Discussion on the scientific potential of muon beams 18 Nov 2015

Energy frontier - theory

G.F. Giudice

The strength of a μ -beam facility lies in its richness:

- Muon rare processes
- Neutrino physics
- Higgs factory
- Multi-TeV frontier

 μ –colliders can essentially do the HE program of e^+e^- colliders with added bonus (and some limitations)

Added value for physics

1. Resonant Higgs production

• $\sigma(\mu^+\mu^- \rightarrow h)$ =41 pb can compensate for lower

luminosity (~ 10⁻² w.r.t.
$$e^+e^-$$
)
At e^+e^- colliders
 $\sigma(e^+e^- \rightarrow Zh) < 0.2 \text{ pb}$

- Unique measurements of m_h and Γ_h $(m_h \sim 0.1 \text{ MeV}, \Gamma_h \sim 0.2 \text{ MeV})$
- Test of 2nd generation Higgs couplings $(h \to \mu^+ \mu^-)$

2. Precision in HE measurements & searches

- Studies of threshold pair-production and narrow resonances exploiting the very accurate knowledge of beam-energy spectrum
- Flexibility in the choice of centre-of-mass energy
 - 3. Test of flavour structure
- 2nd generation couplings

Resonant Higgs production

$$\sigma(\mu^{+}\mu^{-} \to h \to X) = \frac{4\pi\Gamma_{h}^{2} \operatorname{Br}(h \to \mu^{+}\mu^{-}) \operatorname{Br}(h \to X)}{(\hat{s} - m_{h}^{2})^{2} + \Gamma_{h}^{2} m_{h}^{2}}$$

Breit-Wigner ⇒ 3 parameters ⇒ 3 physical observables

peak location $\Leftrightarrow m_h$ peak shape $\Leftrightarrow \Gamma_h$ peak height $\Leftrightarrow \operatorname{Br}(h \to \mu^+ \mu^-) \operatorname{Br}(h \to X)$

Convolution with Gaussian luminosity distribution + ISR

$$\frac{dL(\sqrt{s})}{d\sqrt{\hat{s}}} = \frac{1}{\sqrt{2\pi\Delta}} \exp[\frac{-(\sqrt{\hat{s}} - \sqrt{s})^2}{2\Delta^2}] \quad \begin{array}{c} \text{energy spread} \\ \Delta = R\sqrt{s}/\sqrt{2} \\ R = \text{relative energy resolution} \\ \sigma_{\text{eff}}(s) = \int d\sqrt{\hat{s}} \, \frac{dL(\sqrt{s})}{d\sqrt{\hat{s}}} \sigma(\mu^+\mu^- \to h \to X) \end{array}$$

$$\sigma_{
m peak} = \sigma(\sqrt{s} = m_H) = rac{4\pi\,B(H o\mu^+\mu^-)\,B(H o X)}{m_{--}^2}\,\eta\,\pi^{1/2}\,A\,e^{A^2}(1-{
m Erf}(A))$$

$$A = \frac{\Gamma_h}{2\sqrt{2}\Lambda}$$
 IRS reduction $\eta = 0.55$ 1503.05046

Goal in beam energy resolution $\Delta \sim \Gamma_h = 4.1 \text{ MeV}$ $(R \sim 4 \times 10^{-5})$

Excellent precision in Higgs mass and width

0.6 0.4 -0.2-0.4-0.6 750 1000 2000 500 1500 3000 4.5 4.0 Γ_H (MeV) 2.5 2.0 750 1000 1500 2000 3000 Integrated LUminosity (pb^{-1})

Fitted Values of Higgs Parameters vs. Integrated Luminosity $bar{b}$ and WW^* Weighted Averages

$$\Delta m_h \sim 0.1 \text{ MeV} \implies \Delta m_h/m_h \sim 10^{-6}$$

Best measured fundamental boson mass

$$(\Delta m_Z/m_Z \sim 2 \times 10^{-5}, \Delta m_W/m_W \sim 2 \times 10^{-4})$$

No immediate physical consequences (present and future EW tests, vacuum stability dominated by Δm_t , susy prediction dominated by theoretical uncertainty), but it is a measurement of a fundamental SM parameter.

Higgs width

$$\Delta\Gamma_h \sim 0.2 \text{ MeV} \implies \Delta\Gamma_h/\Gamma_h \sim 5\%$$

Test of Higgs couplings and new (hidden) decay modes

Suppose
$$\Gamma_h = \Gamma_{\rm SM} + \Gamma_{\rm inv} \Rightarrow$$

Br_{inv} = 1- $\Gamma_{\rm SM}/\Gamma$ can be tested ~ 5%

Higgs couplings

Channel	$\delta M_H \; ({ m MeV})$	$\delta\Gamma_H \; ({ m MeV})$	$\delta Br(h \to X)$
$b\overline{b}$	0.1	0.4	0.05
WW^*	0.07	0.2	0.01
Combined	0.06	0.18	_

Error on	μμ Collider			
m _H (MeV)	0.06			
Γ_{H} (MeV)	0.17			
g_{Hbb}	2.3%			
g _{Hww}	2.2%			
$g_{H\tau\tau}$	5%			
$g_{H\gamma\gamma}$	10%			

2.1%

1308.2143

With $\int L \sim 4 \text{ fb}^{-1}$:

 $h \rightarrow bb$ with 5% precision

 $h \rightarrow WW$ with 1% precision

 $h \rightarrow cc$ visible at 8σ

 $h \rightarrow \mu\mu$ with few% precision

With ~ 10 yrs running (P. Janot, talk at FCC-ee, 24 Sep 2015)

 $g_{H\mu\mu}$

Curiosity: QED RG running of $g_{\mu\mu}$

$$\frac{\Delta g_{h\mu\mu}}{g_{h\mu\mu}} \equiv \frac{g_{h\mu\mu}(m_{\mu}) - g_{h\mu\mu}(m_{h})}{g_{h\mu\mu}(m_{\mu})} \approx \frac{\alpha}{\pi} \ln \frac{m_{h}}{m_{\mu}} \approx \text{few } \%$$

Why is it interesting to test 2nd generation Higgs coupling?

The flavour puzzle: why are 1st and 2nd gen. Yukawa small?

Example 1
$$H\overline{\psi}_{L}^{(3)}\psi_{R}^{(3)} + \frac{(H^{+}H)^{n_{ij}}}{\Lambda^{2n_{ij}}}H\overline{\psi}_{L}^{(i)}\psi_{R}^{(j)}$$

$$\downarrow \qquad \qquad \downarrow$$

$$m^{(3)} = O(v) \qquad m^{(ij)} = O\left(\frac{v^{2n_{ij}+1}}{\Lambda^{2n_{ij}}}\right)$$

$$y^{(3)} = \frac{m^{(3)}}{v} \qquad y^{(ij)} = (2n_{ij}+1)\frac{m^{(ij)}}{v}$$

$$\frac{y^{(3)}}{v^{(3)}} = 1 \qquad \qquad \frac{y^{(ij)}}{y_{SM}^{(ij)}} = 2n_{ij}+1$$

Example 2 1508,01501

$$H \overline{\psi}_L^{(3)} \psi_R^{(3)} + \phi \overline{\psi}_L^{(ij)} \psi_R^{(ij)} + \text{small mixing } \phi - H$$

 $\langle H \rangle \approx v \qquad \langle \phi \rangle << v$

- Suppressed Higgs couplings to light generations (no Higgs resonance in μ collider)
- But $\mu \phi$ coupling is O(1) (strong new resonance)

Surprises in lepton flavour universality and transitions?

LHCb:

 2.6σ from SM

$$\frac{\mathcal{B}(B^+ \to K^+ \mu^+ \mu^-)}{\mathcal{B}(B^+ \to K^+ e^+ e^-)} (1 \le q^2 \le 6 \ GeV^2) = 0.745^{+0.090}_{-0.074} \pm 0.036$$

Z' for L_{μ} – L_{τ} (and couplings to quarks via mixing of heavy states)?

Excellent opportunity for μ collider?

Surprises in the Higgs lepton couplings?

ATLAS

	SR1	SR2	Combined
Expected limit on Br($H \to \mu \tau$) [%] Observed limit on Br($H \to \mu \tau$) [%]	1.60 ^{+0.64} _{-0.45} 1.55	1.75 ^{+0.71} _{-0.49} 3.51	1.24 ^{+0.50} _{-0.35} 1.85
Best fit Br($H \to \mu \tau$) [%]	$-0.07^{+0.81}_{-0.86}$	1.94+0.92 -0.89	0.77±0.62

 $h \rightarrow \mu \tau$

 2.4σ from SM

Beyond the SM Higgs

In the decoupling limit ($m_A \rightarrow \infty$) alignment of SM Higgs Yukawa interactions are the only couplings linear in H/A Production at LHC through b-coupling at large tan β

100

300

M_₄ (GeV)

400

200

500 600 700

---- A/H → tī

1000

1502.05653

A peculiarity of the Higgs spectrum in the decoupling limit

$$m_H - m_A = \frac{2m_Z^2}{m_A \tan^2 \beta} + O\left(\frac{m_Z^4}{m_A^3}\right) \approx \frac{\text{TeV}}{m_A} \left(\frac{20}{\tan \beta}\right)^2 40 \text{ MeV}$$

Two-state tests of SM Higgs can also be performed (but today lack strong physics motivation)

YR CERN-99-02

CP violation in the Higgs sector

CP violation from H-A mixing at loop level or vertex

corrections

$$\mathcal{A}_{\text{CP}}^{t} = \frac{\sigma(\mu^{-}(s_{x})\mu^{+}(s_{y}) \to f\bar{f}) - \sigma(\mu^{-}(s_{x})\mu^{+}(-s_{y}) \to f\bar{f})}{\sigma(\mu^{-}(s_{x})\mu^{+}(s_{y}) \to f\bar{f}) + \sigma(\mu^{-}(s_{x})\mu^{+}(-s_{y}) \to f\bar{f})},$$

$$\mathcal{A}_{\text{CP}}^{l} = \frac{\sigma(\mu^{-}(s_{z})\mu^{+}(-s_{z}) \to f\bar{f}) - \sigma(\mu^{-}(-s_{z})\mu^{+}(s_{z}) \to f\bar{f})}{\sigma(\mu^{-}(s_{z})\mu^{+}(-s_{z}) \to f\bar{f}) + \sigma(\mu^{-}(-s_{z})\mu^{+}(s_{z}) \to f\bar{f})},$$

Without enhanced muon polarization, one can construct CP-violating asymmetries from final state, measuring angular distribution of their decay products

Precise measurements of mass and cross section at threshold pair-production (top or new physics)

- Reduction of ISR and beamstrahlung w.r.t. e^+e^- colliders
- Rapid and accurate beam-energy calibration
- Small beam energy spread

- Now we are focused on Higgs measurements and explorations.
- A new discovery at the LHC may quickly shift the emphasis on precision measurements as the essential strategy to unravel new physics

Muons allow for tests on exotic flavour-dependent physics

Examples: R-parity violation

$$\lambda_{ijk}L_iL_j\overline{E}_k$$

From lepton universality: $\lambda_{(1,3)22} < \frac{m}{2 \text{ TeV}}$

For heavy sleptons, couplings can be sizable Resonant production with decay into $\mu\mu$, $\tilde{\ell}^{\pm}\chi^{\mp}$, $\tilde{\nu}\chi^{0}$

$$\lambda'_{ijk} L_i Q_j \overline{D}_k$$

High-energy modification of top-pair production

Conclusions

Muon collider as a Higgs factory

- Very precise determinations of m_h and Γ_h
- Test of Higgs coupling to 2nd generation

Muon collider as exploratory and precision machine in the multi-TeV

- Precise study of resonances (BSM Higgs) and pairproduction thresholds (top and new physics)
- Test of new couplings to 2nd generation leptons