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Introduction

● Einstein's General Relativity (GR) is a perturbatively non-renormalizable field 
theory.

● The field is the spacetime metric.
● The asymptotic safety conjecture suggests that there may exist a 

non-perturbative, non-trivial ultraviolet fixed point for gravity.
● Renormalization Group (RG) flow can be seen intuitively as describing physics 

at different scales of length by changing the resolution.
● SUSY is not just a theory of BSM particle physics, it can also be used as a 

more general mathematical device.
● Existing examples are manifestly gauge invariant regularization in QFT and 

Parisi-Sourlas supersymmetry in statistical field theory.
● My work develops a manifestly diffeomorphism invariant Exact RG, the 

regularization of which would also use this formal kind of SUSY.



  

Kadanoff blocking
In the Ising model, Kadanoff blocking is the process of grouping microscopic spins 
together to form macroscopic “blocked” spins via a majority rule.

The continuous version integrates out the high-energy modes of a field to give a 
renormalized field, used in a renormalized action.

The blocking functional, b, is defined via the effective Boltzmann factor:

There are an infinite number of possible Kadanoff blockings, but a simple linear example is

where the kernel, B, contains an infrared 
cutoff function.

The partition function must be invariant under change of cutoff scale, Λ, this will 
be ensured by construction, i.e. 

Kadanoff blocking demands a suitable notion of locality that requires us to work 
exclusively in Euclidean signature.



  

Polchinski Flow Equation
Differentiate the effective Boltzmann factor w.r.t. “RG time”:

Write the “rate of change of blocking functional” as

where

and

The RG flow of the effective Boltzmann factor is then

The Polchinski flow equation is then written elegantly as 

where



  

Generalization to Yang-Mills theories
A pure gauge theory is constructed in a manifestly gauge invariant way by building the 
action from covariant derivatives and field-strength tensors:  

To preserve manifest gauge invariance, wavefunction renormalization must be avoided.
This is achieved by writing the coupling, g, as an overall scaling factor: 

The effective action is then written as a loopwise expansion that is also an expansion 
in powers of g:

The β-functions also have a similar expansion:

The generalization of the Polchinski flow equation to gauge theories uses a suitably 
covariantized kernel, the easiest way to do this is to replace the partial derivatives with 
covariant derivatives:



  

A refresher on GR
The Riemann tensor, representing spacetime curvature, is written in our 
sign convention as

We have the Ricci tensor in our 
sign convention as

We use the Levi-Civita connection (torsion-free metric connection)

Then the Ricci scalar by

where

Thus the Einstein field equation is



  

Diffeomorphism invariance
Consider a general coordinate transformation

We need our theories to be diffeomorphism invariant. This is a 
surprisingly tough constraint on what we can use.

So metric perturbations transform as

For some covariant derivative, D, metrics transform as

An advantage of manifest diffeomorphism invariance is that we automatically 
know that our results are not artefacts of some chosen coordinate system.



  

Generalization to gravity
The generalization of the Polchinski flow equation to gravity is

The kernel, which transforms as a two-argument generalization of a tensor, is

The de Witt supermetric parameter, j, determines the balance of modes propagating in the 
flow equation. For the “kinetic term” to be a regularized Einstein-Hilbert form, j = -1/2.

The effective action then goes like 

Writing the action as a loopwise expansion:

The β-function also expands as

For this action, we have

which is related to the “effective propagator”, Δ, in the fixed-background description.

where d is a function of covariant derivatives that is related to the inverse cutoff.



  

Fixed-background description
If we fix a Euclidean background metric, we can define the graviton field as the 
perturbation to that background:

The action is defined as a series expansion in the perturbation:

The position representation is related to a momentum representation via a Fourier transform:

where

In this picture, we are able to define an “effective propagator”,

Gravity does not have a unique transverse 2-point function because there are two linearly 
independent transverse projectors. If we choose the linear combination with Einstein-Hilbert 
structure, the 2-point function is simply that transverse projector times Δ. This then solves the 
flow equation at the 2-point level.



  

Parisi-Sourlas formalism
(SUSY in condensed matter) 

Consider a D-dimensional system of spins with a random external field, 
h. We can write the free energy, using “natural” units of k

B
T=1, as

where the Lagrangian density is

The averaged 2-point function goes like

where        is the solution to the field equation



  

Equivalence to SUSY
A procedure similar to Fadeev-Popov ghosts rewrites the 2-point function to

where ψ is an anti-commuting (ghost) scalar field and the averaged 
Lagrangian is

which is supersymmetric under

where ā is an infinitesimal, anti-commuting number 
and ε

μ
 is an arbitrary vector. 



  

Dimensional reduction
The action, written in a manifestly supersymmetric form, is

where θ is a Grassmann number and Φ is the superfield

This system is equivalent to a non-supersymmetric system with 
dimension D-2 via the relation

Green's functions at all orders of perturbation theory for the non-SUSY 
D-2 system are the same as for the SUSY D-dimensional system. Thus a 
random external field effectively reduces the dimension by 2.



  

SUSY in gauge and gravity ERG
The manifestly gauge invariant ERG for SU(N) requires additional regularization 
at 1-loop level using covariant Pauli-Villars fields. The elegant way to do this is 
with SU(N|N) regularization.

The field is promoted to a supermatrix of bosonic components, A, and fermionic 
components, B:

The action is built in a similar way:

where

and

This supersymmetry is spontaneously broken by a super-Higgs mechaism with a 
mass at order Λ, so that the physical SU(N) can be recovered at low energy.

A similar procedure is required for the 1-loop manifestly diffeomorphism invariant 
ERG for gravity. 



  

Summary

● Supersymmetry is broader than just a property of BSM physics.
● SUSY appears in statistical field theory in the Parisi-Sourlas 

formalism for spin-glasses, where it is related to dimensional 
reduction by 2.

● A related form of SUSY appears as a regularization mechanism in 
the manifestly gauge invariant ERG and is expected to be useful in 
the diffeomorphism invariant case also.
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