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Monopoles and Instantons

Euclidean monopoles (A, φ) are instantons invariant under
time translation

φ → A4 =⇒

F = ∗F ⇐⇒ DkΦ = −1

2
εijkF

ij

where ∗Fµν = 1
2εµνστF

στ , ε1234 = −1, and the duality
operator relative to R4metric

Hyperbolic monopoles (A, φ) are instantons invariant under
axial rotation

φ → Aθ =⇒

F = ∗F ⇐⇒ DkΦ = −1

2
εijkF

ij

The duality operator relative to S1 ×H3 metric
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Moduli Space of Monopoles

Studying the geometry of space configurations
of BPS monopoles has given nice geometries,
e.g. Euclidean Monopoles give HyperKähler
geometry.

“Electromagnetic Duality for Children”

Atiyah Conjecture: The Geometry of the
moduli space of the hyperbolic Monopole
must approximate to the geometry of
Euclidean monopoles when the radius of
curvature of hyperbolic space goes to ∞.
Vector Bundles on Algebraic Varaieties, 1984

The presence of the Bogomol’nyi bound is a result of the fact
that monopoles have supersymmetric extension. Topological
charges appear in the supersymmetry algebra from which one
can deduce the B. B. What’s the geometry of Supersymmetric
non-equivalent Gauge Hyperbolic Monopoles ?
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Puzzles & Plan:

Puzzles:

1. We need to construct supersymmetric
Yang-Mills-Higgs theory on H3.

2. For monopoles on H3, the moduli space doesn’t
inherit a metric from the gauge theory. The natural
L2 metric

∫
H3(|φ̇|2 + |Ȧ|2) “doesn’t converge”.

3. New methods for defining the complex structures and
the connection.

Plan:

1. Construct supersymmetric Yang-Mills-Higgs (SYMH)
theory on H3, and find the unbroken supersymmetry
transformations.

2. Study the low energy dynamics & construct
supermultiplet of zero modes.

3. Linearize the unbroken supersymmetry, close its
algebra on shell, and find the defining geometry
equations.
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SYMH theory on H3

In the journey of constructing this theory we follow these
steps:

1- Start from N = 1 SYM theory on R3,1.
2- Euclideanise to (1, 1) SYM theory on R4.
3- Close the supersymmetry algebra off-shell (We want to have

auxiliary field).
4- Reduce the theory along one of the Euclidean dimensions (x4)

to obtain a (1, 1) SYMH theory on R3.
5- Deform to a SYMH theory on H3.

After spending your summer on these calculations you get the
following supersymmetric Yang Mills Higgs Lagrangian on H3

L = −1

4
F 2 − 1

2
|DΦ|2 − 1

2
P2 − iX †D/ ψ −X † [Φ, ψ]− i

2`
X †ψ
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SYMH theory on H3 and The Unbroken Susy

The left susy transformations

δLAi = iX †σiεL δLΦ = X †εL δLX † = 0

δLψ = PεL + i
(
1
2εijkF

ij − DkΦ
)
σkεL

δLP = i (D/ X )† εL +
[
Φ,X †εL

]
− i

2`X
†εL

The right susy transformations

δRAi = −iε†Rσiψ δRΦ = −ε†Rψ δRψ = 0

δRX † = −Pε†R − i
(
1
2εijkF

ij + DkΦ
)
ε†Rσ

k

δRP = iε†Rσ
iDiψ + ε†R [φ, ψ] + iλε†Rψ.

Clearly if one δ preserves BPS configurations the other will
not. The BPS configurations are precisely the hyperbolic
monopoles. Hence hyperbolic monopoles are supersymmetric
“half BPS saturated”. For our definition of hyperbolic
monopoles, δR is the unbroken supersymmetry.
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Low Energy Dynamics

The solutions of the Bogomol’nyi equation are static
solutions. However, reading the geometry requires having
some dynamics, through introducing ”time”. Once we add
time to the configurations, the field eqs. can be interpreted as
equation of motion of the monopoles in a some manifold
(moduli space). But any motion, however small, increase the
energy from its BPS bound, and thus takes us to a different
manifold with different geometry.

Nevertheless, there is a dynamic scenario where violating the
minimum energy bound is avoidable. If we keep the velocity
low, and we start the motion tangent to the static min(U)
solutions, then energy conservation prevent the motion from
going far away from this manifold. Motion in min(U) is a
geodesic motion.”N. Manton 1982”
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Supermultiplet of Zero modes

The bosonic zero mode is

Ȧµ = iζ†RΓµψ̇L

where ζR satisfy

∇iζR =
i

2`
ΓiΓ4ζR ∇4ζR = 0

One way of guessing the fermionic zero mode is by inverting
the eq. for the bosonic zero mode, hence

ψ̇L = i ȦµΓµηR ,

where
1. ∇iηR = − i

2`ΓiΓ4ηR , ∇4ηR = 0, ζ†RηR = 1

2. DµȦµ + 2i
` Ȧ4 = 0

Remark:
? Crucial difference (from the flat case) in the Killing spinors give

two sets of solutions in C2 each parametrized by two basis.
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Linearization of the Unbroken Susy Transformations

So far we found solutions that are tangent to min(U), by
making them satisfy the L.E.M. To put hands on the
geometry we have to give the monopoles some velocity.

This
requires introducing a time dependent collective coordinates
(parameters) for each zero mode. The bosonic collective
coordinates, βa(t), are the positions & the U(1) phase factor
(charge) for the monopoles, where the fermionic pieces, θa(t),
are complex one-component Grassmann odd objects needed to
complete the low energy supersymmetries that are preserved
by the monopole solutions.

Linearizing the unbroken susy transformations will give us the
supersymmetry between the fermionic & bosonic collective
coordinates.
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Linearization of the Unbroken Susy Transformations

Linearizing the supersymmetry transformations gives the
supersymmetry between the coordinates of the moduli space

δRβ
a = ρAF

(A)a
b θb,

δRθ
a = −1

2
ρAF

(A)a
b β̇b + iθcΓa

bcδRβ
b

where ρA are the supersymmetry parameters, F (A)a
b satisfies

the quatorionic algebra

F (i) · F (j) = −δij + εijkF (k)

and Γa
bc is some connection on the moduli space, which

properties will be determined from the closure of the
supersymmetry algebra.
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Identifying the Geometry & Susy Algebra Closure

Closing the susy algebra on shell in, 1−Dim, requires:

δ2ρβ
a = −1

2
ρAρBδAB β̇

a δ2ρθ
a = −1

2
ρAρBδAB θ̇

a

The bosonic susy algebra gives the following identities:

F (A)b
a F (B)c

b + F (B)b
a F (A)c

b = −2δABδa
c

Γa
bc = Γa

cb

∇aF (A)c
b = 0

Fa
b∂aFd

c −Fa
c ∂aFd

b + Fd
a ∂bFa

c −Fd
a ∂cFa

b = 0

Combining the last two equations we can derive the equation
for the connection (obata connection)

Γo
ab

c = −1

6

[
2∂(a
−→
F b)

d +
−→
F (a

e × ∂e
−→
F b)

d
]
·
−→
F d

c
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The Geometry of the Hyperbolic Monopoles

In summery we recovered a geometry that has three integrable
complex structures that satisfy the quatorionic algebra. In
addition these complex structures are parallel w.r.t. the Obata
connection. And this geometry doesn’t have a metric. In
other words we recovered the “hypercomplex geometry”.

However when we defined the bosonic zero modes (coordinate
functions of the moduli space) we chose them to be complex.
This means that we have found the geometry of the
complexified moduli space of hyperbolic monopoles is
hypercomplex, hence one would ask what is the geometry of
the real moduli space? Or “What is the geometry, that when
complexified gives hypercomplex ?”

This real geometry is called pluricomplex, introduced in Jan
2012 by Roger Bielawski & Lorenz Schwachhöfer.
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Pluricomplex Geometry ”R. Bielawski & L. Schwachhöfer 2012”

For a pluricomplex geometry we have 3 integrable complex
structures I , J & K that don’t behave like unit quatorions
(they don’t anticommute!).
The pluricomplex structure still determine a decomposition of
the complexified tangent space as C2n ⊗ C2.

IV = iV ⇒ V ∈ T (1,0)(M)

IV = −iV ⇒ V ∈ T (0,1)(M)

Any integral pluricomplex structure has an associated
canonical torsion free connection.

Let M be a pluricomplex manifold and suppose we are looking
at the complex thickening MC of M with complex structure,

say, Ĩ , J̃, K̃ .
Ĩ , J̃, K̃ are integrable and obey the quatorionic algebra
Have a torsion free connection (obatta connection)
On T

(
MC) ∃ an action of H⊗R C ∼= Mat (2,C). In other

words, the complex structure act linearly on the vectors in
T
(
MC) (zero modes).
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The Limiting Case

In our approach it’s very transparent to see how the geometry
of the hyperbolic monopole will converge to the geometry of
flat monopoles as `→∞

The left and right Killing spinor equations will agree

⇒ ∇iζ = ∇iη = 0

Linearizing the SYMH Lagrangian on H3 using the definition
of the zero mode after applying the limiting case will give us

gab =

∫
R3

δaAµ · δbAµ

The obata connection gives the Levi Civita connection by
which we can show that the Ricci tensor vanishes. In other
words the limiting case has produced the hyperKäler geometry.
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