{5_{35}}^{d^{c}}+\left(M_{535}-2 N_{1}-N_{2}\right) \bar{L}$
5_{3}	$-2 t_{3}$	$-j$	$M_{5_{3}} \frac{\bar{d}}{}{ }^{c}+\left(M_{5_{3}}+N_{2}\right) \bar{L}$

Try to implement an MSSM type model with no exotics or BRPV:

Klein Groups and Geometric Parity

Curve	Charge	Parity	Spectrum
10_{1}	t_{1}	i	$M_{10_{1}} Q+\left(M_{10_{1}}-N_{1}\right) u^{c}+\left(M_{10_{1}}+N_{1}\right) e^{c}$
10_{3}	t_{3}	j	$M_{10_{3}} Q+\left(M_{10_{3}}-N_{2}\right) u^{c}+\left(M_{10_{3}}+N_{2}\right) e^{c}$
10_{5}	t_{5}	k	$M_{10_{5}} Q+\left(M_{10_{5}}+N_{1}+N_{2}\right) u^{c}+\left(M_{10_{5}}-N_{1}-N_{2}\right) e^{c}$
5_{1}	$-2 t_{1}$	$j k$	$M_{5_{1}} d^{c}+\left(M_{5_{1}}-N_{1}\right) \bar{L}$
5_{13}	$-t_{1}-t_{3}$	+	$M_{5_{13}}^{d^{c}}+\left(M_{5_{13}}+2 N_{1}\right) \bar{L}$
5_{15}	$-t_{1}-t_{5}$	i	$M_{5_{15}}^{d^{c}}+\left(M_{5_{15}}+N_{1}\right) \bar{L}$
5_{35}	$-t_{3}-t_{5}$	j	$M_{5_{35}}^{d^{c}}+\left(M_{535}-2 N_{1}-N_{2}\right) \bar{L}$
5_{3}	$-2 t_{3}$	$-j$	$M_{5_{3}} \frac{\bar{d}}{}{ }^{c}+\left(M_{5_{3}}+N_{2}\right) \bar{L}$

Try to implement an MSSM type model with no exotics or BRPV:

Large parameter space of models to scan, with many possibilities for interesting physics, but difficult to pin down viable models.

One good option is MSSM-like

$$
\begin{aligned}
& M_{10_{1}}=-M_{5_{13}}=2 \\
& N_{1}=M_{10_{5}}=-M_{5_{3}}=1 \\
& N_{2}=M_{10_{3}}=M_{5_{1}}= \\
& M_{5_{13}}=M_{5_{35}}=0 \\
& i=-j=k=-
\end{aligned}
$$

Klein Groups and Geometric Parity

Curve	Charge	Matter Parity	Spectrum
10_{1}	t_{1}	-	$Q_{3}+Q_{2}+u_{3}^{c}+3 e^{c}$
10_{3}	t_{3}	+	-
10_{5}	t_{5}	-	$Q_{1}+u_{2}^{c}+u_{1}^{c}$
5_{1}	$-2 t_{1}$	-	$-\bar{L}_{1}$
5_{13}	$-t_{1}-t_{3}$	+	$2 H_{u}$
5_{15}	$-t_{1}-t_{5}$	-	$-\bar{d}_{2}^{c}-\bar{d}_{1}^{c}-\bar{L}_{2}$
5_{35}	$-t_{3}-t_{5}$	+	$-2 \bar{H}_{d}$
5_{3}	$-2 t_{3}$	-	$-\bar{d}_{3}^{c}-\bar{L}_{3}$
$1_{15}=\theta_{7}$	$t_{1}-t_{5}$	-	N_{R}^{a}
$1_{51}=\bar{\theta}_{7}$	$t_{5}-t_{1}$	-	N_{R}^{b}

Table: Matter content for a model with the standard matter parity arising from a geometric parity assignment.

Klein Groups and Geometric Parity

Each coupling must be invariant under the $\mathrm{SU}(5)_{\perp}$ charges, t_{i}. Consider the coupling:

$$
10_{1} \cdot 10_{1} \cdot 5_{13}
$$

Klein Groups and Geometric Parity

Each coupling must be invariant under the $\mathrm{SU}(5)_{\perp}$ charges, t_{i}. Consider the coupling:

$$
10_{1} \cdot 10_{1} \cdot 5_{13}
$$

The charges for this operator:

$$
\begin{aligned}
10_{1}: & t_{1}, \\
5_{13}: & -t_{1}-t_{3}, \\
10_{1} \cdot 10_{1} \cdot 5_{13}: & t_{1}-t_{3}
\end{aligned}
$$

Klein Groups and Geometric Parity

Each coupling must be invariant under the $\mathrm{SU}(5)_{\perp}$ charges, t_{i}. Consider the coupling:

$$
10_{1} \cdot 10_{1} \cdot 5_{13}
$$

The charges for this operator:

$$
\begin{aligned}
10_{1} & : t_{1}, \\
5_{13}: & -t_{1}-t_{3}, \\
10_{1} \cdot 10_{1} \cdot 5_{13}: & t_{1}-t_{3}
\end{aligned}
$$

Need a singlet to balance this:

$$
\bar{\theta}_{1,8}: \quad t_{3}-t_{1}
$$

Klein Groups and Geometric Parity

Each coupling must be invariant under the $\mathrm{SU}(5)_{\perp}$ charges, t_{i}. Consider the coupling:

$$
10_{1} \cdot 10_{1} \cdot 5_{13}
$$

The charges for this operator:

$$
\begin{aligned}
10_{1}: & t_{1}, \\
5_{13}: & -t_{1}-t_{3}, \\
10_{1} \cdot 10_{1} \cdot 5_{13}: & t_{1}-t_{3}
\end{aligned}
$$

Need a singlet to balance this:

$$
\bar{\theta}_{1,8}: \quad t_{3}-t_{1}
$$

So the overall charge can be canceled out for the operator:

$$
10_{1} \cdot 10_{1} \cdot 5_{13} \cdot\left(\bar{\theta}_{1}+\bar{\theta}_{8}\right)
$$

Klein Groups and Geometric Parity

This model has Yukawa couplings for all the generations of quarks and leptons. Consider for example the up-type quarks, which have $\mathrm{SU}(5)$ couplings of type $10 \cdot 10 \cdot 5$.

$$
\begin{aligned}
10_{1} \cdot 10_{1} \cdot 5_{13} \cdot\left(\bar{\theta}_{1}+\bar{\theta}_{8}\right) & \rightarrow\left(Q_{3}+Q_{2}\right) u_{3} H_{u}\left(\bar{\theta}_{1}+\bar{\theta}_{8}\right) \\
10_{1} \cdot 10_{5} \cdot 5_{13} \cdot \theta_{5} & \rightarrow\left(\left(Q_{3}+Q_{2}\right)\left(u_{1}+u_{2}\right)+Q_{1} u_{3}\right) H_{u} \theta_{5} \\
10_{5} \cdot 10_{5} \cdot 5_{13} \cdot \theta_{2} \cdot \theta_{5} & \rightarrow Q_{1}\left(u_{1}+u_{2}\right) H_{u} \theta_{2} \theta_{5}
\end{aligned}
$$

Singlets must be used to cancel the $\mathrm{SU}(5)_{\perp}$ charges, so we have a series of non-renormalisable Yukawas

Klein Groups and Geometric Parity

This model has Yukawa couplings for all the generations of quarks and leptons. Consider for example the up-type quarks, which have $\operatorname{SU}(5)$ couplings of type $10 \cdot 10 \cdot 5$.

$$
\begin{aligned}
10_{1} \cdot 10_{1} \cdot 5_{13} \cdot\left(\bar{\theta}_{1}+\bar{\theta}_{8}\right) & \rightarrow\left(Q_{3}+Q_{2}\right) u_{3} H_{u}\left(\bar{\theta}_{1}+\bar{\theta}_{8}\right) \\
10_{1} \cdot 10_{5} \cdot 5_{13} \cdot \theta_{5} & \rightarrow\left(\left(Q_{3}+Q_{2}\right)\left(u_{1}+u_{2}\right)+Q_{1} u_{3}\right) H_{u} \theta_{5} \\
10_{5} \cdot 10_{5} \cdot 5_{13} \cdot \theta_{2} \cdot \theta_{5} & \rightarrow Q_{1}\left(u_{1}+u_{2}\right) H_{u} \theta_{2} \theta_{5}
\end{aligned}
$$

Singlets must be used to cancel the $\mathrm{SU}(5)_{\perp}$ charges, so we have a series of non-renormalisable Yukawas

$$
M_{u, c, t} \sim v_{u}\left(\begin{array}{ccc}
\epsilon \theta_{2} \theta_{5} & \theta_{2} \theta_{5} & \theta_{5} \\
\epsilon^{2} \theta_{5} & \epsilon \theta_{5} & \epsilon\left(\bar{\theta}_{1}+\bar{\theta}_{8}\right) \\
\epsilon \theta_{5} & \theta_{5} & \bar{\theta}_{1}+\bar{\theta}_{8}
\end{array}\right)
$$

The mass matrix is rank 3, with suppressions, ϵ due to the so-called rank theorem, helping to give a hierarchy.

Klein Groups and Geometric Parity

The spectrum contains two singlets that do not have vacuum expectation values, which protects the model from dangerous operators. These singlets, $\theta_{7}=N_{R}^{a}$ and $\bar{\theta}_{7}=N_{R}^{b}$, also serve as candidates for right-handed neutrinos. For $\theta_{7}=N_{R}^{a}$:

$$
\begin{aligned}
\overline{5}_{3} \cdot 5_{13} \cdot \theta_{7} \cdot \bar{\theta}_{5} & \rightarrow L_{3} N_{R}^{a} H_{u} \bar{\theta}_{5} \\
\overline{5}_{15} \cdot 5_{13} \cdot \theta_{7} \cdot\left(\bar{\theta}_{1}+\bar{\theta}_{8}\right) & \rightarrow L_{2} N_{R}^{2} H_{u}\left(\bar{\theta}_{1}+\bar{\theta}_{8}\right) \\
\overline{5}_{1} \cdot 5_{13} \cdot \theta_{7} \cdot\left(\bar{\theta}_{1}+\bar{\theta}_{8}\right) \cdot \theta_{2} & \rightarrow L_{1} N_{R}^{2} H_{u}\left(\bar{\theta}_{1}+\bar{\theta}_{8}\right) \theta_{2}
\end{aligned}
$$

Klein Groups and Geometric Parity

The spectrum contains two singlets that do not have vacuum expectation values, which protects the model from dangerous operators. These singlets, $\theta_{7}=N_{R}^{a}$ and $\bar{\theta}_{7}=N_{R}^{b}$, also serve as candidates for right-handed neutrinos. For $\theta_{7}=N_{R}^{a}$:

$$
\begin{aligned}
\overline{5}_{3} \cdot 5_{13} \cdot \theta_{7} \cdot \bar{\theta}_{5} & \rightarrow L_{3} N_{R}^{a} H_{u} \bar{\theta}_{5} \\
\overline{5}_{15} \cdot 5_{13} \cdot \theta_{7} \cdot\left(\bar{\theta}_{1}+\bar{\theta}_{8}\right) & \rightarrow L_{2} N_{R}^{a} H_{u}\left(\bar{\theta}_{1}+\bar{\theta}_{8}\right) \\
\overline{5}_{1} \cdot 5_{13} \cdot \theta_{7} \cdot\left(\bar{\theta}_{1}+\bar{\theta}_{8}\right) \cdot \theta_{2} & \rightarrow L_{1} N_{R}^{a} H_{u}\left(\bar{\theta}_{1}+\bar{\theta}_{8}\right) \theta_{2}
\end{aligned}
$$

And we also have the operators arising from the N_{R}^{b} singlet:

$$
\begin{aligned}
\overline{5}_{3} \cdot 5_{13} \cdot \bar{\theta}_{7} \cdot\left(\bar{\theta}_{1}+\bar{\theta}_{8}\right) \cdot \theta_{2} & \rightarrow L_{3} N_{R}^{b} H_{u}\left(\bar{\theta}_{1}+\bar{\theta}_{8}\right) \theta_{2} \\
\overline{5}_{15} \cdot 5_{13} \cdot \bar{\theta}_{7} \cdot \theta_{2} \cdot \theta_{5} & \rightarrow L_{2} N_{R}^{b} H_{u} \theta_{2} \theta_{5} \\
\overline{5}_{1} \cdot 5_{13} \cdot \bar{\theta}_{7} \cdot \theta_{5} & \rightarrow L_{1} N_{R}^{b} H_{u} \theta_{5}
\end{aligned}
$$

The combination of these operators should reduce the hierarchy and increase mixing for neutrinos.

Klein Groups and Geometric Parity

The right-handed neutrinos also get a Majorana mass:

$$
\frac{\left\langle\theta_{2}\right\rangle^{2}}{\Lambda} \bar{\theta}_{7}^{2}+\frac{\left\langle\bar{\theta}_{2}\right\rangle^{2}}{\Lambda} \theta_{7}^{2}+M \theta_{7} \bar{\theta}_{7}
$$

This will allow the Seesaw mechanism to be implemented, giving a light effective neutrino mass.

Klein Groups and Geometric Parity

The right-handed neutrinos also get a Majorana mass:

$$
\frac{\left\langle\theta_{2}\right\rangle^{2}}{\Lambda} \bar{\theta}_{7}^{2}+\frac{\left\langle\bar{\theta}_{2}\right\rangle^{2}}{\Lambda} \theta_{7}^{2}+M \theta_{7} \bar{\theta}_{7}
$$

This will allow the Seesaw mechanism to be implemented, giving a light effective neutrino mass.

The model has the interesting feature of requiring two copies of the Higgs

$$
5_{13} \cdot \overline{5}_{35} \cdot \theta_{2} \rightarrow M_{i j} H_{u}^{i} H_{d}^{j} \rightarrow M\left(\begin{array}{cc}
\epsilon_{h}^{2} & \epsilon_{h} \\
\epsilon_{h} & 1
\end{array}\right)\binom{H_{u}^{1}}{H_{u}^{2}}\left(\begin{array}{ll}
H_{d}^{1} & H_{d}^{2}
\end{array}\right)
$$

The rank theorem tells us that because they are on the same matter curve, only one gets a mass, while the others must have suppressed mass terms: one Higgs will be light, with another having a mass close to the GUT scale.

Klein Groups and Geometric Parity

There are no parity violating operators in the spectrum, however we should still consider dimension six proton decay.

Klein Groups and Geometric Parity

There are no parity violating operators in the spectrum, however we should still consider dimension six proton decay.

There are no D_{u} / D_{d} in the low energy spectrum, however they could appear at the string scale. The process should be highly suppresed due to this, and the non-renormalisability of the internal components of the process.

F-Theory - Monodromy and Discrete Symmetry

The monodromy is best understood by closely examining the quadratic part of the factorised spectral cover:

$$
\begin{aligned}
& \left(a_{1}+a_{2} s+a_{3} s^{2}\right)=0 \\
& s_{ \pm}=\frac{-a_{2} \pm \sqrt{a_{2}-4 a_{1} a_{3}}}{2 a_{3}}
\end{aligned}
$$

we see that since $\sqrt{a_{2}-4 a_{1} a_{3}}=e^{i \theta / 2} \sqrt{\left|a_{2}-4 a_{1} a_{3}\right|}$, under $\theta \rightarrow \theta+2 \pi$, the two solutions interchange.

Since we do not know anything about the global geometry, in semi-local F-theory we must choose our monodromy group.

D_{4} from F-theory

In this case $b_{k} \propto a_{n} a_{m}$. Let us assume:

$$
a_{n} \rightarrow \mathrm{e}^{i \psi_{n}} \mathrm{e}^{i(3-n) \phi} a_{n}
$$

For any coefficient of $C_{5}, b_{k}=a_{n} a_{m}$:

$$
\begin{aligned}
b_{k} & \rightarrow b_{k} \mathrm{e}^{i(\chi+(k-6) \phi)} \\
a_{n} a_{m} & \rightarrow e^{i\left(\psi_{n}+\psi_{m}\right)} e^{i(6-n-m) \phi} a_{n} a_{m}=e^{i\left(\psi_{n}+\psi_{m}\right)} e^{-i(6-k) \phi} a_{n} a_{m}
\end{aligned}
$$

D_{4} from F-theory

In this case $b_{k} \propto a_{n} a_{m}$. Let us assume:

$$
a_{n} \rightarrow \mathrm{e}^{i \psi_{n}} \mathrm{e}^{i(3-n) \phi} a_{n}
$$

For any coefficient of $C_{5}, b_{k}=a_{n} a_{m}$:

$$
\begin{aligned}
b_{k} & \rightarrow b_{k} \mathrm{e}^{i(\chi+(k-6) \phi)} \\
a_{n} a_{m} & \rightarrow e^{i\left(\psi_{n}+\psi_{m}\right)} e^{i(6-n-m) \phi} a_{n} a_{m}=e^{i\left(\psi_{n}+\psi_{m}\right)} e^{-i(6-k) \phi} a_{n} a_{m}
\end{aligned}
$$

This is trivially compliant if:

$$
\chi=\psi_{n}+\psi_{m}
$$

D_{4} from F-theory

In this case $b_{k} \propto a_{n} a_{m}$. Let us assume:

$$
a_{n} \rightarrow \mathrm{e}^{i \psi_{n}} \mathrm{e}^{i(3-n) \phi} a_{n}
$$

For any coefficient of $C_{5}, b_{k}=a_{n} a_{m}$:

$$
\begin{aligned}
b_{k} & \rightarrow b_{k} \mathrm{e}^{i(\chi+(k-6) \phi)} \\
a_{n} a_{m} & \rightarrow e^{i\left(\psi_{n}+\psi_{m}\right)} e^{i(6-n-m) \phi} a_{n} a_{m}=e^{i\left(\psi_{n}+\psi_{m}\right)} e^{-i(6-k) \phi} a_{n} a_{m}
\end{aligned}
$$

This is trivially compliant if:

$$
\chi=\psi_{n}+\psi_{m}
$$

It can be shown that the phases for each coefficient are correlated.
Consider:

$$
\begin{aligned}
& b_{5}=a_{1} a_{6} \\
& b_{4}=a_{2} a_{6}+a_{1} a_{7}
\end{aligned}
$$

D_{4} from F-theory

In this case $b_{k} \propto a_{n} a_{m}$. Let us assume:

$$
a_{n} \rightarrow \mathrm{e}^{i \psi_{n}} \mathrm{e}^{i(3-n) \phi} a_{n}
$$

For any coefficient of $C_{5}, b_{k}=a_{n} a_{m}$:

$$
\begin{aligned}
b_{k} & \rightarrow b_{k} \mathrm{e}^{i(\chi+(k-6) \phi)} \\
a_{n} a_{m} & \rightarrow e^{i\left(\psi_{n}+\psi_{m}\right)} e^{i(6-n-m) \phi} a_{n} a_{m}=e^{i\left(\psi_{n}+\psi_{m}\right)} e^{-i(6-k) \phi} a_{n} a_{m}
\end{aligned}
$$

This is trivially compliant if:

$$
\chi=\psi_{n}+\psi_{m}
$$

It can be shown that the phases for each coefficient are correlated.
Consider:

$$
\begin{aligned}
& b_{5}=a_{1} a_{6} \\
& b_{4}=a_{2} a_{6}+a_{1} a_{7}
\end{aligned}
$$

Given the above it must be true that:

$$
\chi=\psi_{1}+\psi_{6}=\psi_{2}+\psi_{6}=\psi_{1}+\psi_{7}
$$

D_{4} from F-theory

This symmetry can be translated into a Z_{N} type parity. For simplicity, let us set all $\psi_{i}=0$:

$$
\begin{aligned}
\sigma & : s \rightarrow s \mathrm{e}^{i \phi} \\
& b_{k} \rightarrow b_{k} \mathrm{e}^{i(k-6) \phi} \\
& \sum_{k} b_{k} s^{5-k} \rightarrow \mathrm{e}^{-i \phi} \sum_{k} b_{k} s^{5-k} \\
& a_{n} \rightarrow \mathrm{e}^{i(3-n) \phi} a_{n}
\end{aligned}
$$

D_{4} from F-theory

This symmetry can be translated into a Z_{N} type parity. For simplicity, let us set all $\psi_{i}=0$:

$$
\begin{aligned}
\sigma & : s \rightarrow s \mathrm{e}^{i \phi} \\
& b_{k} \rightarrow b_{k} \mathrm{e}^{i(k-6) \phi} \\
& \sum_{k} b_{k} s^{5-k} \rightarrow \mathrm{e}^{-i \phi} \sum_{k} b_{k} s^{5-k} \\
& a_{n} \rightarrow \mathrm{e}^{i(3-n) \phi} a_{n}
\end{aligned}
$$

If we then let:

$$
\phi=\frac{2 \pi}{N}
$$

The transformation is then of the Z_{N} type. C_{5} will gain a phase, however, if it is factorised into say $C_{5} \rightarrow C_{4} \times C_{1}$, the coefficients a_{n} will transform differently.

D_{4} from F-theory

Consider $N=2$:

$$
a_{n} \rightarrow \mathrm{e}^{i(3-n) \pi} a_{n}
$$

This will give a parity that alternates:

$$
\begin{aligned}
& a_{1}, a_{3}, a_{5}, a_{7} \rightarrow- \\
& a_{2}, a_{4}, a_{6} \rightarrow+
\end{aligned}
$$

a_{n}	$N=2$	$N=3$	$N=4$	$N=5$
a_{1}	-	α^{2}	β^{2}	γ^{2}
a_{2}	+	α	β	γ
a_{3}	-	1	1	1
a_{4}	+	α^{2}	β^{3}	γ^{4}
a_{5}	-	α	β^{2}	γ^{3}
a_{6}	+	1	β	γ^{2}
a_{7}	-	α^{2}	1	γ

While the defining equation of the 10 s of the GUT group is:

$$
b_{5}=a_{1} a_{6}
$$

So the curves naturally have different parities.

We are of course free to experiment with other choices for N.

In each case, we also have some freedom to use the phases we discarded for this example. This will shift $a_{1, \ldots, 5}$ or $a_{6,7}$ depending on phase choice.

Name	Charge	All possible assignments							
θ_{1}	$\pm\left(t_{1}-t_{3}\right)$	+	+	-	-	+	+	-	-
θ_{2}	$\pm\left(t_{1}-t_{5}\right)$	-	-	-	-	+	+	+	+
θ_{3}	0	+	-	-	+	-	+	+	-
θ_{4}	0	+	+	+	+	+	+	+	+
θ_{5}	$\pm\left(t_{3}-t_{5}\right)$	+	+	-	-	+	+	-	-
θ_{6}	0	+	-	-	+	-	+	+	-
θ_{7}	$\pm\left(t_{1}-t_{5}\right)$	-	+	-	+	+	-	+	-
θ_{8}	$\pm\left(t_{1}-t_{3}\right)$	+	+	-	-	+	+	-	-

Table: Singlet curves and their perpendicular charges and geometric parity

