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GARFIELD++

C++ version of GARFIELD simulation toolkit
http://garfieldpp.web.cern.ch

It is a package designed for the simulation of detectors that
use a gas mixture or a semi-conductor material as a
sensitive medium

It has application in several fields including High Energy
Physics (HEP)

Commonly used to estimate the performance of new
detector technologies



* GARFIELD can be used to study the performance of
gas detectors, such as the Gas Electron Multiplier
(GEM) detectors

* GEM detectors are well know for their excellent

performance in terms of spatial and timing

resolutions

However, the use of large area GEM detectors is still

a new territory, many experimental factors can

GE1/1-V-short (2014)
are.much needed

CMS experiment is planning to instal
GEM detectors as part of its upgrade
of the muon system in order to afford

https://agenda.infn.it/contributionDisplay.py? : B
sessionld=2&contribld=66&confld=8839 4

influence the signal gain, therefore simulation studies



Simulated process in a GEM

* High energy particles (i.e. muons)
pt- interact with atoms and molecules in
the sensitive medium (gas mixture in
case of a GEM)
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* Those free electrons collide with
further atoms releasing more
electrons (amplification region)
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* As aresult a chain reaction (also
known as electron avalanche) is
created



* Electron position is influenced by the
description of the electric field

* The electric field is calculated using
external packages (i.e. ANSYS)

* Atetrahedral mesh is used to
described the electric field

* The finer the mesh the longer the
simulation time

Tracking of a single electron traversing
a triple-GEM detector

 |n atriple-GEM there are




Description of the problem

« Due to the complexity of the processes the Simulation of electron avalanches
using a high voltage

simulation can take days or even weeks

* For certain conditions (high voltage and fine mesh)
the simulation takes so much time and computing
resources that a timely production of results is not
feasible

* The supercomputing facilities allow only limited
walltime for serial iobs.

Simulation time
300 - !

®—e unoptimized
273.0

250 -

— 200 -

time (hours

150-

Projected time as the
jobs exceeded walltime
limit

100-

54.454 56.
50 -

10 8 6 4 2 0



GARFIELD++ FindElement algorithm

FindElement is an
algorithm part of the
official garfield++
package

FindElement finds the
tetrahedral in the field
mesh containing the 3D
point associated with
the particle position

Linear search

O(N) —

@ This operation
takes 90% of the

simulation time.

Search in last element

18 min/max
operations per

Return element Get next element from list element
performed in
+ each iteration
Calculate bounding box
No

Inside bounding box?
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No
Inside tetrahedron
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Save and return element




ptimization method

Three optimization methods were studied:

1. Caching of bounding boxes.
— Removed 18 min/max operations

2. Element search using a Tetrahedral Tree data
structure.

— Computational complexity: O(N) = O(log N)
— Best case: O(1)
— Worst case: O(log N)

3. Search through neighbors



* The catching bounding box step

is moved to the beginning of
FindElement

Search in last element

* This reduces 18 min/max

Return element Get next element from li Ope raﬁOnS that We re
N~ performed in each iteration
C@D&eboundmgg .

~

* This change already speeds up
the simulation 5x
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Based on the Octree

Used to partition a three
dimensional space by recursively
sub-diving it into eight octants

Improves the spatial indexing of
nodes (vertices) and elements
(tetrahedrons).

Each leaf block stores a set of nodes
(vertices).

And also a set of tetrahedrons
whose BBs intersects with the
block’s BB.

More speedup expected for high
resolution meshes.
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Search through Neighbors

* |In the normal searching algorithm, if the last element
does not correspond to the position of the particle the
algorithm starts from a next element in the list

* In our optimized way we search first for neighbors
where most likely the element will be found

Un-optimized Optimized




* 4 optimized cases were studied and compared to the
un-optimized case:
Cached bounding boxes
Cached bounding boxes + neighbors

Cached bounding boxes + tetrahedral tree
Cached bounding boxes + neighbors + tetrahedral tree

W

* For 2 detector configurations.
— Single GEM
— Triple GEM
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Benchmarking

* Single GEM
* 10000 events
* SMRT: 1-10
e Jobs: 45 (9x5)

* Triple GEM
* 1000 events
e 2538 volts: SMRT: 1,2,3,4,5,7,9,10 (8 meshes)
e 3243 volts: SMRT: 1,4,7,9,10 (5 meshes)
e Jobs: 65 (8x5)

Running at Texas A&M at Qatar cluster
o . . (RAAD)
Total jobs on RAAD: 110
RAAD specs:
» 2,200 CPU cores
» 12 Nvidia TESLA K20 (Kepler) GPUs,
each with 2,496 CUDA cores
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time (hours)

Triple GEM, 2538 volts

1,000 events, 8 meshes

Simulation time
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Summary on Optimization

Several improvements to the GARFIELD++
algorithms were studied

The maximum speedup factor is 19x which is
reached combining the three optimization
methods

The bounding box caching code (speed up of 5x)
has already been pushed to the Garfield++ SVN
repository.

Other optimizations will be checked in soon.



lelization of ¢

* Need to adapt GARFIELD to a
parallel programming
framework.

* Shared memory or distributed
memory architecture?

Distributed memory architecture

—————————————————————

____________________

Serial simulation workﬂgw
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Parallel Garfield (pGarfield++)
e
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 Based on Message Passing
interface (MPI) architecture

 Random number generation

e Master distributes the
workload and gathers

the results back.

Client Client ~  Server




Performance Results: Speedup

Performance was evaluated on the HPC cluster at Texas A&M University at Qatar.
The HPC cluster (named RAAD) is a 42+ TFLOP, 2208-core Intel Xeon system.

Ts
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Conclusions

* With the combination of the algorithm optimizations and the
parallelization of GARFIELD++ we can reduce substantially the
simulation time

 The simulation output is not affected by these optimizations,
preliminary results show consistent results between the un-
optimized and the optimized versions (within statistical
uncertainties)

 Some of these changes already propagated into SVN

 We will continue working on our optimization studies

This work was supported by the Qatar National Research
Fund under the project NPRP-5-464-1-080



