
Formal Verification – Robust and Efficient Code

1
iCSC2016, Kim Albertsson, LTU

Formal Verification – Robust and Efficient Code
Lecture 1

Introduction to FV

Kim Albertsson

Luleå University of Technology

Inverted CERN School of Computing, 29 February – 2 March 2016

Formal Verification – Robust and Efficient Code

2
iCSC2016, Kim Albertsson, LTU

Introduction

 Kim Albertsson
 M.Sc. Engineering Physics and

Electrical Engineering

 Currently studying for M.Sc.

Computer Science

 Research interests
 Automation

 Machine learning

 Formal methods
 Great way to automate tedious

tasks

Luleå

You are

here

Image from Wikimedia Commons, the free media repository

Formal Verification – Robust and Efficient Code

3
iCSC2016, Kim Albertsson, LTU

Formal Methods

 Managing complexity

 “…mathematically based languages, techniques,

and tools for specifying and verifying … systems.”
Edmund M. Clarke et al.

 Reveals inconsistencies and ambiguities

Formal Verification – Robust and Efficient Code

4
iCSC2016, Kim Albertsson, LTU

Formal Methods

 Specification + Model + Implementation

enables verification

 Proving properties for a system

 Will my algorithm sort the input?

 Will my soda pop be delivered in time?

 Can the LHC interlock system end up in an inconsistent

state?

Formal Verification – Robust and Efficient Code

5
iCSC2016, Kim Albertsson, LTU

Overview Series

 Approaches

 Model Checking and Theorem Proving

 Logic and automation

 How to build an ecosystem

 Application

 Robust code

 Robust and Efficient code

Formal Verification – Robust and Efficient Code

6
iCSC2016, Kim Albertsson, LTU

Introduction Lecture 1
 Introduction

 Practical examples

 Specification

 Testing vs. Proving

 Contracts

 Methods of Formal Verification

 Model Checking

 Theorem Proving

 In-depth Theorem Proving

 First Order Logic

 Satisfiability Modulo Theories

 Verification Platforms

Formal Verification – Robust and Efficient Code

7
iCSC2016, Kim Albertsson, LTU

Introduction Lecture 1
 Errors discovered late

 Expensive

 FV requires

 More effort for

specification

 FV gives

 Feedback on

inconsistencies

 Reduces late errors

 Reduces total time

Reqs. Spec. Impl. Prod.
C

o
s
t

€

Formal Verification – Robust and Efficient Code

8
iCSC2016, Kim Albertsson, LTU

Overview
 Introduction

 Practical examples

 Specification

 Testing vs. Proving

 Contracts

 Methods of Formal Verification

 Model Checking

 Theorem Proving

 In-depth Theorem Proving

 First Order Logic

 Satisfiability Modulo Theories

 Verification Platforms

Formal Verification – Robust and Efficient Code

9
iCSC2016, Kim Albertsson, LTU

Practical Examples

 Space flight, Ariane 5 - 501

 Avionics, Lockheed

Formal Verification – Robust and Efficient Code

10
iCSC2016, Kim Albertsson, LTU

Ariane 5 - 501

 Ariane 5

 Reused inertial reference

system of Ariane 4

 Greater horizontal

acceleration

 64-bit float cast to 16-bit

integer overflowed

 Expensive bug

discovery
Image from Wikimedia Commons, the free media repository

Formal Verification – Robust and Efficient Code

11
iCSC2016, Kim Albertsson, LTU

Lockheed C130J

 C130J Hercules

 Secure low-level flight

control code

 Review concluded

 Improved quality of

product

 Decreased cost of

development

Image from Wikimedia Commons, the free media repository

Formal Verification – Robust and Efficient Code

12
iCSC2016, Kim Albertsson, LTU

Specification

 Concise, high level description of behaviour

 Varying degree of rigour

 Informal; written English

 Formal; using standardised syntax

 Required for verification

Formal Verification – Robust and Efficient Code

13
iCSC2016, Kim Albertsson, LTU

A verified program has demonstrated that

specification is consistent with implementation

Formal Verification – Robust and Efficient Code

14
iCSC2016, Kim Albertsson, LTU

Specification

 Example in whyML

let bubblesort (a: array int) =

requires { … }

ensures { sorted a }

…

Formal Verification – Robust and Efficient Code

15
iCSC2016, Kim Albertsson, LTU

Testing vs. Proving

 Testing

 Limited to particular point

in input space

 Proving

 Reason about complete

input space

Error space

Input space

Test

Formal Verification – Robust and Efficient Code

16
iCSC2016, Kim Albertsson, LTU

Contract

 A contract consists of

 pre-condition, that must

hold before execution

 post-condition, that must

hold after execution

 Weakest precondition

 The set of least restrictive

of pre-conditions that still

ensure the post-condition

Formal Verification – Robust and Efficient Code

17
iCSC2016, Kim Albertsson, LTU

System Composition

Formal Verification – Robust and Efficient Code

18
iCSC2016, Kim Albertsson, LTU

System Composition

Formal Verification – Robust and Efficient Code

19
iCSC2016, Kim Albertsson, LTU

Overview
 Introduction

 Practical examples

 Specification

 Testing vs. Proving

 Contracts

 Methods of Formal Verification

 Model Checking

 Theorem Proving

 In-depth Theorem Proving

 First Order Logic

 Satisfiability Modulo Theories

 Verification Platforms

Formal Verification – Robust and Efficient Code

20
iCSC2016, Kim Albertsson, LTU

Methods of FV

 Model Checking

 General tool

 Tricky problem

 Theorem Proving

 General tool

 Tricky problem

Verification

Model

Checking

Theorem

Proving

Formal Methods

Formal Verification – Robust and Efficient Code

21
iCSC2016, Kim Albertsson, LTU

Model Checking

 Verifies that property

holds for all states

 Explores all model states

 Suitable for finite state

models

 Program verification

 Model program as a graph

Formal Verification – Robust and Efficient Code

22
iCSC2016, Kim Albertsson, LTU

Model Checking

 Pros

 Easy start-up with when applicable

 Cons

 Requires clever algorithms

 Must start anew each time

Formal Verification – Robust and Efficient Code

23
iCSC2016, Kim Albertsson, LTU

Theorem Proving

 Define a formal logic system

 With inference rules

 Proofs are derived by applying rules

 By hand or by machine

 Turns out full automation is a tricky problem

 Interactive provers, or proof assistants

Formal Verification – Robust and Efficient Code

24
iCSC2016, Kim Albertsson, LTU

Overview
 Introduction

 Practical examples

 Specification

 Testing vs. Proving

 Contracts

 Methods of Formal Verification

 Model Checking

 Theorem Proving

 In-depth Theorem Proving

 First Order Logic

 Satisfiability Modulo Theories

 Verification Platforms

Formal Verification – Robust and Efficient Code

25
iCSC2016, Kim Albertsson, LTU

First Order Logic

 Object variables
 Refers to a unique object

 Names like x, jim, 1

 Predicates
 Relations like =, <,

AtHome

 Connectives
 ∧,∨,→,=

 Functions
 Complex names

 mother(jim)

 head(x)

 1+1

 Sentence
 Combination of the above

 mother(jim) = kimberly

 head(x) < 1

Formal Verification – Robust and Efficient Code

26
iCSC2016, Kim Albertsson, LTU

First Order Logic

Formal Verification – Robust and Efficient Code

27
iCSC2016, Kim Albertsson, LTU

First Order Logic

 Quantifiers

 ∀ — for all

 ∃ — existence

 Usage

 ∀x. Programmer(x) → Happy(x)

 ∃x. Programmer(x) → ProducesBugs(x)

 ∃x∀y. Loves(x, y)

Formal Verification – Robust and Efficient Code

28
iCSC2016, Kim Albertsson, LTU

Hoare Logic

 P, Precondition

 Q, Postcondition

 C, Command

 When C is executed under P,

Q is guaranteed

 Rules required for each

action of a language

Formal Verification – Robust and Efficient Code

29
iCSC2016, Kim Albertsson, LTU

Hoare Logic

 Composition

 Allows commands to be

executed in sequence

 While rule

 Models while-statement

 P is called loop invariant

 Can be extended to prove

termination

Formal Verification – Robust and Efficient Code

30
iCSC2016, Kim Albertsson, LTU

Theories

 Theory

 Set of sentences that are assumed to be true, T

 Axiom

 Each element in T

 Theorem

 Any sentence that can be concluded from the theory

 Example

 Peano arithmetic, theory of lists…

Formal Verification – Robust and Efficient Code

31
iCSC2016, Kim Albertsson, LTU

Satisfiability Modulo Theories

 Hoare logic

 To reason about programs

 Reasoning expressed

 First order logic

 Verification conditions

(VC)

Formal Verification – Robust and Efficient Code

32
iCSC2016, Kim Albertsson, LTU

Satisfiability Modulo Theories

 Similar to Binary Satisfiability problem, SAT

 One of the first problems to be shown to be NP-complete

 Find assignment of x, y, z … so that the expression is satisfied

 SAT variables are boolean

 SMTs are extended to handle FOL constructs

 Verifying a proof is easy

 Check each step for validity assuming our logic system

Formal Verification – Robust and Efficient Code

33
iCSC2016, Kim Albertsson, LTU

Satisfiability Modulo Theories

 Formulas are considered w.r.t background theory

 For formula F, assume ¬F

 F is valid when ¬F is not satisfiable under T

 Modern solvers use heuristics

 Improves performance for specific theories

 At the cost of general performance

Formal Verification – Robust and Efficient Code

34
iCSC2016, Kim Albertsson, LTU

Satisfiability Modulo Theories

 Example in alt-ergo

 Try for yourself https://alt-ergo.ocamlpro.com/try.php

logic x, y, z: prop

axiom a_1:

(x and not y) -> (y or z)

axiom a_2:

y -> not x

axiom a_3:

x

goal g_1: z

[answer] Valid (0.0060 seconds) (3 steps)

Formal Verification – Robust and Efficient Code

35
iCSC2016, Kim Albertsson, LTU

Verification Platforms

 Unified interface for

provers

 Generates verification

conditions (VCs)

 Discharged by any

compliant prover,

interactive or automatic

 Examples

 why3, boogie

Formal Verification – Robust and Efficient Code

36
iCSC2016, Kim Albertsson, LTU

Example

let insertion_sort (a: array int) =

for i = 1 to length a - 1 do

let v = a[i] in

let j = ref i in

while !j > 0 && a[!j - 1] > v do

a[!j] <- a[!j - 1];

j := !j - 1

done;

a[!j] <- v

done

end

Formal Verification – Robust and Efficient Code

37
iCSC2016, Kim Albertsson, LTU

Example
let insertion_sort (a: array int) =

ensures { sorted a }

for i = 1 to length a - 1 do

invariant { sorted_sub a 0 i }

let v = a[i] in

let j = ref i in

while !j > 0 && a[!j - 1] > v do

invariant { 0 <= !j <= i }

invariant { forall k1 k2: int. 0 <= k1 <= k2 <= i

-> k1 <> !j

-> k2 <> !j -> a[k1] <= a[k2] }

invariant { forall k: int. !j+1 <= k <= i

-> v < a[k] }

a[!j] <- a[!j - 1];

j := !j - 1

done;

a[!j] <- v

done

end

Formal Verification – Robust and Efficient Code

38
iCSC2016, Kim Albertsson, LTU

Example
let insertion_sort (a: array int) =

ensures { sorted a }

for i = 1 to length a - 1 do

invariant { sorted_sub a 0 i }

let v = a[i] in

let j = ref i in

while !j > 0 && a[!j - 1] > v do

invariant { 0 <= !j <= i }

invariant { forall k1 k2: int. 0 <= k1 <= k2 <= i

-> k1 <> !j

-> k2 <> !j -> a[k1] <= a[k2] }

invariant { forall k: int. !j+1 <= k <= i

-> v < a[k] }

a[!j] <- a[!j - 1];

j := !j - 1

done;

a[!j] <- v

done

end

Formal Verification – Robust and Efficient Code

39
iCSC2016, Kim Albertsson, LTU

Example
let insertion_sort (a: array int) =

ensures { sorted a }

for i = 1 to length a - 1 do

invariant { sorted_sub a 0 i }

let v = a[i] in

let j = ref i in

while !j > 0 && a[!j - 1] > v do

invariant { 0 <= !j <= i }

invariant { forall k1 k2: int. 0 <= k1 <= k2 <= i

-> k1 <> !j

-> k2 <> !j -> a[k1] <= a[k2] }

invariant { forall k: int. !j+1 <= k <= i

-> v < a[k] }

a[!j] <- a[!j - 1];

j := !j - 1

done;

a[!j] <- v

done

end

Formal Verification – Robust and Efficient Code

40
iCSC2016, Kim Albertsson, LTU

Example

 i, j are loop variables

 v holds the current

element

 We are sorting

subsegment [0, i]

Formal Verification – Robust and Efficient Code

41
iCSC2016, Kim Albertsson, LTU

Example
let insertion_sort (a: array int) =

ensures { sorted a }

for i = 1 to length a - 1 do

invariant { sorted_sub a 0 i }

let v = a[i] in

let j = ref i in

while !j > 0 && a[!j - 1] > v do

invariant { 0 <= !j <= i }

invariant { forall k1 k2: int. 0 <= k1 <= k2 <= i

-> k1 <> !j

-> k2 <> !j -> a[k1] <= a[k2] }

invariant { forall k: int. !j+1 <= k <= i

-> v < a[k] }

a[!j] <- a[!j - 1];

j := !j - 1

done;

a[!j] <- v

done

end

Formal Verification – Robust and Efficient Code

42
iCSC2016, Kim Albertsson, LTU

Recap of Lecture 1

 FV manages complexity

 Finds errors early

 Save money, time and possibly

life

 Proof is a demonstration

 Consistency of specification and

implementation

Image from Wikimedia Commons, the free media repository

Formal Verification – Robust and Efficient Code

43
iCSC2016, Kim Albertsson, LTU

Recap of Lecture 1

 Proving properties

about your system

 Model Checking

 Exhaustive search of state

space

 Theorem Proving

 Deductive approach

Verification

Model

Checking

Theorem

Proving

Formal Methods

Formal Verification – Robust and Efficient Code

44
iCSC2016, Kim Albertsson, LTU

Recap of Lecture 1

 Theorem Proving

 Based on First Order

Logic

 Satisfiability Modulo

Theories (SMT) solvers to

find application of rules

 IVT platforms front-end

with many SMT backends

Formal Verification – Robust and Efficient Code

45
iCSC2016, Kim Albertsson, LTU

Thank you

