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Introduction

 Kim Albertsson
 M.Sc. Engineering Physics and 

Electrical Engineering

 Currently studying for M.Sc. 

Computer Science

 Research interests
 Automation

 Machine learning

 Formal methods 
 Great way to automate tedious 

tasks

Luleå

You are

here

Image from Wikimedia Commons, the free media repository
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Formal Methods

 Managing complexity

 “…mathematically based languages, techniques, 

and tools for specifying and verifying … systems.”
Edmund M. Clarke et al.

 Reveals inconsistencies and ambiguities
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Formal Methods

 Specification + Model + Implementation

enables verification

 Proving properties for a system

 Will my algorithm sort the input?

 Will my soda pop be delivered in time?

 Can the LHC interlock system end up in an inconsistent 

state?
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Overview Series

 Approaches

 Model Checking and Theorem Proving

 Logic and automation

 How to build an ecosystem

 Application

 Robust code

 Robust and Efficient code
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Introduction Lecture 1
 Introduction

 Practical examples

 Specification

 Testing vs. Proving

 Contracts

 Methods of Formal Verification

 Model Checking

 Theorem Proving

 In-depth Theorem Proving

 First Order Logic

 Satisfiability Modulo Theories

 Verification Platforms
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Introduction Lecture 1
 Errors discovered late

 Expensive

 FV requires

 More effort for 

specification

 FV gives

 Feedback on 

inconsistencies

 Reduces late errors

 Reduces total time

Reqs. Spec. Impl. Prod.
C

o
s
t 

€
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Overview
 Introduction

 Practical examples

 Specification

 Testing vs. Proving

 Contracts

 Methods of Formal Verification

 Model Checking

 Theorem Proving

 In-depth Theorem Proving

 First Order Logic

 Satisfiability Modulo Theories

 Verification Platforms
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Practical Examples

 Space flight, Ariane 5 - 501

 Avionics, Lockheed
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Ariane 5 - 501

 Ariane 5

 Reused inertial reference 

system of Ariane 4

 Greater horizontal 

acceleration

 64-bit float cast to 16-bit 

integer overflowed

 Expensive bug 

discovery
Image from Wikimedia Commons, the free media repository
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Lockheed C130J

 C130J Hercules

 Secure low-level flight 

control code

 Review concluded

 Improved quality of 

product

 Decreased cost of 

development

Image from Wikimedia Commons, the free media repository
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Specification

 Concise, high level description of behaviour

 Varying degree of rigour

 Informal; written English 

 Formal; using standardised syntax

 Required for verification
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A verified program has demonstrated that

specification is consistent with implementation
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Specification

 Example in whyML

let bubblesort (a: array int) =

requires { … }

ensures { sorted a }

…
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Testing vs. Proving

 Testing

 Limited to particular point 

in input space

 Proving

 Reason about complete 

input space

Error space

Input space

Test



Formal Verification – Robust and Efficient Code

16
iCSC2016, Kim Albertsson, LTU

Contract

 A contract consists of

 pre-condition, that must 

hold before execution

 post-condition, that must 

hold after execution

 Weakest precondition

 The set of least restrictive 

of pre-conditions that still 

ensure the post-condition
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System Composition
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System Composition
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Overview
 Introduction

 Practical examples

 Specification

 Testing vs. Proving

 Contracts

 Methods of Formal Verification

 Model Checking

 Theorem Proving

 In-depth Theorem Proving

 First Order Logic

 Satisfiability Modulo Theories

 Verification Platforms
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Methods of FV

 Model Checking

 General tool

 Tricky problem

 Theorem Proving

 General tool

 Tricky problem

Verification

Model 

Checking

Theorem 

Proving

Formal Methods
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Model Checking

 Verifies that property 

holds for all states

 Explores all model states

 Suitable for finite state 

models

 Program verification

 Model program as a graph
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Model Checking

 Pros

 Easy start-up with when applicable

 Cons

 Requires clever algorithms

 Must start anew each time
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Theorem Proving

 Define a formal logic system

 With inference rules

 Proofs are derived by applying rules

 By hand or by machine

 Turns out full automation is a tricky problem

 Interactive provers, or proof assistants
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Overview
 Introduction

 Practical examples

 Specification

 Testing vs. Proving

 Contracts

 Methods of Formal Verification

 Model Checking

 Theorem Proving

 In-depth Theorem Proving

 First Order Logic

 Satisfiability Modulo Theories

 Verification Platforms
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First Order Logic

 Object variables
 Refers to a unique object

 Names like x, jim, 1

 Predicates
 Relations like =, <, 

AtHome

 Connectives
 ∧,∨,→,=

 Functions
 Complex names

 mother(jim)

 head(x)

 1+1

 Sentence
 Combination of the above

 mother(jim) = kimberly

 head(x) < 1
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First Order Logic
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First Order Logic

 Quantifiers

 ∀ — for all

 ∃ — existence

 Usage

 ∀x. Programmer(x) → Happy(x)

 ∃x. Programmer(x) → ProducesBugs(x)

 ∃x∀y. Loves(x, y)
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Hoare Logic

 P,  Precondition

 Q,  Postcondition

 C, Command

 When C is executed under P, 

Q is guaranteed

 Rules required for each 

action of a language
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Hoare Logic

 Composition

 Allows commands to be 

executed in sequence

 While rule

 Models while-statement

 P is called loop invariant

 Can be extended to prove 

termination
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Theories

 Theory

 Set of sentences that are assumed to be true, T

 Axiom

 Each element in T

 Theorem

 Any sentence that can be concluded from the theory

 Example

 Peano arithmetic, theory of lists…
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Satisfiability Modulo Theories

 Hoare logic

 To reason about programs

 Reasoning expressed

 First order logic

 Verification conditions 

(VC)
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Satisfiability Modulo Theories

 Similar to Binary Satisfiability problem, SAT

 One of the first problems to be shown to be NP-complete

 Find assignment of x, y, z … so that the expression is satisfied

 SAT variables are boolean

 SMTs are extended to handle FOL constructs

 Verifying a proof is easy

 Check each step for validity assuming our logic system
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Satisfiability Modulo Theories

 Formulas are considered w.r.t background theory

 For formula F, assume ¬F

 F is valid when ¬F is not satisfiable under T

 Modern solvers use heuristics

 Improves performance for specific theories

 At the cost of general performance
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Satisfiability Modulo Theories

 Example in alt-ergo

 Try for yourself https://alt-ergo.ocamlpro.com/try.php

logic x, y, z: prop

axiom a_1: 

(x and not y) -> (y or z)

axiom a_2: 

y  -> not x

axiom a_3:

x

goal g_1: z

# [answer] Valid (0.0060 seconds) (3 steps)
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Verification Platforms

 Unified interface for 

provers

 Generates verification 

conditions (VCs)

 Discharged by any 

compliant prover, 

interactive or automatic

 Examples

 why3, boogie
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Example

let insertion_sort (a: array int) =

for i = 1 to length a - 1 do

let v = a[i]  in

let j = ref i in

while !j > 0 && a[!j - 1] > v do

a[!j] <- a[!j - 1];

j := !j - 1

done;

a[!j] <- v

done

end
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Example
let insertion_sort (a: array int) =

ensures { sorted a }

for i = 1 to length a - 1 do

invariant { sorted_sub a 0 i }

let v = a[i] in

let j = ref i in

while !j > 0 && a[!j - 1] > v do

invariant { 0 <= !j <= i }

invariant { forall k1 k2: int. 0 <= k1 <= k2 <= i

-> k1 <> !j 

-> k2 <> !j -> a[k1] <= a[k2] }

invariant { forall k: int. !j+1 <= k <= i

-> v < a[k] }

a[!j] <- a[!j - 1];

j := !j - 1

done;

a[!j] <- v

done

end



Formal Verification – Robust and Efficient Code

38
iCSC2016, Kim Albertsson, LTU

Example
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Example

 i, j are loop variables

 v holds the current 

element

 We are sorting 

subsegment [0, i]
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Example
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Recap of Lecture 1

 FV manages complexity

 Finds errors early

 Save money, time and possibly 

life

 Proof is a demonstration

 Consistency of specification and 

implementation

Image from Wikimedia Commons, the free media repository
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Recap of Lecture 1

 Proving properties 

about your system

 Model Checking

 Exhaustive search of state 

space

 Theorem Proving

 Deductive approach

Verification

Model 

Checking

Theorem 

Proving

Formal Methods
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Recap of Lecture 1

 Theorem Proving

 Based on First Order 

Logic

 Satisfiability Modulo 

Theories (SMT) solvers to 

find application of rules

 IVT platforms front-end 

with many SMT backends 
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Thank you


