

# Expected needs in Electronics for the CERN Experiments

5 October 2015

Philippe.Farthouat@cern.ch

The LHC Experiments



## ATLAS Detector



### CMS Detector



### Collaborations

# Last generation of HEP detectors are incredibly complex and state of the art pieces of technology

- Detector systems have increased size and complexity
  - ~100,000,000 channels
  - at least a factor 10 with respect to previous generation
- Projects span over a lifetime of 3-4 decades and involve thousands of scientists

| Experiment | Countries | Institutions | Scientists |
|------------|-----------|--------------|------------|
| ALICE      | 36        | 131          | ~1200      |
| ATLAS      | 38        | 177          | ~ 3000     |
| CMS        | 42        | 182          | ~ 3000     |
| LHCb       | 16        | 65           | ~ 700      |

# Collaborations (cont')

Large LHC Detector <u>Subsystem</u> Example Case



EU, US, RU, ETC Electronic Systems for Experiments

philippe.farthouat@cern.ch

## The LHC environment



## The main challenges

- 40 10<sup>6</sup> bunches colliding every second
- 25 interactions per bunch crossing
  - 10° events per second
- Up to 100 106 detector channels to be readout
  - One "event" weighs ~1 MBytes
- Complex high speed "trigger" system to select about 100,000 events per second which will be readout
  - i.e. the data are extracted from the detector
- Complex higher level selection process to reduce the number of events to be definitely stored for physics analysis
  - A few 1000's events
- Very difficult environment
  - High radiation levels. Up to 100 Mrad in the center of the detector
  - High magnetic field. Up to 4 Tesla in CMS

### Detector Readout Electronics



## Readout Electronics can be





## ... Or it can be



# The PH Electronics Group: mandate

- Development/qualification of specific technologies required for experiments
  - Radiation hard IC Technologies: 250nm, 130nm, 65nm CMOS
  - Common building blocks: Optical links, Power conversion, Control/monitoring
  - Readout electronics of detectors: from sensors to data storage
  - Infrastructure: Crates, Racks, Power supplies
- Contribute to specific experiment systems
  - E.g. CMS tracker upgrade, ATLAS Central Trigger, ALICE Inner Tracker, LHCb Velo, NA62 Gigatracker, ...
- Make general instrumentation available to CERN users and experiments
  - Electronics pool
  - Procurement and maintenance contracts for crates and power supplies
- Electronics coordination
  - "Management" in experiments

CERN contributes ~20% to the electronics of the experiments. However more orders can go through CERN and PH-ESE (see email) is a good entry point to know about on-going projects

## Upgrades of the LHC

### LHC / HL-LHC Plan





- Main activity related to the LHC experiments upgrades
- Upgrades of the experiments at each long shutdown
  - LHCb and ALICE main upgrades at LS2. Significant upgrades for ATLAS and CMS
  - Major upgrades for ATLAS and CMS during LS3

# Upgrading the LHC Detectors

- The luminosity (number of particles per area and time to collide) will increase by a factor 5
- The detector occupancy will increase considerably:





# Needs for next few years

- Common projects for which we are responsible
- Front-end developments for the upgrades
- Back-end developments for the upgrades
- Specific requirements for power supplies

# Common Projects (1)

- Support for the access to IC technologies
  - Relation with foundries and with CAE vendors
- IP blocks to be made available to the community
  - E.g. ADC, DAC, PLL,...
  - Could be designed in the community
  - Or bought from industry



## Common Projects (2) GBT & Versatile Link



- Current version being produced (4.8 Gbps)
  - 75000 GBTX, 25000 versatile links components
- New version (lower power, higher speed [10 Gbps]) being designed
  - Production expected in 2017 2018

## GBT and Versatile links







GBT - SCA





### **GBT & Versatile Links**

- Needs from industry for the ASICs
  - Packaging of ASICs
  - Testing of ASICs
- Needs from industry for the Versatile Link components
  - TOSA and ROSA
  - Assembly of TOSA and ROSA with laser drivers and transimpedance amplifiers
  - Production tests
- Same needs for upgraded version in 2017 2018
- Fibres and optical connectors (high density) needed
  - As well as low mass cables for Gbps transmission on a few meters

# Radiation Tolerant DC-DC Converter

- Radiation-hard and magnetic tolerant (up to 4 T) POL DC-DC converters needed
- Current development good enough for the first upgrades
- Based on a radiation tolerant ASIC and an air-core inductor
- Upgraded version needed for HL-LHC
- Requirements from industry
  - Air-core inductor
  - Assembly
  - Testing



## Front-end developments

- A lot of developments for the silicon detectors readout started
  - Radiation tolerant front-end ASICs
  - Hybrids
- Industry needed for the hybrids design and production
  - Partially under CERN control
  - Market survey / Call for tender procedure
  - E.g. market survey for the CMS silicon outer tracker on-going

# Examples of FE hybrids



- CMS outer tracker
- Several 1000's pieces
- High density (chips on board, C4)







# Other Front-end Hybrids

- ATLAS silicon strips
  - 2000 pieces
- ALICE Kapton tapes for the tracker upgrade





# ATLAS and CMS Muon Upgrades

- Both AtLAS and CMS plan to install new muon chambers in their end-caps
- Several 1000's front-end boards needed
  - Production, assembly and tests
  - Time scale 2018 2019





### **Back-end Electronics**

- VME (9U and 6U) mainly used in current systems
- Upgrades planning to use µTCA and/or ATCA and PCle boards
- Crates, power supplies, ancillary modules expected from industry
  - Evaluations on-going for ATCA



14 slots ATCA shelf

12.5 kW PS

# Back-end Electronics (con't)

- Expertise in xTCA welcome
  - Shelf managers
  - IPMI
- General purpose modules
  - Hubs, switchs, CPUs
- Production, assembly and test of our specific modules
- The design of some of them could be outsourced
  - E.g. 450 VME 6U 32 channels 14-bit 40 Msps ADC subcontracted for a fixed target experiment

# Exemple of ATCA device



Picture from LAPP Annecy

- ATCA board with 3
  ALTERA FPGA StratixIV
- 40 optical receiver links@ 4.8Gbps
- Readout through 10GbE Ethernet network

# Power Supplies

- Power distribution to the front-end needed
  - IV and HV
- Traditionally provided by industry
  - Main suppliers so far: CAEN, WIENER and ISEG
  - New powering schemes for the upgrades require new developments
  - Special developments needed for (moderately) radiation and magnetic tolerant devices
    - CERN to try and define as common devices as possible
- Specifications within a year or two, followed by market survey / call for tender
  - Production and maintenance

# Medical Applications: Medipix

- Application of pixel detectors for imaging applications
- Several collaborations
  - Medipix 2 & 3
  - Medipix 4 being set up
- A lot of applications in industries, education and research
  - X-Ray imaging
  - Dosimetry in the ISS





Medipix3RX images: S. Procz et al.

### Conclusion

- The needs for electronics spans from radiation hard front-end ASICs to front-end hybrids, optical links, modular electronics (xTCA and PCIe) and power supplies
- Industry needed for the production and testing of custom systems but also to provide specific designs (e.g. IP blocks) or to design some modules
- In addition to a "one-shot" production, maintenance contracts are needed for some systems
  - E.g. crates and power supplies

# Back-up Slides

# Microelectronics: Technologies

#### CMOS 6SF

Legacy designs

#### **CMOS 8RF-LM**

Low cost technology for Large Digital designs

#### **CMOS 8RF-DM**

Low cost technology for Analog & RF designs

#### **BICMOS 8WL**

Cost effective technology for Low Power RF designs

#### **BICMOS 8HP**

High Performance technology for demanding RF designs

### 250nm CMOS

### 130nm CMOS

#### CMOS 9SF LP/RF

High performance technology for dense designs

90nm CMOS

### CMOS 65nm

High performance technology for dense Low Power designs.

65nm CMOS

Legacy technology IBM CMOS6SF (250nm)

- Re-fabrication of old designs
- Small number of new designs

Mainstream technology IBM CMOS8RF-DM (130nm)

- Technical support: CERN compiled Mixed-Signal design kit
- Frequent MPW and Engineering runs

Advance technology IBM CMOS9LP/RF (90nm)

- Limited support: Project specific
- Future technology (65nm)
  - For LHC upgrade applications

# Radiation tolerant developments in 130 nm

- Readout ASICs: main developments now in 130 nm
  - Prototype readout chip for the ATLAS upgrade silicon strips
  - Pixel readout chip with one TDC per channel for a fixed target experiment (TDCPix)
- Development of a bidirectional gigabit link
  - 4 ASICx: GBTx, GBT-SCA, GBLD and GBTIA
  - 4.8 Gbps on each port
- Pictures next slides

### CERN R&D for new detectors

- RD50 <a href="http://rd50.web.cern.ch/rd50/">http://rd50.web.cern.ch/rd50/</a>
  - Radiation hard semiconductor devices for very high luminosity colliders
  - 49 institutes
- RD51 <a href="http://rd51-public.web.cern.ch/RD51-Public/">http://rd51-public.web.cern.ch/RD51-Public/</a>
  - Development of Micro-Pattern Gas Detectors Technologies
  - 90 institutes
- RD53 <a href="http://rd53.web.cern.ch/RD53">http://rd53.web.cern.ch/RD53</a>
  - Tools and designs needed to produce the next generation of pixel readout chips
  - 20 institutes
- CERN Neutrino platform
  - Neutrino detector R&D e.g. 2-phase large Liquid Ar TPC