Quantum gravity using SUSY as a formal device

Anthony W. H. Preston
University of Southampton

Supervised by Prof. Tim R. Morris

Talk prepared for "Supersymmetry: from M-theory to the LHC",
University of Kent, Monday 11th January 2016

Introduction

- Einstein's General Relativity (GR) is a perturbatively non-renormalizable field theory.
- The field is the spacetime metric.
- The asymptotic safety conjecture suggests that there may exist a non-perturbative, non-trivial ultraviolet fixed point for gravity.
- Renormalization Group (RG) flow can be seen intuitively as describing physics at different scales of length by changing the resolution.
- SUSY is not just a theory of BSM particle physics, it can also be used as a more general mathematical device.
- Existing examples are manifestly gauge invariant regularization in QFT and Parisi-Sourlas supersymmetry in statistical field theory.
- My work develops a manifestly diffeomorphism invariant Exact RG, the regularization of which would also use this formal kind of SUSY.

Kadanoff blocking

In the Ising model, Kadanoff blocking is the process of grouping microscopic spins together to form macroscopic "blocked" spins via a majority rule.

The continuous version integrates out the high-energy modes of a field to give a renormalized field, used in a renormalized action.

The blocking functional, b, is defined via the effective Boltzmann factor:

$$e^{-S[\varphi]} = \int \mathcal{D}\varphi_0 \, \delta \left[\varphi - b\left[\varphi_0\right]\right] e^{-S_{\text{bare}}[\varphi_0]}.$$

There are an infinite number of possible Kadanoff blockings, but a simple linear example is

$$b[\varphi_0](x) = \int_y B(x-y)\varphi_0(y), \quad \text{where the kernel, B, contains an infrared cutoff function.}$$

The partition function must be invariant under change of cutoff scale, Λ , this will be ensured by construction, i.e.

$$\mathcal{Z} = \int \mathcal{D}\varphi \ e^{-S[\varphi]} = \int \mathcal{D}\varphi_0 \ e^{-S_{\text{bare}}[\varphi_0]}.$$

Kadanoff blocking demands a suitable notion of locality that requires us to work exclusively in Euclidean signature.

Polchinski Flow Equation

Differentiate the effective Boltzmann factor w.r.t. "RG time":

$$\Lambda \frac{\partial}{\partial \Lambda} e^{-S[\varphi]} = -\int_{x} \frac{\delta}{\delta \varphi(x)} \int \mathcal{D}\varphi_0 \, \, \delta \left[\varphi - b \left[\varphi_0 \right] \right] \Lambda \frac{\partial b \left[\varphi_0 \right](x)}{\partial \Lambda} e^{-S_{\text{bare}}[\varphi_0]}.$$

Write the "rate of change of blocking functional" as

$$\Psi(x) = \frac{1}{2} \int_y \dot{\Delta}(x,y) \frac{\delta \Sigma}{\delta \varphi(y)}, \text{ where } \Sigma = S - 2 \hat{S}, \\ \text{and } \Delta = c(p^2/\Lambda^2) p^{-2}.$$

The RG flow of the effective Boltzmann factor is then

$$\Lambda \frac{\partial}{\partial \Lambda} e^{-S[\varphi]} = \int_x \frac{\delta}{\delta \varphi(x)} \left(\Psi(x) e^{-S[\varphi]} \right).$$

The Polchinski flow equation is then written elegantly as

$$\dot{S} = \frac{1}{2} \frac{\delta S}{\delta \varphi} \cdot \dot{\Delta} \cdot \frac{\delta \Sigma}{\delta \varphi} - \frac{1}{2} \frac{\delta}{\delta \varphi} \cdot \dot{\Delta} \cdot \frac{\delta \Sigma}{\delta \varphi}.$$

where
$$f\cdot W\cdot g:=\int_x f(x)W\left(-rac{\partial^2}{\Lambda^2}
ight)g(x).$$

Generalization to Yang-Mills theories

A pure gauge theory is constructed in a manifestly gauge invariant way by building the action from covariant derivatives and field-strength tensors:

$$D_{\mu} := \partial_{\mu} - iA_{\mu}, \qquad F_{\mu\nu} := i[D_{\mu}, D_{\nu}].$$

To preserve manifest gauge invariance, wavefunction renormalization must be avoided. This is achieved by writing the coupling, g, as an overall scaling factor:

$$S[A](g) = \frac{1}{4g^2} tr \int_x F_{\mu\nu} c^{-1} \left(-\frac{D^2}{\Lambda^2} \right) F_{\mu\nu} + \cdots$$

The effective action is then written as a loopwise expansion that is also an expansion in powers of g:

 $S = \frac{1}{g^2} S_0 + S_1 + g^2 S_2 + \cdots$

The eta-functions also have a similar expansion: $eta:=\Lambda\partial_\Lambda g=eta_1g^3+eta_2g^5+\cdots$

The generalization of the Polchinski flow equation to gauge theories uses a suitably covariantized kernel, the easiest way to do this is to replace the partial derivatives with covariant derivatives:

$$\dot{S} = \frac{1}{2} \frac{\delta S}{\delta A_{\mu}} \cdot \{\dot{\Delta}\} \cdot \frac{\delta \Sigma}{\delta A_{\mu}} - \frac{1}{2} \frac{\delta}{\delta A_{\mu}} \cdot \{\dot{\Delta}\} \cdot \frac{\delta \Sigma}{\delta A_{\mu}}.$$

A refresher on GR

The Riemann tensor, representing spacetime curvature, is written in our sign convention as

$$R^a_{\ bcd} = 2\partial_{[c}\Gamma^a_{\ b]d} + 2\Gamma^a_{\ [c|f}\Gamma^f_{\ |b]d}$$
 where
$$A_{[ab]} = \frac{1}{2}(A_{ab} - A_{ba})$$

We use the Levi-Civita connection (torsion-free metric connection)

$$\Gamma^a_{\ bc} = \frac{g^{ad}}{2} \left(\partial_b g_{cd} + \partial_c g_{bd} - \partial_d g_{bc}\right)$$
 We have the Ricci tensor in our sign convention as
$$R_{ab} = R^c_{\ acb}$$
 Then the Ricci scalar by
$$R = g^{ab}R_{ab}$$

Thus the Einstein field equation is

$$R_{ab} - \frac{g_{ab}}{2}R + \Lambda g_{ab} = 8\pi G T_{ab}$$

Diffeomorphism invariance

Consider a general coordinate transformation

$$x'^{\mu} = x^{\mu} - \xi^{\mu}(x)$$

We need our theories to be diffeomorphism invariant. This is a surprisingly tough constraint on what we can use.

For some covariant derivative, D, metrics transform as

$$g'_{\mu\nu}(x') = \frac{\partial x^{\rho}}{\partial x'^{\mu}} \frac{\partial x^{\sigma}}{\partial x'^{\nu}} g_{\rho\sigma}(x) = g_{\mu\nu}(x) + 2g_{\lambda(\alpha}D_{\beta)}\xi^{\lambda} + \xi \cdot Dg_{\alpha\beta}.$$

So metric perturbations transform as

$$h_{\mu\nu}(x) \to h_{\mu\nu}(x) + 2g_{\lambda(\alpha}D_{\beta)}\xi^{\lambda} + \xi \cdot Dg_{\alpha\beta}$$
.

An advantage of manifest diffeomorphism invariance is that we automatically know that our results are not artefacts of some chosen coordinate system.

Generalization to gravity

The generalization of the Polchinski flow equation to gravity is

$$\dot{S} = \int_{x} \frac{\delta S}{\delta g_{\mu\nu}(x)} \int_{y} K_{\mu\nu\rho\sigma}(x,y) \frac{\delta \Sigma}{\delta g_{\rho\sigma}(y)} - \int_{x} \frac{\delta}{\delta g_{\mu\nu}(x)} \int_{y} K_{\mu\nu\rho\sigma}(x,y) \frac{\delta \Sigma}{\delta g_{\rho\sigma}(y)},$$

The kernel, which transforms as a two-argument generalization of a tensor, is

$$K_{\mu\nu\rho\sigma}(x,y) = \frac{1}{\sqrt{g}} \delta(x-y) \left(g_{\mu(\rho} g_{\sigma)\nu} + j g_{\mu\nu} g_{\rho\sigma} \right) \dot{\Delta}.$$

The de Witt supermetric parameter, j, determines the balance of modes propagating in the flow equation. For the "kinetic term" to be a regularized Einstein-Hilbert form, j = -1/2.

The effective action then goes like
$$S=\frac{1}{16\pi G}\int_x \sqrt{g}\left(-R+R_{\mu\nu}\frac{d}{\Lambda^2}R^{\mu\nu}-\frac{1}{2\Lambda^2}R\frac{d}{\Lambda^2}R+\cdots\right),$$

where d is a function of covariant derivatives that is related to the inverse cutoff.

Writing the action as a loopwise expansion:
$$S=\frac{1}{\tilde{\kappa}}S_0+S_1+\tilde{\kappa}S_2+\tilde{\kappa}^2S_3\cdots$$
 The β -function also expands as $\beta:=\Lambda\partial_{\Lambda}\tilde{\kappa}=\beta_1+\beta_2\tilde{\kappa}+\beta_3\tilde{\kappa}^2+\cdots$

The
$$eta$$
-function also expands as $eta:=\Lambda\partial_\Lambda ilde\kappa=eta_1+eta_2 ilde\kappa+eta_3 ilde\kappa^2+\cdots$

For this action, we have
$$\ \dot{\Delta} = - \frac{2}{\Lambda^2} c' \left(- \frac{\nabla^2}{\Lambda^2} \right),$$

which is related to the "effective propagator", Δ , in the fixed-background description.

Fixed-background description

If we fix a Euclidean background metric, we can define the graviton field as the perturbation to that background:

$$h_{\mu\nu}(x) := g_{\mu\nu}(x) - \delta_{\mu\nu}.$$

The position representation is related to a momentum representation via a Fourier transform:

$$h_{\mu\nu}(x)=\int\!\mathrm{d}p\,\mathrm{e}^{-ip\cdot x}h_{\mu\nu}(p),\quad \mathrm{where}\quad \mathrm{d}p:=rac{d^Dp}{(2\pi)^D}.$$

The action is defined as a series expansion in the perturbation:

$$S = \int \mathrm{d}p \, \delta(p) \mathcal{S}^{\mu\nu}(p) h_{\mu\nu}(p) + \frac{1}{2} \int \mathrm{d}p \, \mathrm{d}q \, \delta(p+q) \mathcal{S}^{\mu\nu\rho\sigma}(p,q) h_{\mu\nu}(p) h_{\rho\sigma}(q) \\ + \frac{1}{3!} \int \mathrm{d}p \, \mathrm{d}q \, \mathrm{d}r \, \delta(p+q+r) \mathcal{S}^{\mu\nu\rho\sigma\alpha\beta}(p,q,r) h_{\mu\nu}(p) h_{\rho\sigma}(q) h_{\alpha\beta}(r) + \cdots$$
 In this picture, we are able to define an "effective propagator", $\Delta := \frac{1}{p^2} c \left(\frac{p^2}{\Lambda^2}\right)$.

Gravity does not have a unique transverse 2-point function because there are two linearly independent transverse projectors. If we choose the linear combination with Einstein-Hilbert structure, the 2-point function is simply that transverse projector times Δ . This then solves the flow equation at the 2-point level.

Parisi-Sourlas formalism (SUSY in condensed matter)

Consider a D-dimensional system of spins with a random external field, h. We can write the free energy, using "natural" units of $k_{_{R}}T=1$, as

$$F[h] = \ln \int \mathcal{D}\phi \, \exp\left\{-\int d^D x [\mathcal{L}(x) + h(x)\phi(x)]\right\}$$

where the Lagrangian density is

$$\mathcal{L}(x) = -\frac{1}{2}\phi(x)\partial^2\phi(x) + V(\phi(x))$$

The averaged 2-point function goes like

$$\langle \phi(x)\phi(0)\rangle_R \sim \int \mathcal{D}h \ \phi_h(x)\phi_h(0)exp\left(-\frac{1}{2}\int d^Dyh^2(y)\right)$$

where ϕ_h is the solution to the field equation

$$-\partial^2 \phi + V'(\phi) + h = 0$$

Equivalence to SUSY

A procedure similar to Fadeev-Popov ghosts rewrites the 2-point function to

$$\langle \phi(x)\phi(0)\rangle \sim \int \mathcal{D}\phi \mathcal{D}\omega \mathcal{D}\psi \mathcal{D}\bar{\psi} \ exp\left[-\int d^D y \mathcal{L}_R(y)\right]\phi(x)\phi(0)$$

where ψ is an anti-commuting (ghost) scalar field and the averaged Lagrangian is

$$\mathcal{L}_R = -\frac{1}{2}\omega^2 + \omega[-\partial^2\phi + V'(\phi)] + \bar{\psi}[-\partial^2 + V''(\phi)]\psi$$

which is supersymmetric under

$$\delta\phi = -\bar{a}\epsilon_{\mu}x_{\mu}\psi, \qquad \delta\omega = 2\bar{a}\epsilon_{\mu}\partial_{\mu}\psi,$$

$$\delta\psi = 0, \qquad \delta\bar{\psi} = \bar{a}(\epsilon_{\mu}x_{\mu}\omega + 2\epsilon_{\mu}\partial_{\mu}\phi),$$

where \bar{a} is an infinitesimal, anti-commuting number and ε_u is an arbitrary vector.

Dimensional reduction

The action, written in a manifestly supersymmetric form, is

$$S = \int d^{D}x d\bar{\theta} d\theta \left(-\frac{1}{2} \Phi \left[\partial^{2} + \frac{\partial^{2}}{\partial \bar{\theta} \partial \theta} \right] \Phi + V(\Phi) \right)$$

where θ is a Grassmann number and Φ is the superfield

$$\Phi(x,\theta) = \phi(x) + \bar{\theta}\psi(x) + \bar{\psi}(x)\theta + \theta\bar{\theta}\omega(x)$$

This system is equivalent to a non-supersymmetric system with dimension D-2 via the relation

$$\int d^{D-2}x f(x^2) = \int d^Dx d\theta d\bar{\theta} f(x^2 + \bar{\theta}\theta)$$

Green's functions at all orders of perturbation theory for the non-SUSY D-2 system are the same as for the SUSY D-dimensional system. Thus a random external field effectively reduces the dimension by 2.

SUSY in gauge and gravity ERG

The manifestly gauge invariant ERG for SU(N) requires additional regularization at 1-loop level using covariant Pauli-Villars fields. The elegant way to do this is with SU(N|N) regularization.

The field is promoted to a supermatrix of bosonic components, *A*, and fermionic components, *B*:

$${\cal A}_\mu=\left(egin{array}{cc} A_\mu^1 & B_\mu \ ar B_\mu & A_\mu^2 \end{array}
ight)+{\cal A}_\mu^0{\cal I}, \ {
m and} \ \ D_\mu=\partial_\mu-i{\cal A}_\mu.$$

The action is built in a similar way:

$$S = \frac{1}{4g^2} str \int \mathcal{F}_{\mu\nu} c^{-1} \left(-\frac{D^2}{\Lambda^2} \right) \mathcal{F}_{\mu\nu} + \cdots$$
 where $str \left(\begin{array}{cc} X^{11} & X^{12} \\ X^{21} & X^{22} \end{array} \right) = tr_1 X^{11} - tr_2 X^{22}.$

This supersymmetry is spontaneously broken by a super-Higgs mechaism with a mass at order Λ , so that the physical SU(N) can be recovered at low energy.

A similar procedure is required for the 1-loop manifestly diffeomorphism invariant ERG for gravity.

Summary

- Supersymmetry is broader than just a property of BSM physics.
- SUSY appears in statistical field theory in the Parisi-Sourlas formalism for spin-glasses, where it is related to dimensional reduction by 2.
- A related form of SUSY appears as a regularization mechanism in the manifestly gauge invariant ERG and is expected to be useful in the diffeomorphism invariant case also.