Searches for Third Generation Scalar Quarks with the ATLAS Detector Experimental results at $\sqrt{s} = 8$ and 13 TeV

Giuseppe Lerner

"Supersymmetry: from M-theory to the LHC" conference, University of Kent

January 11, 2016

Introduction

- This talk presents an overview of the experimental searches for third generation squarks in ATLAS, in the context of natural SUSY models.
- Outline of the talk:
 - 1 Third generation squarks in the natural pMSSM.
 - 2 Experimental signatures and analysis strategies.
 - § Focus on the $tb + E_T^{miss}$ final state (8 TeV).
 - **4** Summary plot of the results from p-p collisions at $\sqrt{s} = 8$ TeV (Run 1).
 - From 8 to 13 TeV: cross section improvements.
 - **6** Early results at $\sqrt{s} = 13$ TeV on the $bb + E_T^{miss}$ final state.
 - O Discovery prospects with more 13 TeV data.
- Useful link:
 - ATLAS Supersymmetry public results

The phenomelogical Minimal Supersymmetric Standard Model (pMSSM) and naturalness

pMSSM

- Reduced number of free parameters after SUSY breaking.
- Conservation of R-parity:
 - \rightarrow Superpartners must be pair-produced.
 - \rightarrow The Lightest Supersymmetric Particle (LSP) is stable.
- Our focus: R-parity, neutral and weakly interacting LSP (possibly Dark Matter candidate).

Naturalness

- Fix divergent corrections to the Higgs boson mass.
- Constraints on the mass of gluinos, third generation squarks and Higgsinos.
- "Natural" mass spectrum:

JHEP 1209 (2012) 035

Experimental signatures of third generation squarks

Direct \tilde{t} and \tilde{b} pair production

Final states with two third generation quarks and missing transverse momentum (E_T^{miss}):

Objects to reconstruct: 2 b-tagged jets (b-jets) and E_T^{miss} , plus leptons depending on the model.

Extra: gluino mediated \tilde{t} and \tilde{b} production

Many third gen quarks and E_T^{miss}

Larger b-jet multiplicity (≥ 3). Characteristic signature of gluino searches \rightarrow not further developed in this talk.

Next: focus on \tilde{t} and \tilde{b} pair production

◆□ > ◆□ > ◆ = > ◆ = > 0 < 0</p>

Slide 4/21

Analysis strategy for third generation SUSY searches

 $\begin{cases} E_T^{miss} \text{in the final state} \\ \text{Pair produced particles} \end{cases}$

ightarrow No invariant mass peak.

Reconstructing resonant signals isn't possible
→ STANDARD APPROACH: CUT AND COUNT ANALYSIS

Analysis steps:

- Select a subset of events according to the experimental signature of the targeted signal.
- ullet Make use of discriminating variables to separate the signal from the Standard Model background \to Define Signal Regions (SR).
- Stimate the number of expected background events in the SRs.
- Open the box: count the observed events in the SRs and compare them with the "background only" or "signal+background" hypotheses.
- Depending on the result, compute the statistical significance of the discovery or set exclusion limits on the signal model.

◆□ > ◆□ > ◆臣 > ◆臣 > 臣 のQで

Slide 5/21 Giuseppe Lerner (Sussex) January 11, 2016

The tb + E_T^{miss} is one of the several analyses that were performed by the ATLAS
 Collaboration targeting direct pair production of third generation squarks.

Assumption on \tilde{t} and \tilde{b} decay modes:

$$\begin{cases} \tilde{t} \to t \tilde{\chi}_i^0 \text{ or } b \tilde{\chi}_1^+ \\ \tilde{b} \to b \tilde{\chi}_i^0 \text{ or } t \tilde{\chi}_1^+ \end{cases} \to \begin{array}{l} \text{Mixed or symmetric} \\ \text{decay legs} \end{cases}$$

OUR TARGET: MIXED DECAY (as in diagram)

Preliminary event selection according to the signal model

- 2 b-tagged jets.
- Missing transverse momentum (E_{Miss}^T) .
- \bullet 1 on shell W \to Choose leptonic decay \to Select exactly one lepton.
- ullet 1 off shell W o Only low P_T objects from it (not observable).

Backgrounds and cross sections

Minor contributions: $t\overline{t} + V$, diboson, $Z(\ell, \ell)$ + jets.

Cross sections of the relevant processes (more on this in slide 13)

- The signal cross section at 8 TeV is of the order of the pb, strongly dependent on the mass of the sparticle.
 - ightarrow The background cross sections are larger by several orders of magnitude!
- The preliminary selections do isolate the signal, but the background rate is dominant.
 - \rightarrow The discriminating variables are an essential ingredient for the analysis.

Slide 7/21 Giuseppe Lerner (Sussex)

Discriminating variables

- $M_T(lep, E_{Miss}^T) = \sqrt{2P_{lep}^T E_{Miss}^T \left[1 \cos(\varphi^{lep} \varphi^{E_{Miss}^T})\right]}$ If lepton and E_{miss}^T are from a W decay, M_T is below the W mass.
- $aM_{T2}(b_1, b_2, lep, E_{Miss}^T)$. Key variable related to the stransverse mass (M_{T2}) .

Asymmetric stransverse mass (aM_{T2})

J.Phys. G29 (2003) 2343-2363

 $\mathit{M}^{2}_{T2}(\mathit{P}_{1}\,,\mathit{P}_{2}\,,\mathit{E}^{T}_{\mathit{Miss}}) = \mathit{min}\left[\mathit{max}\left[\mathit{M}^{2}_{T}(\mathit{P}_{1}\,,\nu_{1}),\mathit{M}^{2}_{T}(\mathit{P}_{2}\,,\nu_{2})\right]\right].$

- E_{Miss}^{T} is decomposed in ν_{1} and ν_{2} \rightarrow The minimum is taken wrt all the possible directions.
- Asymmetric version for the tb + E_T^{miss}: the lepton is coupled to one of the two b-jets based on an invariant mass algorithm.
- For semi-invisibly decaying pair-produced particles, aM_{T2} has an endpoint driven by the mass of the decaying object \to Key variable to suppress $t\bar{t}$.

◆ロ > ◆回 > ◆ 基 > ◆ 基 > ・ 基 ・ 少 Q C

Slide 8/21 Giuseppe Lerner (Sussex) January 11, 2016

Background estimation strategy: Control Regions (CR)

- Each step of the analysis relies heavily on Monte Carlo (MC) simulations.
- However the most relevant background processes are constrained in Control Regions (CRs), where they are fitted to the observed number of data events.
- The extrapolation from CRs to SRs relies again on MC simulation: its accuracy is tested in Validation Regions (VRs) as shown in the diagram.

observable 1

In the $tb+E_T^{miss}$ analysis, CRs and VRs are defined for the $t\bar{t}$ and W+jets backgrounds.

Signal Regions and Results

- Two sets of SRs are defined:
 - Exclusive in N_{jets} (1 SR): require low jet multiplicity, to target signals with small mass splitting between squarks and neutralinos/charginos.
 - Inclusive (3 SRs): No jet veto, to cover signal models with larger mass splittings.
- No significant excess is observed in the four SRs: this lead us to set exclusion limits, both model independent (see table) and model dependent (next slide).

Giuseppe Lerner (Sussex)

aM_{T2} distribution in SRinA:

Signal channel	Obs	Exp	$S_{\rm obs}^{95}$	$S_{\rm exp}^{95}$	$\langle \epsilon \sigma \rangle_{\rm obs}^{95} [{\rm fb}]$
SRinA	38	27 ± 7	28.5	$19.3^{+7.0}_{-6.1}$	1.41
SRinB	20	14.1 ± 2.8	16.3	$10.7^{+4.5}_{-2.6}$	0.81
SRinC	10	7.1 ± 2.9	11.9	$9.8^{+3.3}_{-2.4}$	0.58
SRexA	46	31 ± 7	32.1	$20.3^{+8.0}_{-3.6}$	1.58

Model dependent exclusion limits

- Limits are set in a simplified model with the \tilde{t} decaying in $t+\tilde{\chi}^0_1$ and $b+\tilde{\chi}^+_1$ with variable branching ratio.
- Simplified model with 50% BR of $\tilde{t} \to t + \tilde{\chi}^0_1$

• Simplified model with 75% BR of $\tilde{t} \to t + \tilde{\chi}^0_1$

Summary plot of the ATLAS 8 TeV results in the $m_{\tilde{t}^-}m_{\tilde{\chi}_1^0}$ mass plane

Physics process	cross section (pb)	
	at 8 TeV	at 13 TeV
$tar{t}$	252	831
W+jets	12087	20080
Z+jets	1122	1906
gluino pair production with $m_{\tilde{q}}$ of 1350 GeV	0.0013	0.034
gluino pair production with $m_{\tilde{q}}$ of 1500 GeV	0.00039	0.014
bottom-squark pair production with $m_{\tilde{b}_1}$ of 700 GeV	0.0081	0.067

- Huge gain in signal cross section.
- Also the background xsec grows, but less dramatically.
- Improvements in sensitivity to SUSY signals:
 - \rightarrow Huge gains in gluino analyses.
 - \rightarrow Significant gain also for third generation.
- At any energy, strong dependence of the xsec on the mass of the sparticle.

The $bb + E_T^{miss}$ analysis at $\sqrt{s} = 13$ TeV

ATLAS-CONF-2015-066

 Signal with 0 leptons, 2 b-jets with large P_T, low extra jet multiplicity, large E^T_{miss}.

8 TeV

 $SRA \rightarrow heavy sbottom, light neutralino.$

 $SRB \rightarrow diagonal region.$

Sbottom masses up to 620 GeV are excluded for $m_{\tilde{\chi}^0_1} < 150$ GeV.

13 TeV

Simple experimental signature. Large signal xsec gain compared to 8 TeV.

 \rightarrow First ATLAS public result on third generation at $\sqrt{s}=13$ TeV.

Backgrounds and discriminating variables

- Main background: $Z(\rightarrow \nu \nu) + b\overline{b}$.
- Other contributions: $t\bar{t}$, single top, W + jets, dibosons, $t\bar{t}V$.

Two useful variables

- m_{bb}, invariant mass of the two b-jets.
- M_{CT} : contransverse mass [JHEP 0804 (2008) 034] targeting semi-invisibly decaying pair-produced particles (as aM_{T2} for the $tb + E_T^{miss}$).

$$M_{CT}^{2}(v_{1}, v_{2}) = \left[E^{T}(v_{1}) + E^{T}(v_{2})\right]^{2} - \left[\vec{P}_{T}(v_{1}) + \vec{P}_{T}(v_{2})\right]^{2}$$

- \rightarrow endpoint close to the mass of the parent particle.
- \rightarrow correlated with E_T^{miss} .
- ightarrow useful to suppress $t \overline{t}$ background targeting signal models with large \ddot{b} masses.

◆ロト ◆団ト ◆基ト ◆基ト ■ 釣りの

Slide 15/21 Giuseppe Lerner (Sussex) January 11, 2016

SRAs and SRB - following the 8 TeV analysis strategy

SRAs

- Target: Large ΔM between \tilde{b} and $\tilde{\chi}_1^0$.
- Two leading jets b-tagged.
- Apply an M_{CT} cut with 3 different thresholds (> 250, 350, 450 GeV) to cover a wide area in the \tilde{b} - $\tilde{\chi}_1^0$ mass plane.
 - \rightarrow Define SRA250, SRA350, SRA450.

SRB

- Target: Small ΔM between \tilde{b} and $\tilde{\chi}_1^0$ (diagonal region).
- Still two b-jets, but not leading.
- Require a leading light ISR jet that recoils against the sbottom system
 - ightarrow large E_T^{miss} , $\Delta \varphi$ (jet₁, E_T^{miss}) > 2.5

Slide 16/21

Background estimate in $bb + E_T^{miss}$ analysis

SRA fit

- Control Regions:
 - $Z(\rightarrow \nu\nu) + b\overline{b}$: 2ℓ CR
 - $t\overline{t}$ · 1 ℓ CR
 - single top: 1ℓ CR
 - W+jets: 1ℓ CR
- 2 Validation Regions (0ℓ)
- 3 Signal Regions (0ℓ)

SRB fit

- Control Regions:
 - $Z(\rightarrow \nu\nu) + b\bar{b}$: 2ℓ CR
 - t
 T
 1ℓ CR
- 1 Validation Region (0ℓ)
- 1 Signal Region (0ℓ)

Alternative, data-driven estimate for Z background

- Extract the shape of the kinematic distribution of M_{CT} from a $Z(\to \ell\ell)+0b$ sample \rightarrow Large statistics available.
- Normalise the background in a low M_{CT} region and extrapolate to the SRs using the data-driven shape.
- Useful to cross-check the baseline background estimation.

Results of the analysis

- Agreement between data and expected background in SRA350 and SRA450.
- Small ($< 2\sigma$) event deficit observed in SRA250 and SRB.
- No signal observed.

Signal region channels	SRA250	SRA350	SRA450	SRB
Observed events	22	6	1	5
Fitted bkg events	40 ± 8	9.5 ± 2.6	2.2 ± 0.6	13.1 ± 3.2
Fitted tt events	0.9 ± 0.4	0.37 ± 0.16	0.06 ± 0.03	5.9 ± 2.4
Fitted single top events	2.1 ± 1.3	0.54 ± 0.37	0.15 ± 0.10	1.2 ± 0.8
Fitted W+jets events	6.3 ± 2.4	1.3 ± 0.6	0.41 ± 0.23	1.2 ± 0.6
Fitted Z+jets events	30 ± 7	7.1 ± 2.4	1.5 ± 0.5	3.3 ± 1.4
(Alt. method Z+jets events)	(33 ± 7)	(7.2 ± 1.9)	(2.7 ± 0.9)	
Fitted "Other" events	0.7 ± 0.6	0.1 ± 0.1	0.02 ± 0.02	1.4 ± 0.4

Slide 18/21 Giuseppe Lerner (Sussex) January 11, 2016

Interpretation of the results in the $\tilde{b}\text{-}\tilde{\chi}^0_1$ mass plane

- The results of the analysis are shown in terms of exclusion limits.
- With 3.2 fb⁻¹ of data, the limits on the \tilde{b} mass overcome the 8 TeV result by almost 200 GeV for light $\tilde{\chi}_1^0$.
- The small discrepancy between expected and observed limits in the bulk of the plane is due to the event deficit in SRA250 and SRB.

Slide 19/21

Discovery prospects for third generation squarks

- The reach of SUSY searches for \tilde{t} and \tilde{b} pair production is shown below for 300 fb⁻¹ and 3000 fb⁻¹ of data, combining 0ℓ and 1ℓ analyses and assuming an energy of 14 TeV.
- In the long term, the analyses are expected to be sensitive to mass values above the TeV.

Conclusions

- Third generation squarks are of particular interest because their mass is constrained in many BSM theories, in particular under the assumption of naturalness.
- The direct production of such squarks typically yields final states with two third generation SM quarks and missing transverse momentum (E_T^{miss}).
- The Supersymmetry group in ATLAS has a well developed analysis strategy to target a wide variety of third generation signals.
- Several searches were performed during Run 1, and preliminary results on the $bb + E_T^{miss}$ final state at 13 TeV were presented in this talk.
- No signal has been observed yet, but several new results and improvements are expected from the 13 TeV collisions → Possible room for future discoveries.

THANK YOU FOR YOUR ATTENTION!

Slide 21/21

BACKUP

The hierarchy problem and the natural SUSY mass spectrum

- In the pMSSM, the loop corrections to the Higgs mass are cancelled by loops of scalar partners.
- But SUSY is broken → The cancellation isn't exact, and the corrections are given by:

$$\Delta m_H^2 = \frac{\lambda}{16\pi^2} \left[m_f^2 \log \left(\frac{\Lambda}{m_f} \right) - m_S^2 \log \left(\frac{\Lambda}{m_S} \right) \right]$$

- Naturalness requires that Δm_H doesn't exceed ~ 1 TeV.
- Higgs coupling proportional to the mass of the quark \rightarrow Large corrections from third generation quarks \rightarrow The mass of stop (\tilde{t}) and sbottom (\tilde{b}) is constrained to be below the TeV scale!
- Taking into account tree level and 2-loop constraints, one obtains the "natural SUSY mass spectrum" on the right.

Slide 23/21 Giuseppe Lerner (Sussex)

aM_{T2} algorithm for $tb + E_T^{miss}$ analysis

- 1. Compute the invariant masses $M(b_1 + lep, b_2)$ and $M(b_1, b_2 + lep)$.
- 2. If both are $< 170 \, GeV$ (compatible with a top decay), $aM_{T2} = min \left[M_{T2}(b_1 + lep, b_2), M_{T2}(b_1, b_2 + lep) \right].$
- 3. If only one of them is $< 170 \, GeV$, compute aM_{T2} using the corresponding *b-lep* coupling.
- 4. If both are $> 170 \, GeV$, reject the event.

◆□ → ◆□ → ◆ 差 → ◆ 差 → りゅう

$tb + E_T^{miss}$ limits on natural pMSSM model

