

Muon Accelerators: Accelerator Science Challenges

Mark Palmer November 18, 2015

with acknowledgments to the MAP, MICE and IDS-NF Collaborations

Why Muons?

- Intense & cold muon beams ⇒ unique high-energy physics reach
 - $\mu \rightarrow e$ conversion (cLFV)
 - g-2 (a_µ)
- Neutrino Factory (NF) precision neutrino source
- Muon Collider (MC) next generation lepton collider

Opportunities

- Strong coupling to Higgs
- Reduced synchrotron radiation ⇒ *multi-pass acceleration*
- · Beams with small energy spread
- · Beamstrahlung effects suppressed at IP
- BUT accelerator complex/detector must be able to handle the impacts of μ decay
- A high intensity muon front end can serve both NF and MC
- NF/MC Synergies

Colliders

Physics

Frontiers

 Unique staging strategies combining physics and accelerator development
 → Muon Accelerator Staging Study (MASS)

$$\mu^{+} \rightarrow e^{+} v_{e} \overline{v}_{\mu}$$
$$\mu^{-} \rightarrow e^{-} \overline{v}_{e} v_{\mu}$$

Nov 18, 2015 🗲 Fermilab

 $\frac{m_{\mu}^2}{m_e^2}$ $\simeq 4 \times 10^4$

 $m_{\mu} = 105.7 \, MeV \, / \, c^2$

 $\tau_{\mu} = 2.2 \mu s$

Introduction

- Charge is to discuss "Accelerator Science Challenges"
- Approach: Look at progress over the last several years
 RD&D and Muon Accelerator Staging Study (MASS) concepts

Initial concepts for Neutrino Factory and Muon Collider

- ⇒ Evaluation of anticipated performance
 - Supported by extensive development of muon codes
- ➡ Optimization of the concepts
 - Enabled by the introduction of high performance computing tools
- ➡ Concepts that are ready for detailed engineering studies
- ➡ Preparation for the next Muon Demonstrator Facility

4 Discussion of the Scientific Potential of Muon Beams

Key Feasibility Issues

High Power Target Station Proton Driver Energy Deposition Front End **RF** in Magnetic Fields Cooling Magnet Needs (Nb₃Sn vs HTS) Performance Acceleration Acceptance (NF) >400 Hz AC Magnets (MC) Collider Ring **IR Magnet Strengths/Apertures** Collider MDI SC Magnet Heat Loads (µ decay) Collider Detector Backgrounds (µ decay)

5 Discussion of the Scientific Potential of Muon Beams

Arogram

Characteristics of the Muon Source

- Overarching goals
 - NF: Provide O(10²¹) μ /yr within the acceptance of a μ ring
 - MC: Provide luminosities >10³⁴/cm⁻²s⁻¹ at TeV-scale (~n_b²) Enable precision probe of particles like the Higgs
- Options (see comparisons from AAC2014, WG7)
 - Tertiary production through proton on target (and then cool) Rate > 10^{13} /sec $n_b = 2 \times 10^{12}$
 - Production of low emittance (and potentially highly polarized) beams
 - e^+e^- annihilation: positron beam on plasma or solid target Rate ~ 10^8 /sec $n_h \sim 10^7$
 - μ-pair production with GeV-scale compton γs
 Pulsed Linac: Rate ~ 5×10¹⁰/sec n_b ~ 10⁶
 High Current ERL: Rate > 10¹³/sec n_b ~ few×10⁴

 n_b² dependence makes collider luminosity goal difficult for the non-proton sources (by a few orders of magnitude)
 ➡ Will focus on the proton-based source

Cooling Methods

- The particular challenge of muon cooling is its short lifetime
 - Cooling must take place very quickly
 - More quickly than any of the cooling methods presently in use
 - ⇒ Utilize energy loss in materials with RF re-acceleration

• Final Cooling with 25-30T solenoids (emittance exchange): $\epsilon_T = 55 \mu m$, $\epsilon_L = 75 mm$

13 Discussion of the Scientific Potential of Muon Beams

Muon Ionization Cooling Experiment

455Y RD43010300 REY

PFT HOLE 1-1/4-7

Cooling Channel Commissioning Underway for **MICE Step IV**

Cooling Technology Status I

16

Magnets

- MAP Initial Baseline Selection (IBS) process
 6D cooling baselines that do *not* require HTS magnets
 - Concepts now ready to move to detailed engineering and prototype development
- HTS Solenoids
 could be part
 of a higher
 performance
 6D Cooling
 Channel
- HTS solenoids are the baseline for the Final Cooling
 Channel Discussion of the Scientific P

Magnet feasibility studies (last stage)

Cooling Technology Status II

RF Cavities

- Successful test in magnetic field of the MICE RF Module shows
 - The importance of cavity surface preparation
 - The importance of designs incorporating detailed magnetic simulation

- High Pressure Gas-Filled RF Cavities provide a demonstrated route to the required gradients with high intensity beams
- Vacuum RF: recent B-field tests consistent with our physical models
 - 805 MHz "Modular" Cavity: A test vehicle to characterize breakdown effects in vacuum cavities (in operation now)

19 Discussion of the Scientific Potential of Muon Be

Ionization Cooling Summary

Nov 18, 2015 Fermilab

✓ 6D Ionization Cooling Designs

- Designs in hand that meet performance targets in simulations with stochastic effects
- Ready to move to engineering design and prototyping
- Able to reach target performance with Nb₃Sn conductors (NO HTS)
- ✓ RF operation in magnetic field (MTA program)
 - Gas-filled cavity solution successful and performance extrapolates to the requirements of the NF and MC
 - Vacuum cavity performance now consistent with models
 - MICE Test Cavity significantly exceeds specified operating requirements in magnetic field
- ✓ MICE Experiment now in commissioning phase
- ~ Final Cooling Designs
 - Baseline design meets Higgs Factory specification and performs within factor of 2.2× of required transverse emittance for high energy MC (while keeping magnets within parameters to be demonstrated within the next year at NHMFL).
 - Alternative options under study

Acceleration Requirements

- Key Issues:

 - NF with modest cooling ⇒ accelerator acceptance
 - Total charge ⇒ cavity beam-loading (stored energy)
 - TeV-scale acceleration focuses on hybrid Rapid Cycling Synchrotron ⇒ requires rapid cycling magnets
 B_{peak} ~ 2T f > 400Hz

Superconducting RF Development

Acceleration

Technologies include:

23

- Superconducting Linacs (NuMAX choice)
- Recirculating Linear Accelerators (RLAs)
- Fixed-Field Alternating-Gradient (FFAG) Rings
- (Hybrid) Rapid Cycling Synchrotrons (RCS) for TeV energies

0.08

0.07

0.06

0.05

0.04

0.03

0.02

0.01

Collider Rings

 Detailed optics studies for Higgs, 1.5 TeV, 3 TeV and now 6 TeV CoM

 With supporting magnet designs and background studies

Higgs, 1.5 TeV CoM and3 TeV CoM Designs

- With magnet concepts
- Achieve target
 parameters
- Preliminary 6 TeV CoM design
 - Key issue is IR design and impact on luminosity
 - Utilizes lower power on target

Dipole/Quad

Quad/Dipole

Machine Detector Interface

- Backgrounds appear manageable with suitable detector pixelation and timing rejection
- Recent study of hit rates comparing MARS, EGS and FLUKA appear consistent to within factors of <2
 - Significant improvement in our confidence of detector performance

Entrance of gamma to detector (cm)

Discussion of the Scientific Potential of Muon Beams

26

Nov 18, 2015 **FEIMILAD**

Detector Backgrounds & Mitigation

Lead glass + scintillating fibers

Split into two separate sections

~1.4° tower aperture angle

Dual Readout Projective Calorimeter

Dual Readout

Calorimeter

ram

ILCroot Simulation

Trackers: Employ double-layer structure with 1mm separation for neutral background suppression

A tentative proposal for a Higgs factory at CERN

- The muon cooled Higgs factory can be easily housed within CERN
- The new 5 GeV Linac will provide at 50 c/s a multi MWatt H⁻ beam with enough pions/muons to supply the muon factory.
- The basic additional accelerator structure will be the following:
 - ➤ Two additional small storage rings with R ≈ 50 m will strip H⁻ to a tight p bunch and compress the LP-SPL beam to a few ns.
 - Muons of both signs are focused in a axially symmetric B = 20 T field, reducing progressively p_t with a horn and B = 2 T
 - > A buncher and a rotator compresses muons to \approx 250 MeV/c
 - > Muon Cooling in 3D compresses emittances by a factor >10 6 .
- Bunches 1-2 x 10¹² μ± are accelerated to 62.5 GeV with an unconventional, bi-directional recirculating LINAC ≈200 m long.
- Muons are colliding in a SC storage ring of R ≈ 60 m (about one half of the CERN-PS , 1/100 of LHC) where > 10⁴ Higgs events/y are recorded for each of the experiments.
 Carlo Rubbia FNAL May 2015

Discussion of the Scientific Potential of Muon Beams

Slide# : 28

- The first muon cooling ring should present no unexpected behaviour and good agreement between calculations and experiment is expected both transversely and longitudinally
- The novel Parametric Resonance Cooling (PIC) involves instead the balance between a strong resonance growth and ionization cooling and it may involve significant and unexpected conditions which are hard to predict.
- Therefore the experimental demonstration of the cooling must be concentrated on such a resonant behaviour.
- On the other hand the success of the novel Parametric Resonance Cooling is a necessary premise for a viable luminosity of the initial proton parameters of the future CERN accelerators since the expected Higgs luminosity is proportional to the inverse of the transverse emittance, hence about one order of magnitude of increment is expected from PIC. RF cavities

Carlo Rubbia – FNAL May 2015

Discussion of the Scientific Potential of Muon Beams

Muon Accelerator Staging Study

- Is there a facility path that supports both physics output and the required accelerator development?
 - -nuSTORM
 - Short baseline NF
 - No new technology
 - IDS-NF concept ⇒ 5 GeV
 NuMAX optimized for SURF
 - NF effort can lay the groundwork for subsequent collider capabilities
 - Demonstrate operational 6D cooling concepts as a performance
 - Performance improvement path for NF

The MAP Muon Accelerator Staging Study ⇒ NuMAX PIP-11 TOMainhiector 0.8 GeV 5 GeV Storage Ring PIP-III 2.2 Gev optimized for Fermilab-to-SURF **Dual-Use** baseline $(p \& \mu)$ Linac 3.75 GeV μ pre-Linac NuMAX 650 MHz 1.0 GeV 325 MHz ~281 m $\mu^+ \& \mu^-$ Chicane **NuMAX Staging:** 6D Commissioning Cooling Target & ♦ 1MW Target Capture ♦ No Muon Cooling Solenoid ♦ 10kT Detector NuMAX+ \diamond 2.75 MW Target Front End ♦ 6D Muon Cooling **Buncher** Accumulator

MASS NF Parameters

Muon Colliders – Efficiency at the multi-TeV scale

34 Discussion of the Scientific Potential of Muon Beams

Muon Collider Parameters

↑ North

35

Muon Collider Parameters							
Activity Constraints			<u>Higgs</u>	<u>Multi-Te</u>		eV	
Fermilab Site						Accounts for	
			Production			Site Radiation	
Parameter		Units	Operation			Mitigation	
CoM Energy		TeV	0.126	1.5	3.0	6.0	
Avg. Lun	ninosity	10 ³⁴ cm ⁻² s ⁻¹	0.008	1.25	4.4	12	
Beam Energy Spread		%	0.004	0.1	0.1	0.1	
Higgs Production/10 ⁷ sec			13,500	37,500	200,000	820,000	
Circumf	erence	km	0.3	2.5	4.5	6	
No. of IPs			1	2	2	2	
Repetition Rate		Hz	15	15	12	6	
β*		cm	1.7	1 (0.5-2)	0.5 (0.3-3)	0.25	
No. muons/bunch		10 ¹²	4	2	2	2	
Norm. Trans. Emittance, ϵ_{TN}		π mm-rad	0.2	0.025	0.025	0.025	
Norm. Long. Emittance, ϵ_{LN}		π mm-rad	1.5	70	70	70	
Bunch Length, σ_{s}		cm	6.3	1	0.5	0.2	
Proton Driver Power		MW	4	4	4	1.6	
Wall Plug Power		MW	200	216	230	270	
Exquisite Energy Resolution Allows Direct Measurement			Success of advanced cooling concepts ⇒ several × 10 ³² [Rubbia proposal: 5×10 ³²]				
Discussion of the S of Higgs Width		ns Nov 18, 2015 57 Fermila					

Conclusion

• NF \Rightarrow precision v microscopes

- Multi-TeV MC ⇒ potentially only cost-effective route to lepton collider capabilities with $E_{CM} > 5 \text{ TeV}$
- Key technical hurdles have been addressed:
 - High power target demo (MERIT) * Decays of an individual species (ie, μ^+ or μ^-)

Accelerator	Energy	y Scale	Performance
Cooling Channel	~200	MeV	Emittance Reduction
MICE	160-240	MeV	5%
Muon Storage Ring	3-4	GeV	Useable μ decays/yr*
vSTORN	Л 3.8	GeV	3x10 ¹⁷
Intensity Frontier ${f v}$ Factory	4-10	GeV	Useable μ decays/yr*
NuMAX (Initial)	4-6	GeV	8x10 ¹⁹
NuMAX+	4-6	GeV	5x10 ²⁰
IDS-NF Design	10	GeV	5x10 ²⁰
Higgs Factory	~126	GeV CoM	Higgs/10 ⁷ s
s-Channel μ Collider	~126	GeV CoM	3,500-13,500
Energy Frontier μ Collider	> 1	TeV CoM	Avg. Luminosity
Opt. 1	1.5	TeV CoM	1.2x10 ³⁴ cm ⁻² s ⁻¹
Opt. 2	3	TeV CoM	4.4x10 ³⁴ cm ⁻² s ⁻¹
Opt. 3	6	TeV CoM	12x10 ³⁴ cm ⁻² s ⁻¹

- Realizable cooling channel designs with acceptable performance
- Breakthroughs in cooling channel technology
- Significant progress in collider & detector design concepts

Muon accelerator capabilities offer unique potential for the future of high energy physics research