
Formal Verification – Robust and Efficient Code

1
iCSC2016, Kim Albertsson, LTU

Formal Verification – Robust and Efficient Code
Lecture 1

Introduction to FV

Kim Albertsson

Luleå University of Technology

Inverted CERN School of Computing, 29 February – 2 March 2016

Formal Verification – Robust and Efficient Code

2
iCSC2016, Kim Albertsson, LTU

Introduction

 Kim Albertsson
 M.Sc. Engineering Physics and

Electrical Engineering

 Currently studying for M.Sc.

Computer Science

 Research interests
 Automation

 Machine learning

 Formal methods
 Great way to automate tedious

tasks

Luleå

You are

here

Image from Wikimedia Commons, the free media repository

Formal Verification – Robust and Efficient Code

3
iCSC2016, Kim Albertsson, LTU

Formal Methods

 Managing complexity

 “…mathematically based languages, techniques,

and tools for specifying and verifying … systems.”
Edmund M. Clarke et al.

 Reveals inconsistencies and ambiguities

Formal Verification – Robust and Efficient Code

4
iCSC2016, Kim Albertsson, LTU

Formal Methods

 Specification + Model + Implementation

enables verification

 Proving properties for a system

 Will my algorithm sort the input?

 Will my soda pop be delivered in time?

 Can the LHC interlock system end up in an inconsistent

state?

Formal Verification – Robust and Efficient Code

5
iCSC2016, Kim Albertsson, LTU

Overview Series

 Approaches

 Model Checking and Theorem Proving

 Logic and automation

 How to build an ecosystem

 Application

 Robust code

 Robust and Efficient code

Formal Verification – Robust and Efficient Code

6
iCSC2016, Kim Albertsson, LTU

Introduction Lecture 1
 Introduction

 Practical examples

 Specification

 Testing vs. Proving

 Contracts

 Methods of Formal Verification

 Model Checking

 Theorem Proving

 In-depth Theorem Proving

 First Order Logic

 Satisfiability Modulo Theories

 Verification Platforms

Formal Verification – Robust and Efficient Code

7
iCSC2016, Kim Albertsson, LTU

Introduction Lecture 1
 Errors discovered late

 Expensive

 FV requires

 More effort for

specification

 FV gives

 Feedback on

inconsistencies

 Reduces late errors

 Reduces total time

Reqs. Spec. Impl. Prod.
C

o
s
t

€

Formal Verification – Robust and Efficient Code

8
iCSC2016, Kim Albertsson, LTU

Overview
 Introduction

 Practical examples

 Specification

 Testing vs. Proving

 Contracts

 Methods of Formal Verification

 Model Checking

 Theorem Proving

 In-depth Theorem Proving

 First Order Logic

 Satisfiability Modulo Theories

 Verification Platforms

Formal Verification – Robust and Efficient Code

9
iCSC2016, Kim Albertsson, LTU

Practical Examples

 Space flight, Ariane 5 - 501

 Avionics, Lockheed

Formal Verification – Robust and Efficient Code

10
iCSC2016, Kim Albertsson, LTU

Ariane 5 - 501

 Ariane 5

 Reused inertial reference

system of Ariane 4

 Greater horizontal

acceleration

 64-bit float cast to 16-bit

integer overflowed

 Expensive bug

discovery
Image from Wikimedia Commons, the free media repository

Formal Verification – Robust and Efficient Code

11
iCSC2016, Kim Albertsson, LTU

Lockheed C130J

 C130J Hercules

 Secure low-level flight

control code

 Review concluded

 Improved quality of

product

 Decreased cost of

development

Image from Wikimedia Commons, the free media repository

Formal Verification – Robust and Efficient Code

12
iCSC2016, Kim Albertsson, LTU

Specification

 Concise, high level description of behaviour

 Varying degree of rigour

 Informal; written English

 Formal; using standardised syntax

 Required for verification

Formal Verification – Robust and Efficient Code

13
iCSC2016, Kim Albertsson, LTU

A verified program has demonstrated that

specification is consistent with implementation

Formal Verification – Robust and Efficient Code

14
iCSC2016, Kim Albertsson, LTU

Specification

 Example in whyML

let bubblesort (a: array int) =

requires { … }

ensures { sorted a }

…

Formal Verification – Robust and Efficient Code

15
iCSC2016, Kim Albertsson, LTU

Testing vs. Proving

 Testing

 Limited to particular point

in input space

 Proving

 Reason about complete

input space

Error space

Input space

Test

Formal Verification – Robust and Efficient Code

16
iCSC2016, Kim Albertsson, LTU

Contract

 A contract consists of

 pre-condition, that must

hold before execution

 post-condition, that must

hold after execution

 Weakest precondition

 The set of least restrictive

of pre-conditions that still

ensure the post-condition

Formal Verification – Robust and Efficient Code

17
iCSC2016, Kim Albertsson, LTU

System Composition

Formal Verification – Robust and Efficient Code

18
iCSC2016, Kim Albertsson, LTU

System Composition

Formal Verification – Robust and Efficient Code

19
iCSC2016, Kim Albertsson, LTU

Overview
 Introduction

 Practical examples

 Specification

 Testing vs. Proving

 Contracts

 Methods of Formal Verification

 Model Checking

 Theorem Proving

 In-depth Theorem Proving

 First Order Logic

 Satisfiability Modulo Theories

 Verification Platforms

Formal Verification – Robust and Efficient Code

20
iCSC2016, Kim Albertsson, LTU

Methods of FV

 Model Checking

 General tool

 Tricky problem

 Theorem Proving

 General tool

 Tricky problem

Verification

Model

Checking

Theorem

Proving

Formal Methods

Formal Verification – Robust and Efficient Code

21
iCSC2016, Kim Albertsson, LTU

Model Checking

 Verifies that property

holds for all states

 Explores all model states

 Suitable for finite state

models

 Program verification

 Model program as a graph

Formal Verification – Robust and Efficient Code

22
iCSC2016, Kim Albertsson, LTU

Model Checking

 Pros

 Easy start-up with when applicable

 Cons

 Requires clever algorithms

 Must start anew each time

Formal Verification – Robust and Efficient Code

23
iCSC2016, Kim Albertsson, LTU

Theorem Proving

 Define a formal logic system

 With inference rules

 Proofs are derived by applying rules

 By hand or by machine

 Turns out full automation is a tricky problem

 Interactive provers, or proof assistants

Formal Verification – Robust and Efficient Code

24
iCSC2016, Kim Albertsson, LTU

Overview
 Introduction

 Practical examples

 Specification

 Testing vs. Proving

 Contracts

 Methods of Formal Verification

 Model Checking

 Theorem Proving

 In-depth Theorem Proving

 First Order Logic

 Satisfiability Modulo Theories

 Verification Platforms

Formal Verification – Robust and Efficient Code

25
iCSC2016, Kim Albertsson, LTU

First Order Logic

 Object variables
 Refers to a unique object

 Names like x, jim, 1

 Predicates
 Relations like =, <,

AtHome

 Connectives
 ∧,∨,→,=

 Functions
 Complex names

 mother(jim)

 head(x)

 1+1

 Sentence
 Combination of the above

 mother(jim) = kimberly

 head(x) < 1

Formal Verification – Robust and Efficient Code

26
iCSC2016, Kim Albertsson, LTU

First Order Logic

Formal Verification – Robust and Efficient Code

27
iCSC2016, Kim Albertsson, LTU

First Order Logic

 Quantifiers

 ∀ — for all

 ∃ — existence

 Usage

 ∀x. Programmer(x) → Happy(x)

 ∃x. Programmer(x) → ProducesBugs(x)

 ∃x∀y. Loves(x, y)

Formal Verification – Robust and Efficient Code

28
iCSC2016, Kim Albertsson, LTU

Hoare Logic

 P, Precondition

 Q, Postcondition

 C, Command

 When C is executed under P,

Q is guaranteed

 Rules required for each

action of a language

Formal Verification – Robust and Efficient Code

29
iCSC2016, Kim Albertsson, LTU

Hoare Logic

 Composition

 Allows commands to be

executed in sequence

 While rule

 Models while-statement

 P is called loop invariant

 Can be extended to prove

termination

Formal Verification – Robust and Efficient Code

30
iCSC2016, Kim Albertsson, LTU

Theories

 Theory

 Set of sentences that are assumed to be true, T

 Axiom

 Each element in T

 Theorem

 Any sentence that can be concluded from the theory

 Example

 Peano arithmetic, theory of lists…

Formal Verification – Robust and Efficient Code

31
iCSC2016, Kim Albertsson, LTU

Satisfiability Modulo Theories

 Hoare logic

 To reason about programs

 Reasoning expressed

 First order logic

 Verification conditions

(VC)

Formal Verification – Robust and Efficient Code

32
iCSC2016, Kim Albertsson, LTU

Satisfiability Modulo Theories

 Similar to Binary Satisfiability problem, SAT

 One of the first problems to be shown to be NP-complete

 Find assignment of x, y, z … so that the expression is satisfied

 SAT variables are boolean

 SMTs are extended to handle FOL constructs

 Verifying a proof is easy

 Check each step for validity assuming our logic system

Formal Verification – Robust and Efficient Code

33
iCSC2016, Kim Albertsson, LTU

Satisfiability Modulo Theories

 Formulas are considered w.r.t background theory

 For formula F, assume ¬F

 F is valid when ¬F is not satisfiable under T

 Modern solvers use heuristics

 Improves performance for specific theories

 At the cost of general performance

Formal Verification – Robust and Efficient Code

34
iCSC2016, Kim Albertsson, LTU

Satisfiability Modulo Theories

 Example in alt-ergo

 Try for yourself https://alt-ergo.ocamlpro.com/try.php

logic x, y, z: prop

axiom a_1:

(x and not y) -> (y or z)

axiom a_2:

y -> not x

axiom a_3:

x

goal g_1: z

[answer] Valid (0.0060 seconds) (3 steps)

Formal Verification – Robust and Efficient Code

35
iCSC2016, Kim Albertsson, LTU

Verification Platforms

 Unified interface for

provers

 Generates verification

conditions (VCs)

 Discharged by any

compliant prover,

interactive or automatic

 Examples

 why3, boogie

Formal Verification – Robust and Efficient Code

36
iCSC2016, Kim Albertsson, LTU

Example

let insertion_sort (a: array int) =

for i = 1 to length a - 1 do

let v = a[i] in

let j = ref i in

while !j > 0 && a[!j - 1] > v do

a[!j] <- a[!j - 1];

j := !j - 1

done;

a[!j] <- v

done

end

Formal Verification – Robust and Efficient Code

37
iCSC2016, Kim Albertsson, LTU

Example
let insertion_sort (a: array int) =

ensures { sorted a }

for i = 1 to length a - 1 do

invariant { sorted_sub a 0 i }

let v = a[i] in

let j = ref i in

while !j > 0 && a[!j - 1] > v do

invariant { 0 <= !j <= i }

invariant { forall k1 k2: int. 0 <= k1 <= k2 <= i

-> k1 <> !j

-> k2 <> !j -> a[k1] <= a[k2] }

invariant { forall k: int. !j+1 <= k <= i

-> v < a[k] }

a[!j] <- a[!j - 1];

j := !j - 1

done;

a[!j] <- v

done

end

Formal Verification – Robust and Efficient Code

38
iCSC2016, Kim Albertsson, LTU

Example
let insertion_sort (a: array int) =

ensures { sorted a }

for i = 1 to length a - 1 do

invariant { sorted_sub a 0 i }

let v = a[i] in

let j = ref i in

while !j > 0 && a[!j - 1] > v do

invariant { 0 <= !j <= i }

invariant { forall k1 k2: int. 0 <= k1 <= k2 <= i

-> k1 <> !j

-> k2 <> !j -> a[k1] <= a[k2] }

invariant { forall k: int. !j+1 <= k <= i

-> v < a[k] }

a[!j] <- a[!j - 1];

j := !j - 1

done;

a[!j] <- v

done

end

Formal Verification – Robust and Efficient Code

39
iCSC2016, Kim Albertsson, LTU

Example
let insertion_sort (a: array int) =

ensures { sorted a }

for i = 1 to length a - 1 do

invariant { sorted_sub a 0 i }

let v = a[i] in

let j = ref i in

while !j > 0 && a[!j - 1] > v do

invariant { 0 <= !j <= i }

invariant { forall k1 k2: int. 0 <= k1 <= k2 <= i

-> k1 <> !j

-> k2 <> !j -> a[k1] <= a[k2] }

invariant { forall k: int. !j+1 <= k <= i

-> v < a[k] }

a[!j] <- a[!j - 1];

j := !j - 1

done;

a[!j] <- v

done

end

Formal Verification – Robust and Efficient Code

40
iCSC2016, Kim Albertsson, LTU

Example

 i, j are loop variables

 v holds the current

element

 We are sorting

subsegment [0, i]

Formal Verification – Robust and Efficient Code

41
iCSC2016, Kim Albertsson, LTU

Example
let insertion_sort (a: array int) =

ensures { sorted a }

for i = 1 to length a - 1 do

invariant { sorted_sub a 0 i }

let v = a[i] in

let j = ref i in

while !j > 0 && a[!j - 1] > v do

invariant { 0 <= !j <= i }

invariant { forall k1 k2: int. 0 <= k1 <= k2 <= i

-> k1 <> !j

-> k2 <> !j -> a[k1] <= a[k2] }

invariant { forall k: int. !j+1 <= k <= i

-> v < a[k] }

a[!j] <- a[!j - 1];

j := !j - 1

done;

a[!j] <- v

done

end

Formal Verification – Robust and Efficient Code

42
iCSC2016, Kim Albertsson, LTU

Recap of Lecture 1

 FV manages complexity

 Finds errors early

 Save money, time and possibly

life

 Proof is a demonstration

 Consistency of specification and

implementation

Image from Wikimedia Commons, the free media repository

Formal Verification – Robust and Efficient Code

43
iCSC2016, Kim Albertsson, LTU

Recap of Lecture 1

 Proving properties

about your system

 Model Checking

 Exhaustive search of state

space

 Theorem Proving

 Deductive approach

Verification

Model

Checking

Theorem

Proving

Formal Methods

Formal Verification – Robust and Efficient Code

44
iCSC2016, Kim Albertsson, LTU

Recap of Lecture 1

 Theorem Proving

 Based on First Order

Logic

 Satisfiability Modulo

Theories (SMT) solvers to

find application of rules

 IVT platforms front-end

with many SMT backends

Formal Verification – Robust and Efficient Code

45
iCSC2016, Kim Albertsson, LTU

Thank you

