

Muon Accelerators: Accelerator Science Challenges

Mark Palmer November 18, 2015

with acknowledgments to the MAP, MICE and IDS-NF Collaborations

Why Muons?

- **Intense & cold muon beams** ! **unique high-energy physics reach**
	- $\mu \rightarrow e$ conversion (cLFV)
	- $g 2(a_0)$
- Neutrino Factory (NF) precision neutrino source
- Muon Collider (MC) next generation lepton collider

• **Opportunities**

- s-channel production of scalars
- Strong coupling to Higgs
- **Reduced synchrotron radiation** \Rightarrow *multi-pass acceleration*
- Beams with small energy spread
- Beamstrahlung effects suppressed at IP
- *BUT* **accelerator complex/detector must be able to handle the impacts of** µ **decay**
- **A high intensity muon front end can serve both NF and MC**
- NF/MC **Synergies**

Colliders

Physics Frontiers

> • **Unique staging strategies combining physics and accelerator development** ! **Muon Accelerator Staging Study (MASS)**

$$
\begin{bmatrix}\n\mu^+ \to e^+ \nu_e \overline{\nu}_\mu \\
\mu^- \to e^- \overline{\nu}_e \nu_\mu\n\end{bmatrix}
$$

2 Discussion of the Scientific Potential of Muon Beams Nov 18, 2015 **THE FETMIIAD**

 $\sim \left(\frac{m_{\mu}^2}{2}\right)$ m_e^2 $\sqrt{2}$ \setminus $\left(\frac{m_\mu^2}{2}\right)$ \int $\approx 4 \times 10^4$

 $m_{\mu} = 105.7$ *MeV* / c^2

 $\tau_u = 2.2 \mu s$

Introduction

- Charge is to discuss "Accelerator Science Challenges"
- Approach: Look at progress over the last several years – RD&D and Muon Accelerator Staging Study (MASS) concepts

Initial concepts for Neutrino Factory and Muon Collider

- \Rightarrow Evaluation of anticipated performance
	- \Diamond Supported by extensive development of muon codes
- \Rightarrow Optimization of the concepts
	- \Leftrightarrow Enabled by the introduction of high performance computing tools
- \Rightarrow Concepts that are ready for detailed engineering studies
- ! Preparation for the next *Muon Demonstrator Facility*

Key Feasibility Issues

• Proton Driver • Front End • Cooling • Acceleration • Collider Ring **Collider MDI Collider Detector** High Power Target Station Energy Deposition RF in Magnetic Fields Magnet Needs (Nb₃Sn vs HTS) **Performance** Acceptance (NF) >400 Hz AC Magnets (MC) IR Magnet Strengths/Apertures SC Magnet Heat Loads (u decay) Backgrounds (u decay)

5 Discussion of the Scientific Potential of Muon Beams Nov 18, 2015 **THE FETMIIAD**

Characteristics of the Muon Source

- Overarching goals
	- NF: Provide $O(10^{21})$ μ /yr within the acceptance of a μ ring
	- $-$ MC: Provide luminosities >10³⁴/cm⁻²s⁻¹ at TeV-scale (\neg n_b²)
Enable precision probe of particles like the Higgs
- Options (see comparisons from AAC2014, WG7)
	- Tertiary production through proton on target (and then cool) Rate > $10^{13}/sec$ n_b = 2×10^{12}
	- Production of low emittance (and potentially highly polarized) beams
		- e⁺e⁻ annihilation: positron beam on plasma or solid target Rate $\sim \sqrt{10^8/\text{sec}}$ n_b $\sim 10^7$
		- µ-pair production with GeV-scale compton γs Pulsed Linac: Rate ~ 5×10^{10} /sec n_b ~ 10⁶ High Current ERL: Rate > $10^{13}/sec$ n_b ~ few×10⁴

• n_b² dependence makes collider luminosity goal difficult for the non-proton sources (by a few orders of magnitude) \Rightarrow Will focus on the proton-based source

Cooling Methods

- The particular challenge of muon cooling is its short lifetime
	- Cooling must take place very quickly
	- More quickly than any of the cooling methods presently in use
	- \Rightarrow Utilize energy loss in materials with RF re-acceleration

Muon Ionization Cooling (Design) D_{tor} [MeV/c] coils: R_{in}=42cm, R_{out}=60cm, L=30cm; RF: f=325MHz, L=2×25cm; LiH wedges Mod (t. Top) Ins Initial 6D Cooling: ε_{6D} 60 cm³ \Rightarrow ~50 mm³; Trans = 67% 10 coil absorber cavities **TOP VIEW** ε _r (mm) (mm) Emittance, ε (mm) Theor SIDE VIEW 100 200 300 400 500 Distance, z (m) 6D Rectilinear Vacuum Cooling Channel (replaces Guggenheim concept): ε_{T} = 0.28mm, ε_{L} = 1.57mm @488m Transmission = 55%(40%) without(with) bunch recombination 12 Discussion of the Scientific Potential of Muon Beams Nov 18, 2015 - Fermilab

• Final Cooling with 25-30T solenoids (emittance exchange): ε_{T} = 55µm, ε_{L} = 75mm

13 Discussion of the Scientific Potential of Muon Beams Nov 18, 2015 **THE FETMIIAD**

Muon Ionization Cooling Experiment

 17.3 Discussion of the Scientific Potential of Muon Beams Nov 18, 2015

HOLE 1-1/4-7 BOR REV. HOLE 1-1/4-7

Cooling Channel **Commissioning** Underway for MICE Step IV

Cooling Technology Status I

• Magnets

- MAP Initial Baseline Selection (IBS) process \Rightarrow **6D cooling baselines that do** *not* require HTS magnets
	- Concepts now ready to move to detailed engineering and prototype development
- HTS Solenoids could be part of a higher performance 6D Cooling **Channel**
- HTS solenoids are the baseline for the Final Cooling **Channel**

Magnet feasibility studies (last stage)

Cooling Technology Status II

• RF Cavities

- *Successful test in magnetic field* of the MICE RF Module shows
	- The importance of cavity surface preparation
	- The importance of designs incorporating detailed magnetic simulation

- High Pressure Gas-Filled RF Cavities provide a *demonstrated route to the required gradients with high intensity beams*
- Vacuum RF: recent B-field tests consistent with our physical models
	- **805 MHz "Modular" Cavity:** *A test vehicle to characterize breakdown effects in vacuum cavities (in operation now)*

19 Discussion of the Scientific Potential of Muon Beams 19, 2016

Ionization Cooling Summary

 \checkmark 6D Ionization Cooling Designs

- Designs in hand that meet performance targets in simulations with stochastic effects
- **Ready to move to engineering design and prototyping**
- Able to reach target performance with $Nb₃Sn$ conductors (NO HTS)
- \checkmark RF operation in magnetic field (MTA program)
	- Gas-filled cavity solution successful and performance extrapolates to the requirements of the NF and MC
	- Vacuum cavity performance now consistent with models
	- MICE Test Cavity significantly exceeds specified operating requirements in magnetic field
- \checkmark MICE Experiment now in commissioning phase
- ~ Final Cooling Designs
	- Baseline design meets Higgs Factory specification and performs within factor of 2.2× of required transverse emittance for high energy MC (while keeping magnets within parameters to be demonstrated within the next year at NHMFL).
	- Alternative options under study

Acceleration Requirements

- Key Issues:
	- Muon lifetime \Rightarrow ultrafast acceleration chain
	- $-$ NF with modest cooling \Rightarrow accelerator acceptance
	- $-$ Total charge \Rightarrow cavity beam-loading (stored energy)
	- TeV-scale acceleration focuses on hybrid Rapid Cycling Synchrotron \Rightarrow requires rapid cycling magnets B_{peak} ~ 2T f > 400Hz

Superconducting RF Development 72

22 Discussion of the Scientific Potential of Muon Beams Nov 18, 2015 - Fermilab

Acceleration

Technologies include:

- Superconducting Linacs (NuMAX choice)
- Recirculating Linear Accelerators (RLAs)
-
- (Hybrid) Rapid Cycling Synchrotrons (RCS)

Collider Rings

• Detailed optics studies for Higgs, 1.5 TeV, 3 TeV and now 6 TeV CoM

– With supporting magnet designs and background studies

Higgs, 1.5 TeV CoM and 3 TeV CoM Designs

- **With magnet** concepts
- Achieve target parameters
- \checkmark Preliminary 6 TeV CoM design
	- Key issue is IR design and impact on luminosity
	- Utilizes lower power on target

Dipole/Quad

Quad/Dipole

Machine Detector Interface

- **Backgrounds appear** manageable with suitable detector pixelation and timing rejection
- Recent study of hit rates comparing MARS, EGS and FLUKA appear consistent to within factors $of < 2$
	- \Rightarrow Significant improvement in our confidence of detector performance

Entrance of gamma to detector (cm)

v7x2s4

4 sigma

26 Discussion of the Scientific Potential of Muon Beams Nov 18, 2015 **THEMINICO**

 $\overline{0}$

250

Detector Backgrounds & Mitigation

Trackers: Employ double-layer Dual Readout Projective Calorimeter _{ram} structure with 1mm separation for • Lead glass + scintillating fibers **Dual Readout ILCroot Simulation** neutral background suppression \bullet ~1.4 \circ tower aperture angle **Calorimeter** • Split into two separate sections • Front section 20 cm depth 10° Nozzle Single layer hit efficiency 100 • Rear section 160 cm depth \bullet ~ 7.5 λ_{int} depth శి 95 efficiency, \bullet >100 X depth 90 • Fully projective geometry • Azimuth coverage 85 down to ~8.4° (Nozzle) hit clusters • Barrel: 16384 towers 80 • Endcaps: 7222 towers 75 After timing cut m uon 70 • All simulation parameters corresponds to After timing, edep cuts ADRIANO prototype #9 tested by **WLS** After timing, edep, double layer cuts 65 Fermilab T1015 Collaboration in Aug 2012 \mathbf{a} @ FTBF (see also T1015 Gatto's talk at 60 **Calor2012)** $d = 1$ mm, $B = 3.5T$ • Several more prototypes tested @ FTBF. 55 **Tracker** • New test beam ongoing now @ Fermilab. 50 2 $\mathbf{9}$ 10 5 я - Fermilab 7 Laver Time gate & Rol ON - BG ON Single layer bkgd occupancy background pixel occupancy, % Calorimeter: 90% eff | TimeGate: ON | BG: ON Tracker: 95% eff | TimeGate: ON | Rol: ON | BG: ON $120₁$ **Preliminary detector** γ^2 / ndf $51.09 / 40$ Const 98.07 ± 13.15 $\mathsf{Mass}_{\mathsf{H0AO}}^{\mathsf{I}}$ 1512 ± 10.0 study promising 100 92.91 ± 7.74 Const. 35.68 ± 8.30 • Real progress 1340 ± 47.5 Mean 80 146.1 ± 29.0 σ 10⁻ $1st$ pass setup: pol₀ -17.67 ± 44.69 requires dedicated pol1 0.03573 ± 0.07694 60 pol₂ $-1.474e-05 \pm 2.888e-05$ Further effort, which MAP $rac{6}{2}$ 10⁻² $40₊$ **Before cuts** was not allowed to $= 6.1\%$ improvements After all cuts \boldsymbol{M} $20₁$ fund 10° **anticipated** $\overline{2}$ 5 6 10 بان طرحیت میں ہے۔
200 – 400 – 600 – 800 0_0 $\frac{1}{2000}$ 1400 1600 1800 2000
dijets mass distribution $\left[\text{GeV/c}^2\right]$ MARS Bkgds \Rightarrow ILCRoot Det Model 1uon Beams Nov 18, 2015

A tentative proposal for a Higgs factory at CERN

- The muon cooled Higgs factory can be easily housed within CERN
- The new 5 GeV Linac will provide at 50 c/s a multi MWatt H⁻ beam with enough pions/muons to supply the muon factory.
- & The basic additional accelerator structure will be the following:
	- ' Two additional small storage rings with R ≈ 50 m will strip H- to a tight p bunch and compress the LP-SPL beam to a few ns.
	- \triangleright Muons of both signs are focused in a axially symmetric B = 20 T field, reducing progressively p_t with a horn and B = 2 T
	- ' A buncher and a rotator compresses muons to ≈ 250 MeV/c
	- \triangleright Muon Cooling in 3D compresses emittances by a factor >10⁶.
- \bullet Bunches 1-2 x 10¹² μ t are accelerated to 62.5 GeV with an unconventional, bi-directional recirculating LINAC ≈200 m long.
- Muons are colliding in a SC storage ring of R \approx 60 m (about one half of the CERN-PS , 1/100 of LHC) where > 104 Higgs events/y are recorded for each of the experiments. Carlo Rubbia – FNAL May 2015
- & The first muon cooling ring should present no unexpected behaviour and good agreement between calculations and experiment is expected both transversely and longitudinally
- & The novel Parametric Resonance Cooling (PIC) involves instead the balance between a strong resonance growth and ionization cooling and it may involve significant and unexpected conditions which are hard to predict.
- & Therefore the experimental demonstration of the cooling must be concentrated on such a resonant behaviour.
- & On the other hand the success of the novel Parametric Resonance Cooling is a necessary premise for a viable luminosity of the initial proton parameters of the future CERN accelerators since the expected Higgs luminosity is proportional to the inverse of the transverse emittance, hence about one order of magnitude of increment is expected from PIC. Solenoids

Carlo Rubbia – FNAL May 2015

Discussion of the Scientific Potential of Muon Beams

Muon Accelerator Staging Study

- Is there a facility path that supports both physics output and the required accelerator development?
	- nuSTORM
		- Short baseline NF
		- No new technology
	- $-$ IDS-NF concept \Rightarrow 5 GeV NuMAX optimized for SURF
	- NF effort can lay the groundwork for subsequent collider capabilities
		- Demonstrate operational 6D cooling concepts as a performance
		- Performance improvement path for NF

The MAP Muon Accelerator Staging Study \Rightarrow NuMAX $P/I \sim \frac{1}{\sqrt{2}}$ The Cross of Sev Storage Ring

The Survey of Sev Storage Ring

Fermilab-to-SURF

baseline 0.8 GeV AIP-III optimized for Fermilab-to-SURF Dual-Use baseline (p $\&$ µ) Linac μ^+ ν 3.75 GeV N uMAX μ pre-Linac 650 MHz ν 1.0 GeV μ^- **325 MHz** $^{\sim}$ 281 m μ^+ & μ^- Chicane **NuMAX Staging:** $\overline{0}$ 6D&Cooling& • *Commissioning* **Cooling** Target&&& \Diamond 1MW Target **Capture** \Leftrightarrow No Muon Cooling Solenoid& \div 10kT Detector • *NuMAX+* \div 2.75 MW Target **Front End** \Diamond 6D Muon Cooling Buncher Accumulator& \Diamond 34kT Detector 31 Discussion of the Scientific Potential of Muon Beams Nov 18, 2015 **THE FETMIIAD**

MASS NF Parameters

Muon Colliders – Efficiency at the multi-TeV scale

34 Discussion of the Scientific Potential of Muon Beams Nov 18, 2015 **THE FETMIIAD**

Muon Collider Parameters

 \uparrow

Conclusion

- Multi-TeV MC \Rightarrow potentially only cost-effective route to lepton collider capabilities with E_{CM} > 5 TeV
- Key technical hurdles have been addressed:
	- High power target demo (MERIT) $\;$ * Decays of an individual species (ie, μ+ or μ−)
- **~200 MeV** *MICE* 160-240 MeV **3(4 GeV** ^ν*STORM 3.8 GeV* **4(10 GeV** *NuMAX* (Initial) **4-6** GeV $NUMAX+$ $4-6$ *GeV IDS(NF9Design 10 GeV* **~126 GeV-CoM** $^{\sim}$ 126 GeV CoM **>-1 TeV-CoM** *Opt. 1* **1.5** *TeV CoM Opt.* 2 **3** *TeV CoM Opt.* **3 6** *TeV CoM* **Energy-Scale Energy Frontier µ Collider Accelerator Cooling-Channel Muon-Storage-Ring Intensity Frontier** $ν$ **Factory** s-Channel u Collider **Higgs-Factory** 1.2x10³⁴cm⁻²s⁻¹ *4.4x1034cm(2s (1* 12x10³⁴cm⁻²s⁻¹ **Performance Emittance-Reduction Useable-**µ **decays/yr* Useable-**µ **decays/yr* Avg. Luminosity Higgs/107 s** 3,500-13,500 *3x10¹⁷ 5x10²⁰ 8x10¹⁹ 5x10²⁰ 5%*

- Realizable cooling channel designs with acceptable performance
- Breakthroughs in cooling channel technology
- Significant progress in collider & detector design concepts

Muon accelerator capabilities offer unique potential for the future of high energy physics research

36 Discussion of the Scientific Potential of Muon Beams Nov 18, 2015 **THE FETMIIAD**