
Applied Parallel Computing LLC
http://parallel-computing.pro

Generic approach to Legacy Fortran code porting on GPU

Dmitry Mikushin (APC LLC), Alexey Ivakhnenko (APC LLC), Anna Kuznetsova (APC LLC),
Igor Zacharov (EPFL / Eurotech), Eric McIntosh (CERN)

October 20, 2015

http://parallel-computing.pro

Abstract

In this seminar we will present our methodology of unleashing the potential of GPU computing in legacy
Fortran codes: to what degree the source code has to be modified to become usable on GPUs, how to turn
single-threaded Fortran code into multi-threaded ensemble, how to pack all code into single GPU kernel to
minimize synchronization stalls, how to map small loops onto parallel threads with custom directives and
LLVM/NVVM, how to retain the preferred Fortran formatted outputs and other questions. The seminar is
intended to introduce scientific code developers into techniques beyond the standard CUDA/OpenCL/Ope-
nACC programming methodology, conserve the existing codebase and achieve high GPU utilization.

Dmitry Mikushin et al. Legacy Fortran code porting on GPU October 20, 2015 1 / 19

Fortran on GPUs

Directives
OpenACC
OpenMP 4.0

CUDA
CUDA Fortran (proprietary, free academic license from 2015 on)
GCC: GCC Fortran frontend ⇒ DragonEgg ⇒ LLVM IR ⇒ PTX (NVIDIA) ⇒ AMDIL (AMD)
Open64: GCC Fortran frontend ⇒ WHIRL ⇒ PTX (NVIDIA)

Dmitry Mikushin et al. Legacy Fortran code porting on GPU October 20, 2015 2 / 19

Examples

OpenACC (Fortran)

!$acc kernels loop independent
do i = 1, n
y(i) = y(i) + a * x(i)

enddo

OpenMP 4.0 (C)

#pragma omp target data map(to:x[0:n]) map(tofrom:y[0:n])
{

#pragma omp target
#pragma omp for
for (int i = 0; i < n; i++)

y[i] += a * x[i];
}

CUDA Fortran

attributes(global) subroutine axpy(a, x, y, n)
implicit none

double precision, value :: a
double precision, dimension(:), device :: x, y
integer, value :: n
integer :: i

i = (blockIdx%x - 1) * blockDim%x + threadIdx%x
if (i <= n) then
y(i) = y(i) + a * x(i)

endif

end subroutine axpy
...
call axpy<<<nblocks, nthreads>>>(
a, x_dev, y_dev, n)

Dmitry Mikushin et al. Legacy Fortran code porting on GPU October 20, 2015 3 / 19

Examples

OpenACC (Fortran)

!$acc kernels loop independent
do i = 1, n
y(i) = y(i) + a * x(i)

enddo

OpenMP 4.0 (C)

#pragma omp target data map(to:x[0:n]) map(tofrom:y[0:n])
{

#pragma omp target
#pragma omp for
for (int i = 0; i < n; i++)

y[i] += a * x[i];
}

CUDA Fortran

attributes(global) subroutine axpy(a, x, y, n)
implicit none

double precision, value :: a
double precision, dimension(:), device :: x, y
integer, value :: n
integer :: i

i = (blockIdx%x - 1) * blockDim%x + threadIdx%x
if (i <= n) then
y(i) = y(i) + a * x(i)

endif

end subroutine axpy
...
call axpy<<<nblocks, nthreads>>>(
a, x_dev, y_dev, n)

Dmitry Mikushin et al. Legacy Fortran code porting on GPU October 20, 2015 3 / 19

Examples

OpenACC (Fortran)

!$acc kernels loop independent
do i = 1, n
y(i) = y(i) + a * x(i)

enddo

OpenMP 4.0 (C)

#pragma omp target data map(to:x[0:n]) map(tofrom:y[0:n])
{

#pragma omp target
#pragma omp for
for (int i = 0; i < n; i++)

y[i] += a * x[i];
}

CUDA Fortran

attributes(global) subroutine axpy(a, x, y, n)
implicit none

double precision, value :: a
double precision, dimension(:), device :: x, y
integer, value :: n
integer :: i

i = (blockIdx%x - 1) * blockDim%x + threadIdx%x
if (i <= n) then
y(i) = y(i) + a * x(i)

endif

end subroutine axpy
...
call axpy<<<nblocks, nthreads>>>(

a, x_dev, y_dev, n)

Dmitry Mikushin et al. Legacy Fortran code porting on GPU October 20, 2015 3 / 19

Open-source LLVM-based OpenMP 4.0 compiler for NVIDIA CUDA GPUs

Part I:

$ mkdir -p $HOME/forge/openmp4
$ cd $HOME/forge/openmp4

$ git clone https://github.com/clang-omp/llvm_trunk llvm
$ git clone https://github.com/clang-omp/compiler-rt_trunk llvm/projects/compiler-rt
$ git clone https://github.com/clang-omp/clang_trunk llvm/tools/clang

$ cd llvm/
$ mkdir build
$ cd build/
$ cmake -DCMAKE_INSTALL_PREFIX=$HOME/forge/openmp4/llvm/install ..
$ make -j12
$ make install
$ export PATH=$PATH:$HOME/forge/openmp4/llvm/build/bin/
$ export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$HOME/forge/openmp4/llvm/install/lib

$ cd $HOME/forge/openmp4
$ git clone http://llvm.org/git/openmp.git
$ cd openmp/runtime/

Dmitry Mikushin et al. Legacy Fortran code porting on GPU October 20, 2015 4 / 19

Open-source LLVM-based OpenMP 4.0 compiler for NVIDIA CUDA GPUs

Part II:

$ mkdir build
$ cd build/
$ cmake -DCMAKE_INSTALL_PREFIX=$HOME/forge/openmp4/llvm/install ..
$ make -j12
$ make install

$ cd $HOME/forge/openmp4
$ git clone https://github.com/clang-omp/libomptarget.git
$ cd libomptarget
$ mkdir build
$ cd build
$ cmake -DCMAKE_INSTALL_PREFIX=$HOME/forge/openmp4/llvm/install -DOMPTARGET_NVPTX_SM=30,35 ..
$ make -j12
$ cp -rf lib/libomptarget* $HOME/forge/openmp4/llvm/install/lib/

Now we can compile example.c with OpenMP 4.0 directives using the following command:

LIBRARY_PATH=$(shell dirname $(shell which clang-3.8))/../lib clang-3.8 -fopenmp -omptargets=←↩
nvptx64sm_30-nvidia-linux -g -O3 -std=c99 $< -o $@

Dmitry Mikushin et al. Legacy Fortran code porting on GPU October 20, 2015 5 / 19

Realistic cases are actually much more complex

1 CPU↔GPU data transfers are very expensive ⇒ variables have to be coordinated to persist in GPU
memory as much as possible ⇒ more code has to be ported onto GPU to avoid data transfers

OpenACC approach: define persistent data region and share the GPU data across all nested kernels

Dmitry Mikushin et al. Legacy Fortran code porting on GPU October 20, 2015 6 / 19

Realistic cases are actually much more complex

1 CPU↔GPU data transfers are very expensive ⇒ variables have to be coordinated to persist in GPU
memory as much as possible ⇒ more code has to be ported onto GPU to avoid data transfers

#pragma acc data create (w0[0:szarray], w1[0:szarray])
{

...
#pragma acc kernels present(w0[0:szarray], w1[0:szarray])
...

}
#pragma acc update device(w0[0:szarray], w1[0:szarray])

OpenACC approach: define persistent data region and share the GPU data across all nested kernels

Dmitry Mikushin et al. Legacy Fortran code porting on GPU October 20, 2015 6 / 19

Realistic cases are actually much more complex

2 Parallel workflow must be coordinated across multiple source files
Nested routines must be aware they are called from within the GPU kernel:

Older (simpler) OpenACC compilers do not inline very well

Dmitry Mikushin et al. Legacy Fortran code porting on GPU October 20, 2015 7 / 19

Realistic cases are actually much more complex

2 Parallel workflow must be coordinated across multiple source files
Nested routines must be aware they are called from within the GPU kernel:

sincos.f90

!$acc kernels loop
do k = 1, nz

do j = 1, ny
do i = 1, nx
xy(i, j, k) = sincos_ijk(x(i, j, k), y(i, j, k))

enddo
enddo

enddo

function.f90

function sincos_ijk(x, y)

implicit none
real, intent(in) :: x, y
real :: sincos_ijk

sincos_ijk = sin(x) + cos(y)

end function sincos_ijk

Older (simpler) OpenACC compilers do not inline very well

Dmitry Mikushin et al. Legacy Fortran code porting on GPU October 20, 2015 7 / 19

Realistic cases are actually much more complex

2 Parallel workflow must be coordinated across multiple source files
Nested routines must be aware they are called from within the GPU kernel:

sincos.f90

!$acc kernels loop
do k = 1, nz

do j = 1, ny
do i = 1, nx
xy(i, j, k) = sincos_ijk(x(i, j, k), y(i, j, k))

enddo
enddo

enddo

function.f90

function sincos_ijk(x, y)

implicit none
real, intent(in) :: x, y
real :: sincos_ijk

sincos_ijk = sin(x) + cos(y)

end function sincos_ijk

Older (simpler) OpenACC compilers do not inline very well

Dmitry Mikushin et al. Legacy Fortran code porting on GPU October 20, 2015 7 / 19

Realistic cases are actually much more complex

3 Order of loops has often to be changed:

!$acc kernels
!$acc loop collapse(2)
do j = j_start, j_end
do i = i_start, i_end
do k = kts,ktf

mrdx=msfux(i,j)*rdx
tendency(i,k,j)=tendency(i,k,j)-mrdx*0.25 &
((ru(i+1,k,j)+ru(i,k,j))(u(i+1,k,j)+u(i,k,j)) &
-(ru(i,k,j)+ru(i-1,k,j))*(u(i,k,j)+u(i-1,k,j)))

enddo
enddo

enddo

The j-i-k layout above is the most efficient arrangement for GPU execution:
Iterations of outer loops are mapped to GPU threads
Adjacent threads in Warp are used to process consecutive elements in same column
Sequential inner loop processes consecutive columns with coordinated threads

Dmitry Mikushin et al. Legacy Fortran code porting on GPU October 20, 2015 8 / 19

Realistic cases are actually much more complex

3 Order of loops has often to be changed:

!$acc kernels
!$acc loop collapse(2)
do j = j_start, j_end
do i = i_start, i_end
do k = kts,ktf

mrdx=msfux(i,j)*rdx
tendency(i,k,j)=tendency(i,k,j)-mrdx*0.25 &
((ru(i+1,k,j)+ru(i,k,j))(u(i+1,k,j)+u(i,k,j)) &
-(ru(i,k,j)+ru(i-1,k,j))*(u(i,k,j)+u(i-1,k,j)))

enddo
enddo

enddo

The j-i-k layout above is the most efficient arrangement for GPU execution:
Iterations of outer loops are mapped to GPU threads
Adjacent threads in Warp are used to process consecutive elements in same column
Sequential inner loop processes consecutive columns with coordinated threads

Dmitry Mikushin et al. Legacy Fortran code porting on GPU October 20, 2015 8 / 19

Realistic cases are actually much more complex

3 Order of loops has often to be changed:

!$acc kernels
!$acc loop collapse(2)
do j = j_start, j_end
do i = i_start, i_end
do k = kts,ktf

mrdx=msfux(i,j)*rdx
tendency(i,k,j)=tendency(i,k,j)-mrdx*0.25 &
((ru(i+1,k,j)+ru(i,k,j))(u(i+1,k,j)+u(i,k,j)) &
-(ru(i,k,j)+ru(i-1,k,j))*(u(i,k,j)+u(i-1,k,j)))

enddo
enddo

enddo

The j-i-k layout above is the most efficient arrangement for GPU execution:
Iterations of outer loops are mapped to GPU threads
Adjacent threads in Warp are used to process consecutive elements in same column
Sequential inner loop processes consecutive columns with coordinated threads

Dmitry Mikushin et al. Legacy Fortran code porting on GPU October 20, 2015 8 / 19

Realistic cases are actually much more complex

3 Order of loops has often to be changed:

!$acc kernels
!$acc loop collapse(2)
do j = j_start, j_end
do i = i_start, i_end
do k = kts,ktf

mrdx=msfux(i,j)*rdx
tendency(i,k,j)=tendency(i,k,j)-mrdx*0.25 &
((ru(i+1,k,j)+ru(i,k,j))(u(i+1,k,j)+u(i,k,j)) &
-(ru(i,k,j)+ru(i-1,k,j))*(u(i,k,j)+u(i-1,k,j)))

enddo
enddo

enddo

The j-i-k layout above is the most efficient arrangement for GPU execution:
Iterations of outer loops are mapped to GPU threads
Adjacent threads in Warp are used to process consecutive elements in same column
Sequential inner loop processes consecutive columns with coordinated threads

Dmitry Mikushin et al. Legacy Fortran code porting on GPU October 20, 2015 8 / 19

Realistic cases are actually much more complex

3 Order of loops has often to be changed:

!$acc kernels
!$acc loop collapse(2)
do j = j_start, j_end
do i = i_start, i_end
do k = kts,ktf

mrdx=msfux(i,j)*rdx
tendency(i,k,j)=tendency(i,k,j)-mrdx*0.25 &
((ru(i+1,k,j)+ru(i,k,j))(u(i+1,k,j)+u(i,k,j)) &
-(ru(i,k,j)+ru(i-1,k,j))*(u(i,k,j)+u(i-1,k,j)))

enddo
enddo

enddo

The j-i-k layout above is the most efficient arrangement for GPU execution:
Iterations of outer loops are mapped to GPU threads
Adjacent threads in Warp are used to process consecutive elements in same column
Sequential inner loop processes consecutive columns with coordinated threads

Dmitry Mikushin et al. Legacy Fortran code porting on GPU October 20, 2015 8 / 19

Approaches taken in Fortran code porting on GPUs

COSMO Regional NWP model, MeteoSwiss
Source: Modern Fortran 90/2003, 195K cloc
Method:

Dynamics: code rewrite into C++, using library with CUDA backend
(59% of runtime)
Physics: OpenACC directives in existing Fortran code (22% of
runtime)
8+ developers, project started in 2012

2.5× overall speedup of hybrid version

WRF Regional NWP model, NCAR
Source: Fortran 77/90, 440K cloc
Method:

Partial port of physics models in OpenACC
2× - 4.5× speedup on isolated selected code blocks
3 NVIDIA engineers + contractors, project started in 2013

Dmitry Mikushin et al. Legacy Fortran code porting on GPU October 20, 2015 9 / 19

Approaches taken in Fortran code porting on GPUs

COSMO Regional NWP model, MeteoSwiss
Source: Modern Fortran 90/2003, 195K cloc
Method:

Dynamics: code rewrite into C++, using library with CUDA backend
(59% of runtime)
Physics: OpenACC directives in existing Fortran code (22% of
runtime)
8+ developers, project started in 2012

2.5× overall speedup of hybrid version

WRF Regional NWP model, NCAR
Source: Fortran 77/90, 440K cloc
Method:

Partial port of physics models in OpenACC
2× - 4.5× speedup on isolated selected code blocks
3 NVIDIA engineers + contractors, project started in 2013

Dmitry Mikushin et al. Legacy Fortran code porting on GPU October 20, 2015 9 / 19

Our code is even more complex: Programmability

1 Dozens of common blocks

common /fordes/ nda,ndamaxi
common / da / cc(lst),eps,epsmac
common / dai / i1(lst),i2(lst), &
&ie1(lea),ie2(lea),ieo(lea),ia1(0:lia),ia2(0:lia),ifi(lea), &
&idano(lda),idanv(lda),idapo(lda),idalm(lda),idall(lda), &
&nst,nomax,nvmax,nmmax,nocut,lfi

No support for common blocks in CUDA Fortran and OpenACC

⇒ no choice, but to rewrite all common blocks as modules!

Dmitry Mikushin et al. Legacy Fortran code porting on GPU October 20, 2015 10 / 19

Our code is even more complex: Programmability

1 Dozens of common blocks

common /fordes/ nda,ndamaxi
common / da / cc(lst),eps,epsmac
common / dai / i1(lst),i2(lst), &
&ie1(lea),ie2(lea),ieo(lea),ia1(0:lia),ia2(0:lia),ifi(lea), &
&idano(lda),idanv(lda),idapo(lda),idalm(lda),idall(lda), &
&nst,nomax,nvmax,nmmax,nocut,lfi

No support for common blocks in CUDA Fortran and OpenACC

⇒ no choice, but to rewrite all common blocks as modules!

Dmitry Mikushin et al. Legacy Fortran code porting on GPU October 20, 2015 10 / 19

Our code is even more complex: Programmability

1 Dozens of common blocks

common /fordes/ nda,ndamaxi
common / da / cc(lst),eps,epsmac
common / dai / i1(lst),i2(lst), &
&ie1(lea),ie2(lea),ieo(lea),ia1(0:lia),ia2(0:lia),ifi(lea), &
&idano(lda),idanv(lda),idapo(lda),idalm(lda),idall(lda), &
&nst,nomax,nvmax,nmmax,nocut,lfi

No support for common blocks in CUDA Fortran and OpenACC

⇒ no choice, but to rewrite all common blocks as modules!

Dmitry Mikushin et al. Legacy Fortran code porting on GPU October 20, 2015 10 / 19

Our code is even more complex: Programmability

2 Interleaved compute and I/O

write(*,10080) hda(1,1,jord,0),hda(0,1,jord,0)
...

10080 format(/,’H_1,0 = ’,2x,e16.8,7x,’H_0,1 = ’, 2x,e16.8)

Modern CUDA C++ has printf support since Compute Capability 2.0
Unlike CUDA C++, CUDA Fortran does not support formatted output
⇒ Provide I/O support by other means:

Implement Fortran formatted I/O in software
GPU kernel: Aggregate the format strings and data from individual GPU threads to output buffer
Host CPU: Receive the output buffer and print its contents according to formats

Dmitry Mikushin et al. Legacy Fortran code porting on GPU October 20, 2015 11 / 19

Our code is even more complex: Programmability

2 Interleaved compute and I/O

write(*,10080) hda(1,1,jord,0),hda(0,1,jord,0)
...

10080 format(/,’H_1,0 = ’,2x,e16.8,7x,’H_0,1 = ’, 2x,e16.8)

Modern CUDA C++ has printf support since Compute Capability 2.0
Unlike CUDA C++, CUDA Fortran does not support formatted output
⇒ Provide I/O support by other means:

Implement Fortran formatted I/O in software
GPU kernel: Aggregate the format strings and data from individual GPU threads to output buffer
Host CPU: Receive the output buffer and print its contents according to formats

Dmitry Mikushin et al. Legacy Fortran code porting on GPU October 20, 2015 11 / 19

Our code is even more complex: Programmability

2 Interleaved compute and I/O

write(*,10080) hda(1,1,jord,0),hda(0,1,jord,0)
...

10080 format(/,’H_1,0 = ’,2x,e16.8,7x,’H_0,1 = ’, 2x,e16.8)

Modern CUDA C++ has printf support since Compute Capability 2.0
Unlike CUDA C++, CUDA Fortran does not support formatted output
⇒ Provide I/O support by other means:

Implement Fortran formatted I/O in software
GPU kernel: Aggregate the format strings and data from individual GPU threads to output buffer
Host CPU: Receive the output buffer and print its contents according to formats

Dmitry Mikushin et al. Legacy Fortran code porting on GPU October 20, 2015 11 / 19

Our code is even more complex: Programmability

2 Interleaved compute and I/O

write(*,10080) hda(1,1,jord,0),hda(0,1,jord,0)
...

10080 format(/,’H_1,0 = ’,2x,e16.8,7x,’H_0,1 = ’, 2x,e16.8)

Modern CUDA C++ has printf support since Compute Capability 2.0
Unlike CUDA C++, CUDA Fortran does not support formatted output
⇒ Provide I/O support by other means:

Implement Fortran formatted I/O in software
GPU kernel: Aggregate the format strings and data from individual GPU threads to output buffer
Host CPU: Receive the output buffer and print its contents according to formats

Dmitry Mikushin et al. Legacy Fortran code porting on GPU October 20, 2015 11 / 19

Our code is even more complex: Programmability

2 Interleaved compute and I/O

write(*,10080) hda(1,1,jord,0),hda(0,1,jord,0)
...

10080 format(/,’H_1,0 = ’,2x,e16.8,7x,’H_0,1 = ’, 2x,e16.8)

Modern CUDA C++ has printf support since Compute Capability 2.0
Unlike CUDA C++, CUDA Fortran does not support formatted output
⇒ Provide I/O support by other means:

Implement Fortran formatted I/O in software
GPU kernel: Aggregate the format strings and data from individual GPU threads to output buffer
Host CPU: Receive the output buffer and print its contents according to formats

Dmitry Mikushin et al. Legacy Fortran code porting on GPU October 20, 2015 11 / 19

Our code is even more complex: Programmability

2 Interleaved compute and I/O

write(*,10080) hda(1,1,jord,0),hda(0,1,jord,0)
...

10080 format(/,’H_1,0 = ’,2x,e16.8,7x,’H_0,1 = ’, 2x,e16.8)

Modern CUDA C++ has printf support since Compute Capability 2.0
Unlike CUDA C++, CUDA Fortran does not support formatted output
⇒ Provide I/O support by other means:

Implement Fortran formatted I/O in software
GPU kernel: Aggregate the format strings and data from individual GPU threads to output buffer
Host CPU: Receive the output buffer and print its contents according to formats

Dmitry Mikushin et al. Legacy Fortran code porting on GPU October 20, 2015 11 / 19

Our code is even more complex: Programmability

2 Interleaved compute and I/O

write(*,10080) hda(1,1,jord,0),hda(0,1,jord,0)
...

10080 format(/,’H_1,0 = ’,2x,e16.8,7x,’H_0,1 = ’, 2x,e16.8)

Modern CUDA C++ has printf support since Compute Capability 2.0
Unlike CUDA C++, CUDA Fortran does not support formatted output
⇒ Provide I/O support by other means:

Implement Fortran formatted I/O in software
GPU kernel: Aggregate the format strings and data from individual GPU threads to output buffer
Host CPU: Receive the output buffer and print its contents according to formats

Dmitry Mikushin et al. Legacy Fortran code porting on GPU October 20, 2015 11 / 19

Our code is even more complex: Programmability

3 Compatibility of data layouts on CPU and GPU

module da
use dabnews_consts
implicit none
double precision :: cc(lst),eps,epsmac

#ifndef GPU
bind(C,name=”__MOD_da_001_cc”) :: cc
bind(C,name=”__MOD_da_002_eps”) :: eps
bind(C,name=”__MOD_da_003_epsmac”) :: epsmac

#endif
#ifdef GPU

attributes(device) :: cc,eps,epsmac
#endif

save
end module da

With equal memory layouts, we can transfer experiment state between host and device with a single copy
operation (upon initialization, finalization and/or e.g. for dynamic offloading of inefficient setup back to
host)
Memory layout for modules could be different for data in CPU and in GPU memory
⇒ Use ISO_C_BINDING to enforce particular layout of data in modules

Dmitry Mikushin et al. Legacy Fortran code porting on GPU October 20, 2015 12 / 19

Our code is even more complex: Programmability

3 Compatibility of data layouts on CPU and GPU

module da
use dabnews_consts
implicit none
double precision :: cc(lst),eps,epsmac

#ifndef GPU
bind(C,name=”__MOD_da_001_cc”) :: cc
bind(C,name=”__MOD_da_002_eps”) :: eps
bind(C,name=”__MOD_da_003_epsmac”) :: epsmac

#endif
#ifdef GPU

attributes(device) :: cc,eps,epsmac
#endif

save
end module da

With equal memory layouts, we can transfer experiment state between host and device with a single copy
operation (upon initialization, finalization and/or e.g. for dynamic offloading of inefficient setup back to
host)
Memory layout for modules could be different for data in CPU and in GPU memory
⇒ Use ISO_C_BINDING to enforce particular layout of data in modules

Dmitry Mikushin et al. Legacy Fortran code porting on GPU October 20, 2015 12 / 19

Our code is even more complex: Programmability

3 Compatibility of data layouts on CPU and GPU

module da
use dabnews_consts
implicit none
double precision :: cc(lst),eps,epsmac

#ifndef GPU
bind(C,name=”__MOD_da_001_cc”) :: cc
bind(C,name=”__MOD_da_002_eps”) :: eps
bind(C,name=”__MOD_da_003_epsmac”) :: epsmac

#endif
#ifdef GPU

attributes(device) :: cc,eps,epsmac
#endif

save
end module da

With equal memory layouts, we can transfer experiment state between host and device with a single copy
operation (upon initialization, finalization and/or e.g. for dynamic offloading of inefficient setup back to
host)
Memory layout for modules could be different for data in CPU and in GPU memory
⇒ Use ISO_C_BINDING to enforce particular layout of data in modules

Dmitry Mikushin et al. Legacy Fortran code porting on GPU October 20, 2015 12 / 19

Our code is even more complex: Programmability

3 Compatibility of data layouts on CPU and GPU

module da
use dabnews_consts
implicit none
double precision :: cc(lst),eps,epsmac

#ifndef GPU
bind(C,name=”__MOD_da_001_cc”) :: cc
bind(C,name=”__MOD_da_002_eps”) :: eps
bind(C,name=”__MOD_da_003_epsmac”) :: epsmac

#endif
#ifdef GPU

attributes(device) :: cc,eps,epsmac
#endif

save
end module da

With equal memory layouts, we can transfer experiment state between host and device with a single copy
operation (upon initialization, finalization and/or e.g. for dynamic offloading of inefficient setup back to
host)
Memory layout for modules could be different for data in CPU and in GPU memory
⇒ Use ISO_C_BINDING to enforce particular layout of data in modules

Dmitry Mikushin et al. Legacy Fortran code porting on GPU October 20, 2015 12 / 19

Our code is even more complex: Programmability

4 Thread safety

module da
use dabnews_consts
implicit none
double precision :: cc(lst),eps,epsmac

#ifndef GPU
bind(C,name=”__MOD_da_001_cc”) :: cc
bind(C,name=”__MOD_da_002_eps”) :: eps
bind(C,name=”__MOD_da_003_epsmac”) :: epsmac

#endif
#ifdef GPU

attributes(device) :: cc,eps,epsmac
#endif

save
end module da

Unlike C++ classes, Fortran common blocks and modules exist as single instance
Ensemble simulations: individual instance of all datasets for each of parallel experiments
⇒ Clone space for datasets using low-level tweaks, to avoid too many changes into the code

Dmitry Mikushin et al. Legacy Fortran code porting on GPU October 20, 2015 13 / 19

Our code is even more complex: Programmability

4 Thread safety

module da
use dabnews_consts
implicit none
double precision :: cc(lst),eps,epsmac

#ifndef GPU
bind(C,name=”__MOD_da_001_cc”) :: cc
bind(C,name=”__MOD_da_002_eps”) :: eps
bind(C,name=”__MOD_da_003_epsmac”) :: epsmac

#endif
#ifdef GPU

attributes(device) :: cc,eps,epsmac
#endif

save
end module da

Unlike C++ classes, Fortran common blocks and modules exist as single instance
Ensemble simulations: individual instance of all datasets for each of parallel experiments
⇒ Clone space for datasets using low-level tweaks, to avoid too many changes into the code

Dmitry Mikushin et al. Legacy Fortran code porting on GPU October 20, 2015 13 / 19

Our code is even more complex: Programmability

4 Thread safety

module da
use dabnews_consts
implicit none
double precision :: cc(lst),eps,epsmac

#ifndef GPU
bind(C,name=”__MOD_da_001_cc”) :: cc
bind(C,name=”__MOD_da_002_eps”) :: eps
bind(C,name=”__MOD_da_003_epsmac”) :: epsmac

#endif
#ifdef GPU

attributes(device) :: cc,eps,epsmac
#endif

save
end module da

Unlike C++ classes, Fortran common blocks and modules exist as single instance
Ensemble simulations: individual instance of all datasets for each of parallel experiments
⇒ Clone space for datasets using low-level tweaks, to avoid too many changes into the code

Dmitry Mikushin et al. Legacy Fortran code porting on GPU October 20, 2015 13 / 19

Our code is even more complex: Programmability

4 Thread safety

module da
use dabnews_consts
implicit none
double precision :: cc(lst),eps,epsmac

#ifndef GPU
bind(C,name=”__MOD_da_001_cc”) :: cc
bind(C,name=”__MOD_da_002_eps”) :: eps
bind(C,name=”__MOD_da_003_epsmac”) :: epsmac

#endif
#ifdef GPU

attributes(device) :: cc,eps,epsmac
#endif

save
end module da

Unlike C++ classes, Fortran common blocks and modules exist as single instance
Ensemble simulations: individual instance of all datasets for each of parallel experiments
⇒ Clone space for datasets using low-level tweaks, to avoid too many changes into the code

Dmitry Mikushin et al. Legacy Fortran code porting on GPU October 20, 2015 13 / 19

Our code is even more complex: Performance

1 Getting enough degree of parallelism:
why to go ensemble?

The majority of parallel loops in the
SixTrack code is “for each alive particle”
Having one thread handling a single
particle, up to 2 warps (64 threads) could
be utilized on GPU
At least several hundred warps are
needed to utilize available resources of
high-end GPU
⇒ The only way to spend GPU power
efficiently is to run many experiments in
parallel

Figure: NVIDIA Maxwell architecture

Dmitry Mikushin et al. Legacy Fortran code porting on GPU October 20, 2015 14 / 19

Our code is even more complex: Performance

1 Getting enough degree of parallelism:
why to go ensemble?

The majority of parallel loops in the
SixTrack code is “for each alive particle”
Having one thread handling a single
particle, up to 2 warps (64 threads) could
be utilized on GPU
At least several hundred warps are
needed to utilize available resources of
high-end GPU
⇒ The only way to spend GPU power
efficiently is to run many experiments in
parallel

Figure: NVIDIA Maxwell architecture

Dmitry Mikushin et al. Legacy Fortran code porting on GPU October 20, 2015 14 / 19

Our code is even more complex: Performance

1 Getting enough degree of parallelism:
why to go ensemble?

The majority of parallel loops in the
SixTrack code is “for each alive particle”
Having one thread handling a single
particle, up to 2 warps (64 threads) could
be utilized on GPU
At least several hundred warps are
needed to utilize available resources of
high-end GPU
⇒ The only way to spend GPU power
efficiently is to run many experiments in
parallel

Figure: NVIDIA Maxwell architecture

Dmitry Mikushin et al. Legacy Fortran code porting on GPU October 20, 2015 14 / 19

Our code is even more complex: Performance

1 Getting enough degree of parallelism:
why to go ensemble?

The majority of parallel loops in the
SixTrack code is “for each alive particle”
Having one thread handling a single
particle, up to 2 warps (64 threads) could
be utilized on GPU
At least several hundred warps are
needed to utilize available resources of
high-end GPU
⇒ The only way to spend GPU power
efficiently is to run many experiments in
parallel

Figure: NVIDIA Maxwell architecture

Dmitry Mikushin et al. Legacy Fortran code porting on GPU October 20, 2015 14 / 19

Our code is even more complex: Performance

1 Getting enough degree of parallelism:
why to go ensemble?

The majority of parallel loops in the
SixTrack code is “for each alive particle”
Having one thread handling a single
particle, up to 2 warps (64 threads) could
be utilized on GPU
At least several hundred warps are
needed to utilize available resources of
high-end GPU
⇒ The only way to spend GPU power
efficiently is to run many experiments in
parallel

Figure: NVIDIA Maxwell architecture

Dmitry Mikushin et al. Legacy Fortran code porting on GPU October 20, 2015 14 / 19

Our code is even more complex: Performance

2 Getting enough degree of parallelism:
how to map ensemble onto GPU compute grid?

Single GPU kernel for each experiment
Up to 32-64 simultaneous kernels
(hardware limit), using CUDA streams or
dynamic parallelism
⇒ Still not enough degree of parallelism
Single block of GPU kernel for each
experiment, single GPU kernel shared
between all experiments
⇒ One experiment occupies 1 block, no
hardware limit, enough parallelism with
significant number of experiments

Grid

Block

block(0, 0)

block(1, 0)

block(m-1, 0) block(m-1,1)

thread(0, 0)

thread(k-1, 0) thread(k-1, l-1)

thread(0, l-1)

block(1, 1)

block(0, 1)

block(1, n-1)

block(0, n-1)

block(m-1, n-1)

Dmitry Mikushin et al. Legacy Fortran code porting on GPU October 20, 2015 15 / 19

Our code is even more complex: Performance

2 Getting enough degree of parallelism:
how to map ensemble onto GPU compute grid?

Single GPU kernel for each experiment
Up to 32-64 simultaneous kernels
(hardware limit), using CUDA streams or
dynamic parallelism
⇒ Still not enough degree of parallelism
Single block of GPU kernel for each
experiment, single GPU kernel shared
between all experiments
⇒ One experiment occupies 1 block, no
hardware limit, enough parallelism with
significant number of experiments

Grid

Block

block(0, 0)

block(1, 0)

block(m-1, 0) block(m-1,1)

thread(0, 0)

thread(k-1, 0) thread(k-1, l-1)

thread(0, l-1)

block(1, 1)

block(0, 1)

block(1, n-1)

block(0, n-1)

block(m-1, n-1)

Dmitry Mikushin et al. Legacy Fortran code porting on GPU October 20, 2015 15 / 19

Our code is even more complex: Performance

2 Getting enough degree of parallelism:
how to map ensemble onto GPU compute grid?

Single GPU kernel for each experiment
Up to 32-64 simultaneous kernels
(hardware limit), using CUDA streams or
dynamic parallelism
⇒ Still not enough degree of parallelism
Single block of GPU kernel for each
experiment, single GPU kernel shared
between all experiments
⇒ One experiment occupies 1 block, no
hardware limit, enough parallelism with
significant number of experiments

Grid

Block

block(0, 0)

block(1, 0)

block(m-1, 0) block(m-1,1)

thread(0, 0)

thread(k-1, 0) thread(k-1, l-1)

thread(0, l-1)

block(1, 1)

block(0, 1)

block(1, n-1)

block(0, n-1)

block(m-1, n-1)

Dmitry Mikushin et al. Legacy Fortran code porting on GPU October 20, 2015 15 / 19

Our code is even more complex: Performance

2 Getting enough degree of parallelism:
how to map ensemble onto GPU compute grid?

Single GPU kernel for each experiment
Up to 32-64 simultaneous kernels
(hardware limit), using CUDA streams or
dynamic parallelism
⇒ Still not enough degree of parallelism
Single block of GPU kernel for each
experiment, single GPU kernel shared
between all experiments
⇒ One experiment occupies 1 block, no
hardware limit, enough parallelism with
significant number of experiments

Grid

Block

block(0, 0)

block(1, 0)

block(m-1, 0) block(m-1,1)

thread(0, 0)

thread(k-1, 0) thread(k-1, l-1)

thread(0, l-1)

block(1, 1)

block(0, 1)

block(1, n-1)

block(0, n-1)

block(m-1, n-1)

Dmitry Mikushin et al. Legacy Fortran code porting on GPU October 20, 2015 15 / 19

Our code is even more complex: Performance

2 Getting enough degree of parallelism:
how to map ensemble onto GPU compute grid?

Single GPU kernel for each experiment
Up to 32-64 simultaneous kernels
(hardware limit), using CUDA streams or
dynamic parallelism
⇒ Still not enough degree of parallelism
Single block of GPU kernel for each
experiment, single GPU kernel shared
between all experiments
⇒ One experiment occupies 1 block, no
hardware limit, enough parallelism with
significant number of experiments

Grid

Block

block(0, 0)

block(1, 0)

block(m-1, 0) block(m-1,1)

thread(0, 0)

thread(k-1, 0) thread(k-1, l-1)

thread(0, l-1)

block(1, 1)

block(0, 1)

block(1, n-1)

block(0, n-1)

block(m-1, n-1)

Dmitry Mikushin et al. Legacy Fortran code porting on GPU October 20, 2015 15 / 19

Our code is even more complex: Performance

2 Getting enough degree of parallelism:
how to map ensemble onto GPU compute grid?

Single GPU kernel for each experiment
Up to 32-64 simultaneous kernels
(hardware limit), using CUDA streams or
dynamic parallelism
⇒ Still not enough degree of parallelism
Single block of GPU kernel for each
experiment, single GPU kernel shared
between all experiments
⇒ One experiment occupies 1 block, no
hardware limit, enough parallelism with
significant number of experiments

Grid

Block

block(0, 0)

block(1, 0)

block(m-1, 0) block(m-1,1)

thread(0, 0)

thread(k-1, 0) thread(k-1, l-1)

thread(0, l-1)

block(1, 1)

block(0, 1)

block(1, n-1)

block(0, n-1)

block(m-1, n-1)

Dmitry Mikushin et al. Legacy Fortran code porting on GPU October 20, 2015 15 / 19

Our code is even more complex: Performance

2 Cost of kernel launches
Single kernel for each individual loop, the rest of compute - on host
⇒ Stalls due to GPU threads synchronization after each kernel launch
We actually do not need to synchronize experiments of ensemble with each other
Single kernel for the whole SixTrack code
⇒ Each experiment is computed independently, without stalls on synchronization
⇒ GPU kernel interleaves serial and parallel code

Dmitry Mikushin et al. Legacy Fortran code porting on GPU October 20, 2015 16 / 19

Our code is even more complex: Performance

2 Cost of kernel launches
Single kernel for each individual loop, the rest of compute - on host
⇒ Stalls due to GPU threads synchronization after each kernel launch
We actually do not need to synchronize experiments of ensemble with each other
Single kernel for the whole SixTrack code
⇒ Each experiment is computed independently, without stalls on synchronization
⇒ GPU kernel interleaves serial and parallel code

Dmitry Mikushin et al. Legacy Fortran code porting on GPU October 20, 2015 16 / 19

Our code is even more complex: Performance

2 Cost of kernel launches
Single kernel for each individual loop, the rest of compute - on host
⇒ Stalls due to GPU threads synchronization after each kernel launch
We actually do not need to synchronize experiments of ensemble with each other
Single kernel for the whole SixTrack code
⇒ Each experiment is computed independently, without stalls on synchronization
⇒ GPU kernel interleaves serial and parallel code

Dmitry Mikushin et al. Legacy Fortran code porting on GPU October 20, 2015 16 / 19

Our code is even more complex: Performance

2 Cost of kernel launches
Single kernel for each individual loop, the rest of compute - on host
⇒ Stalls due to GPU threads synchronization after each kernel launch
We actually do not need to synchronize experiments of ensemble with each other
Single kernel for the whole SixTrack code
⇒ Each experiment is computed independently, without stalls on synchronization
⇒ GPU kernel interleaves serial and parallel code

Dmitry Mikushin et al. Legacy Fortran code porting on GPU October 20, 2015 16 / 19

Our code is even more complex: Performance

2 Cost of kernel launches
Single kernel for each individual loop, the rest of compute - on host
⇒ Stalls due to GPU threads synchronization after each kernel launch
We actually do not need to synchronize experiments of ensemble with each other
Single kernel for the whole SixTrack code
⇒ Each experiment is computed independently, without stalls on synchronization
⇒ GPU kernel interleaves serial and parallel code

Dmitry Mikushin et al. Legacy Fortran code porting on GPU October 20, 2015 16 / 19

Our code is even more complex: Performance

2 Cost of kernel launches
Single kernel for each individual loop, the rest of compute - on host
⇒ Stalls due to GPU threads synchronization after each kernel launch
We actually do not need to synchronize experiments of ensemble with each other
Single kernel for the whole SixTrack code
⇒ Each experiment is computed independently, without stalls on synchronization
⇒ GPU kernel interleaves serial and parallel code

Dmitry Mikushin et al. Legacy Fortran code porting on GPU October 20, 2015 16 / 19

Our code is even more complex: Performance

2 Cost of kernel launches
Single kernel for each individual loop, the rest of compute - on host
⇒ Stalls due to GPU threads synchronization after each kernel launch
We actually do not need to synchronize experiments of ensemble with each other
Single kernel for the whole SixTrack code
⇒ Each experiment is computed independently, without stalls on synchronization
⇒ GPU kernel interleaves serial and parallel code

Dmitry Mikushin et al. Legacy Fortran code porting on GPU October 20, 2015 16 / 19

Compiler modifications to interleave serial and parallel code

subroutine experiment()

call serial_code1()

...
!$par do
do i = 1, nparticles
...

enddo
!$par enddo
...

call serial_code2()

end subroutine experiment

subroutine experiment()

if (threadIdx%x .eq. 1) then
call serial_code1()

endif
...
do i = 1, nparticles

...
enddo
...
if (threadIdx%x .eq. 1) then
call serial_code2()

endif

end subroutine experiment

LLVM IR code could be intercepted from NVCC CUDA compiler backend

LLVM IR for GPU kernel could be modified to annotate serial portions with if (threadIdx%x .eq. 0)
condition

Unannotated code executes in parallel for each thread of block (default CUDA behavior)

Dmitry Mikushin et al. Legacy Fortran code porting on GPU October 20, 2015 17 / 19

Compiler modifications to interleave serial and parallel code

subroutine experiment()

call serial_code1()

...
!$par do
do i = 1, nparticles
...

enddo
!$par enddo
...

call serial_code2()

end subroutine experiment

subroutine experiment()

if (threadIdx%x .eq. 1) then
call serial_code1()

endif
...
do i = 1, nparticles

...
enddo
...
if (threadIdx%x .eq. 1) then
call serial_code2()

endif

end subroutine experiment

LLVM IR code could be intercepted from NVCC CUDA compiler backend

LLVM IR for GPU kernel could be modified to annotate serial portions with if (threadIdx%x .eq. 0)
condition

Unannotated code executes in parallel for each thread of block (default CUDA behavior)

Dmitry Mikushin et al. Legacy Fortran code porting on GPU October 20, 2015 17 / 19

Compiler modifications to interleave serial and parallel code

subroutine experiment()

call serial_code1()

...
!$par do
do i = 1, nparticles
...

enddo
!$par enddo
...

call serial_code2()

end subroutine experiment

subroutine experiment()

if (threadIdx%x .eq. 1) then
call serial_code1()

endif
...
do i = 1, nparticles

...
enddo
...
if (threadIdx%x .eq. 1) then
call serial_code2()

endif

end subroutine experiment

LLVM IR code could be intercepted from NVCC CUDA compiler backend

LLVM IR for GPU kernel could be modified to annotate serial portions with if (threadIdx%x .eq. 0)
condition

Unannotated code executes in parallel for each thread of block (default CUDA behavior)

Dmitry Mikushin et al. Legacy Fortran code porting on GPU October 20, 2015 17 / 19

Compiler modifications to interleave serial and parallel code

subroutine experiment()

call serial_code1()

...
!$par do
do i = 1, nparticles
...

enddo
!$par enddo
...

call serial_code2()

end subroutine experiment

subroutine experiment()

if (threadIdx%x .eq. 1) then
call serial_code1()

endif
...
do i = 1, nparticles

...
enddo
...
if (threadIdx%x .eq. 1) then
call serial_code2()

endif

end subroutine experiment

LLVM IR code could be intercepted from NVCC CUDA compiler backend

LLVM IR for GPU kernel could be modified to annotate serial portions with if (threadIdx%x .eq. 0)
condition

Unannotated code executes in parallel for each thread of block (default CUDA behavior)

Dmitry Mikushin et al. Legacy Fortran code porting on GPU October 20, 2015 17 / 19

Conclusion

Code has to be modernized to at least Fortran 90, in order to move to GPU

CUDA Fortran does not support all required language features (formatted I/O, strings),
but this could be workarounded

Ensemble simulations are crucial for GPU performance

Compiler could be customized to produce interleaved parallel and serial code guided by user-defined
directives

Dmitry Mikushin et al. Legacy Fortran code porting on GPU October 20, 2015 18 / 19

Conclusion

Code has to be modernized to at least Fortran 90, in order to move to GPU

CUDA Fortran does not support all required language features (formatted I/O, strings),
but this could be workarounded

Ensemble simulations are crucial for GPU performance

Compiler could be customized to produce interleaved parallel and serial code guided by user-defined
directives

Dmitry Mikushin et al. Legacy Fortran code porting on GPU October 20, 2015 18 / 19

Conclusion

Code has to be modernized to at least Fortran 90, in order to move to GPU

CUDA Fortran does not support all required language features (formatted I/O, strings),
but this could be workarounded

Ensemble simulations are crucial for GPU performance

Compiler could be customized to produce interleaved parallel and serial code guided by user-defined
directives

Dmitry Mikushin et al. Legacy Fortran code porting on GPU October 20, 2015 18 / 19

Conclusion

Code has to be modernized to at least Fortran 90, in order to move to GPU

CUDA Fortran does not support all required language features (formatted I/O, strings),
but this could be workarounded

Ensemble simulations are crucial for GPU performance

Compiler could be customized to produce interleaved parallel and serial code guided by user-defined
directives

Dmitry Mikushin et al. Legacy Fortran code porting on GPU October 20, 2015 18 / 19

Conclusion

Code has to be modernized to at least Fortran 90, in order to move to GPU

CUDA Fortran does not support all required language features (formatted I/O, strings),
but this could be workarounded

Ensemble simulations are crucial for GPU performance

Compiler could be customized to produce interleaved parallel and serial code guided by user-defined
directives

Dmitry Mikushin et al. Legacy Fortran code porting on GPU October 20, 2015 18 / 19

References

Open-source LLVM-based OpenMP 4.0 compiler for NVIDIA CUDA GPUs

Progress Porting WRF to GPU using OpenACC

O. Fuhrer. Getting COSMO ready for Piz Daint

Enabling on-the-fly manipulations with LLVM IR code of CUDA sources

Dmitry Mikushin et al. Legacy Fortran code porting on GPU October 20, 2015 19 / 19

https://parallel-computing.pro/index.php/2-uncategorised/43-openmp-4-0-on-nvidia-cuda-gpus
https://www2.cisl.ucar.edu/sites/default/files/ponder_6.pdf
https://www.youtube.com/watch?v=W79L8OhN-8c
https://github.com/apc-llc/nvcc-llvm-ir

