

Formal Verification – Robust and Efficient Code Lecture **1**

Introduction to FV

Kim Albertsson

Luleå University of Technology

Inverted CERN School of Computing, 29 February – 2 March 2016

iCSC2016, Kim Albertsson, LTU

Introduction

Kim Albertsson

- M.Sc. Engineering Physics and Electrical Engineering
- Currently studying for M.Sc.
 Computer Science

Research interests

- Automation
- Machine learning

Formal methods

 Great way to automate tedious tasks

Image from Wikimedia Commons, the free media repository

Formal Methods

- Managing complexity
- "...mathematically based languages, techniques, and tools for specifying and verifying ... systems."
 Edmund M. Clarke et al.
- Reveals inconsistencies and ambiguities

Formal Methods

- Specification + Model + Implementation enables verification
- Proving properties for a system
 - Will my algorithm sort the input?
 - Will my soda pop be delivered in time?
 - Can the LHC interlock system end up in an inconsistent state?

Overview Series

Approaches

- Model Checking and Theorem Proving
- Logic and automation
- How to build an ecosystem

Application

- Robust code
- Robust and Efficient code

Introduction Lecture 1

Introduction

- Practical examples
- Specification
- Testing vs. Proving
- Contracts

Methods of Formal Verification

- Model Checking
- Theorem Proving

In-depth Theorem Proving

- First Order Logic
- Satisfiability Modulo Theories
- Verification Platforms

Introduction Lecture 1

Errors discovered late

- Expensive
- FV requires
 - More effort for specification

FV gives

- Feedback on inconsistencies
- Reduces late errors
- Reduces total time

Overview

Introduction

- Practical examples
- Specification
- Testing vs. Proving
- Contracts
- Methods of Formal Verification
 - Model Checking
 - Theorem Proving
- In-depth Theorem Proving
 - First Order Logic
 - Satisfiability Modulo Theories
 - Verification Platforms

Practical Examples

- Space flight, Ariane 5 501
- Avionics, Lockheed

Ariane 5 - 501

Ariane 5

- Reused inertial reference system of Ariane 4
- Greater horizontal acceleration
- 64-bit float cast to 16-bit integer overflowed
- Expensive bug discovery

Image from Wikimedia Commons, the free media repository

Lockheed C130J

C130J Hercules

- Secure low-level flight control code
- Review concluded
 - Improved quality of product
 - Decreased cost of development

Image from Wikimedia Commons, the free media repository

Specification

- Concise, high level description of behaviour
- Varying degree of rigour
 - Informal; written English
 - Formal; using standardised syntax
- Required for verification

Formal Verification – Robust and Efficient Code

A verified program has demonstrated that specification is consistent with implementation

Specification

Example in whyML

...

let bubblesort (a: array int) = requires { ... } ensures { sorted a }

Testing vs. Proving

Testing

 Limited to particular point in input space

Proving

 Reason about complete input space

Contract

A contract consists of

- pre-condition, that must hold before execution
- post-condition, that must hold after execution

Weakest precondition

 The set of least restrictive of pre-conditions that still ensure the post-condition

System Composition

System Composition

Overview

Introduction

- Practical examples
- Specification
- Testing vs. Proving
- Contracts

Methods of Formal Verification

- Model Checking
- Theorem Proving

In-depth Theorem Proving

- First Order Logic
- Satisfiability Modulo Theories
- Verification Platforms

Methods of FV

Model Checking

- General tool
- Tricky problem

Theorem Proving

- General tool
- Tricky problem

Model Checking

- Verifies that property holds for all states
 - Explores all model states
 - Suitable for finite state models
- Program verification
 - Model program as a graph

Model Checking

Pros

Easy start-up with when applicable

Cons

- Requires clever algorithms
- Must start anew each time

Theorem Proving

Define a formal logic system

With inference rules

Proofs are derived by applying rules

- By hand or by machine
- Turns out full automation is a tricky problem
 - Interactive provers, or proof assistants

Overview

Introduction

- Practical examples
- Specification
- Testing vs. Proving
- Contracts
- Methods of Formal Verification
 - Model Checking
 - Theorem Proving

In-depth Theorem Proving

- First Order Logic
- Satisfiability Modulo Theories
- Verification Platforms

First Order Logic

Object variables

- Refers to a unique object
- Names like x, jim, 1

Predicates

 Relations like =, <, AtHome

Connectives

▲ ∧,∨,→,=

Functions

- Complex names
- mother(jim)
- head(x)
- 1+1

Sentence

- Combination of the above
- mother(jim) = kimberly
- head(x) < 1</p>

First Order Logic

Implication elimination

Conjugation Introduction

u	,	U		
•	a	\wedge	b	

Disjunctive Syllogism

$$\frac{a \lor b, \ \neg a}{\therefore b}$$

(1)	$ x \land \neg y \to y \lor z$	
(2)	$y \to \neg x$	
(3)	x	
(4)	y	assump.
(5)	$\neg x$	impl. elim. (2, 3)
(6)	$\neg y$	neg. intro. (3, 5)
(7)	$x \land \neg y$	conj. intro. (3, 7)
(8)	$y \lor z$	impl. elim. (1, 7)
(9)	z	dis. syll. (6, 8)

First Order Logic

Quantifiers

- ∃ existence

Usage

- $\forall x. Programmer(x) \rightarrow Happy(x)$
- $\exists x. Programmer(x) \rightarrow ProducesBugs(x)$
- ∃x∀y. Loves(x, y)

Hoare Logic

- P, Precondition
- Q, Postcondition
- C, Command
- When C is executed under P, Q is guaranteed
- Rules required for each action of a language

$$[P\} C \{Q\}$$

$$\{x + 1 < N\} x := x + 1 \{x \le N\}$$

Hoare Logic

Composition

 Allows commands to be executed in sequence

While rule

- Models while-statement
- P is called loop invariant
- Can be extended to prove termination

 $\frac{\{P\} S \{Q\} \ , \ \{Q\} T \{R\}}{\{P\} S \ , \ T \{R\}}$

 ${P \land B} S {Q}$ {P} while B do S done { $\neg B \land P$ }

Theories

Theory

Set of sentences that are assumed to be true, T

Axiom

Each element in T

Theorem

Any sentence that can be concluded from the theory

Example

Peano arithmetic, theory of lists...

Satisfiability Modulo Theories

Hoare logic

- To reason about programs
- Reasoning expressed
 - First order logic

 ${x+1 < N} x := x+1 {x \le N}$

 $\{P\} C \{Q\}$

 Verification conditions (VC)

Satisfiability Modulo Theories $(x \land \neg y) \land (y \lor z)$

Similar to Binary Satisfiability problem, SAT

- One of the first problems to be shown to be NP-complete
- Find assignment of x, y, z ... so that the expression is satisfied

SAT variables are boolean

SMTs are extended to handle FOL constructs

Verifying a proof is easy

Check each step for validity assuming our logic system

Satisfiability Modulo Theories

Formulas are considered w.r.t background theory

- For formula F, assume ¬F
- F is valid when ¬F is not satisfiable under T

Modern solvers use heuristics

- Improves performance for specific theories
- At the cost of general performance

Satisfiability Modulo Theories

Example in alt-ergo

Try for yourself https://alt-ergo.ocamlpro.com/try.php

```
logic x, y, z: prop
axiom a_1:
    (x and not y) -> (y or z)
axiom a_2:
    y -> not x
axiom a_3:
    x
goal g_1: z
# [answer] Valid (0.0060 seconds) (3 steps)
```


Verification Platforms

- Unified interface for provers
- Generates verification conditions (VCs)
 - Discharged by any compliant prover, interactive or automatic
- Examples
 - why3, boogie


```
let insertion sort (a: array int) =
  for i = 1 to length a - 1 do
    let v = a[i] in
    let j = ref i in
    while !j > 0 && a[!j - 1] > v do
      a[!j] <- a[!j - 1];
      j := !j − 1
    done;
    a[!j] <- v
  done
end
```



```
let insertion sort (a: array int) =
      ensures { sorted a }
      for i = 1 to length a - 1 do
         invariant { sorted sub a 0 i }
         let v = a[i] in
            let j = ref i in
            while !j > 0 \&\& a[!j - 1] > v do
                invariant { 0 \le !j \le i }
                invariant { forall k1 k2: int. 0 \le k1 \le k2 \le i
                          -> k1 <> !i
                          -> k2 <> !j -> a[k1] <= a[k2] \}
                invariant { forall k: int. !j+1 \leq k \leq i
                         -> v < a[k] 
                a[!j] <- a[!j - 1];
                j := !j - 1
            done;
            a[!j] <- v
         done
37 end
```



```
let insertion sort (a: array int) =
      ensures { sorted a }
      for i = 1 to length a - 1 do
          invariant { sorted sub a 0 i }
         let v = a[i] in
             let j = ref i in
             while !j > 0 \&\& a[!j - 1] > v do
                invariant { 0 \leq !j \leq i }
                invariant { forall k1 k2: int. 0 \le k1 \le k2 \le i
                           -> k1 <> !j
                           -> k2 <> !j -> a[k1] <= a[k2] }
                invariant { forall k: int. !j+1 \leq k \leq i
                         -> v < a[k] }
                a[!j] <- a[!j - 1];
                j := !j - 1
             done;
             a[!j] <- v
         done
38 end
```



```
let insertion sort (a: array int) =
      ensures { sorted a }
      for i = 1 to length a - 1 do
          invariant { sorted sub a 0 i }
          let v = a[i] in
             let j = ref i in
             while !j > 0 \&\& a[!j - 1] > v do
                invariant { 0 <= !j <= i }</pre>
                invariant { forall k1 k2: int. 0 \le k1 \le k2 \le i
                           -> k1 <> !i
                           -> k2 <> !j -> a[k1] <= a[k2] \}
                invariant { forall k: int. !j+1 <= k <= i</pre>
                          -> v < a[k] }
                a[!j] <- a[!j - 1];
                j := !j - 1
             done;
             a[!j] <- v
          done
39 end
```

0 < j < i

- i, j are loop variables
- v holds the current element
- We are sorting subsegment [0, i]


```
let insertion sort (a: array int) =
      ensures { sorted a }
      for i = 1 to length a - 1 do
          invariant { sorted sub a 0 i }
         let v = a[i] in
             let j = ref i in
             while !j > 0 \&\& a[!j - 1] > v do
                invariant { 0 \le !j \le i }
                invariant { forall k1 k2: int. 0 \le k1 \le k2 \le i
                           -> k1 <> !i
                           -> k2 <> !j -> a[k1] <= a[k2] \}
                invariant { forall k: int. !j+1 \leq k \leq i
                         -> v < a[k] \}
                a[!j] <- a[!j - 1];
                j := !j - 1
             done;
             a[!j] <- v
         done
41 end
```


Recap of Lecture 1

- FV manages complexity
- Finds errors early
 - Save money, time and possibly life
- Proof is a demonstration
 - Consistency of specification and implementation

Image from Wikimedia Commons, the free media repository

Recap of Lecture 1

- Proving properties about your system
- Model Checking
 - Exhaustive search of state space
- Theorem Proving
 - Deductive approach

Recap of Lecture 1

Theorem Proving

- Based on First Order Logic
- Satisfiability Modulo Theories (SMT) solvers to find application of rules
- IVT platforms front-end with many SMT backends

Formal Verification – Robust and Efficient Code

Thank you

iCSC2016, Kim Albertsson, LTU