
Speeding	Up	and	Parallelizing	the	
Garfield++	

Ali	Sheharyar,	Othmane	Bouhali,	Taif	Mohamed,	
Alfredo	Castaneda		

	
Texas	A&M	University	at	Qatar	

1	

RD51	CollaboraJon	MeeJng	
October	2015	



Outline	

•  GARFIELD++	and	some	applicaJons	in	HEP	
•  Simulated	processes	in	a	gas	detector	
•  DescripJon	of	the	problem		
•  OpJmizaJon	methods	proposed	
•  Results	
•  Summary	on	opJmizaJons	and	plans	
•  IntroducJon	 of	 a	 parallelized	 version	 of	 GARFIELD++	
(pGARFIELD++)	

2	



GARFIELD++	

•  C++	 ve r s ion	 o f	 GARF IELD	 s imu laJon	 too l k i t	
hVp://garfieldpp.web.cern.ch	
	

•  It	is	a	package	designed	for	the	simulaJon	of	detectors	that	
use	 a	 gas	 mixture	 or	 a	 semi-conductor	 material	 as	 a	
sensiJve	medium	
	

•  It	 has	 applicaJon	 in	 several	 fields	 including	 High	 Energy	
Physics	(HEP)	
	

•  Commonly	 used	 to	 esJmate	 the	 performance	 of	 new	
detector	technologies	

3	



ApplicaJon	in	HEP	
•  GARFIELD	can	be	used	to	study	the	performance	of	

gas	detectors,	such	as	the	Gas	Electron	MulJplier	
(GEM)	detectors	

•  GEM	detectors	are	well	know	for	their	excellent	
performance	in	terms	of	spaJal	and	Jming	
resoluJons	

•  However,	the	use	of	large	area	GEM	detectors	is	sJll	
a	new	territory,	many	experimental	factors	can	
influence	the	signal	gain,	therefore	simulaJon	studies	
are	much	needed	

CMS	experiment	is	planning	to	install	
GEM	detectors	as	part	of	its	upgrade	
of	the	muon	system	in	order	to	afford	
the	intense	parJcle	flux	in	the	high-
luminosity	scenario.	
	
More	details	in	talk	given	by		Brian	
Dorney	

4	
hVps://agenda.infn.it/contribuJonDisplay.py?
sessionId=2&contribId=66&confId=8839	



5	

Simulated	process	in	a	GEM	
•  High	energy	parJcles	(i.e.	muons)	
interact	with	atoms	and	molecules	in	
the	sensiJve	medium	(gas	mixture	in	
case	of	a	GEM)	

	
•  During	the	ionizaJon	process	free	
electrons	are	released	and	
accelerated	by	the	use	of	an	electric	
field	

	
•  Those	free	electrons	collide	with	
further	atoms	releasing	more	
electrons	(amplificaJon	region)	

•  As	a	result	a	chain	reacJon	(also	
known	as	electron	avalanche)	is	
created	

	

	μ+/-	



Tracking	of	parJcles	in	a	GEM	detector	
•  Electron	posiJon	is	influenced	by	the	
descripJon	of	the	electric	field	

•  The	electric	field	is	calculated	using	
external	packages	(i.e.	ANSYS)	

•  A	tetrahedral	mesh	is	used	to	
described	the	electric	field	

•  The	finer	the	mesh	the	longer	the	
simulaJon	Jme	

•  In	a	triple-GEM	there	are	
three	amplificaJons	stages	

•  Signal	(from	the	electron	
avalanche)	is	collected	at	
the	readout	board	

6	

Tracking	of	a	single	electron	traversing	
a	triple-GEM	detector	



DescripJon	of	the	problem	
•  Due	 to	 the	 complexity	 of	 the	 processes	 the	

simulaJon	can	take	days	or	even	weeks	
•  For	certain	condiJons	(high	voltage	and	fine	mesh)	

the	simulaJon	takes	so	much	Jme	and	compuJng	
resources	that	a	Jmely	producJon	of	results	is	not	
feasible	

•  The	 supercompuJng	 faciliJes	 allow	 only	 limited	
wallJme	for	serial	jobs.	

	

SimulaJon	of	electron	avalanches	
using	a	high	voltage	

7	

Projected	Jme	as	the	
jobs	exceeded	wallJme	
limit	



GARFIELD++	FindElement	algorithm	

Linear	search	
O(N)	

This	operaJon	
takes	90%	of	the	
simulaJon	Jme.	

18	min/max	
operaJons	per	
element	
performed	in	
each	iteraJon	

8	

•  F i ndE l ement	 i s	 an	
algorithm	 part	 of	 the	
offi c i a l 	 g a r fi e l d + +	
package	

•  FindElement	 finds	 the	
tetrahedral	 in	 the	 field	
mesh	 containing	 the	3D	
point	 associated	 with	
the	parJcle	posiJon	



OpJmizaJon	methods	

1.  Caching	of	bounding	boxes.	
–  Removed	18	min/max	operaJons	

2.  Element	search	using	a	Tetrahedral	Tree	data	
structure.		
–  ComputaJonal	complexity:	O(N)	à	O(log	N)	
–  Best	case:	O(1)	
–  Worst	case:	O(log	N)	

3.  Search	through	neighbors	

Three	opJmizaJon	methods	were	studied:	

9	



10	

Caching	of	bounding	boxes.	

•  The	catching	bounding	box	step	
is	moved	to	the	beginning	of	
FindElement	
	

•  This	reduces	18	min/max	
operaJons	that	were	
performed	in	each	iteraJon	

•  This	change	already	speeds	up	
the	simulaJon	5x	



Tetrahedral	Tree	
	

	
•  Based	on	the	Octree	
•  Used	to	parJJon	a	three	

dimensional	space	by	recursively	
sub-diving	it	into	eight	octants	

•  Improves	the	spaJal	indexing	of	
nodes	(verJces)	and	elements	
(tetrahedrons).	

•  Each	leaf	block	stores	a	set	of	nodes	
(verJces).	

•  And	also	a	set	of	tetrahedrons	
whose	BBs	intersects	with	the	
block’s	BB.	

•  More	speedup	expected	for	high	
resoluJon	meshes.	

11	



Search	through	Neighbors	

Un-op6mized	 Op6mized		

P5

P4

P1

P2
P3

P6P7

P8

P7

P3

P5

P4

P1

P2

P6

P8

•  In	the	normal	searching	algorithm,	if	the	last	element	
does	not	correspond	to	the	posiJon	of	the	parJcle	the	
algorithm	starts	from	a	next	element	in	the	list			

•  In	our	opJmized	way	we	search	first	for	neighbors	
where	most	likely	the	element	will	be	found	

12	



Benchmarking	
•  4	opJmized	cases	were	studied	and	compared	to	the	
un-opJmized	case:	
1. 	Cached	bounding	boxes	
2.  Cached	bounding	boxes	+	neighbors	
3.  Cached	bounding	boxes	+	tetrahedral	tree	
4.  Cached	bounding	boxes	+	neighbors	+	tetrahedral	tree	

	

•  For	2	detector	configuraJons.	
–  Single	GEM	
–  Triple	GEM	

13	



14	

Benchmarking	
•  Single	GEM	
•  10000	events	
•  SMRT:	1-10		
•  Jobs:	45	(9x5)	

	
•  Triple	GEM	
•  1000	events	
•  2538	volts:	SMRT:	1,2,3,4,5,7,9,10	(8	meshes)	
•  3243	volts:	SMRT:	1,4,7,9,10	(5	meshes)	
•  Jobs:	65	(8x5)	

	
•  Total	jobs	on	RAAD:	110	

Running	at	Texas	A&M	at	Qatar	cluster	
(RAAD)	
RAAD	specs:	
•  2,200	CPU	cores	
•  12	Nvidia	TESLA	K20	(Kepler)	GPUs,	

each	with	2,496	CUDA	cores	
	



Single	GEM	
10,000	events,	9	meshes	

15	

Results	



Triple	GEM,	2538	volts		
1,000	events,	8	meshes	

16	



Triple	GEM,	3243	volts		

Mesh	details:	course	to	fine	à	

2	

1	

Projected	based	on:	
			1:	606	events		
			2:	898	events	

1,000	events,	5	meshes	

Projected	Jme	as	the	
jobs	exceeded	
wallJme	limit	

17	



Summary	on	OpJmizaJon	
•  Several	improvements	to	the	GARFIELD++	
algorithms	were	studied	

•  The	maximum	speedup	factor	is	19x	which	is	
reached	combining	the	three	opJmizaJon	
methods	

•  The	bounding	box	caching	code	(speed	up	of	5x)	
has	already	been	pushed	to	the	Garfield++	SVN	
repository.	

•  Other	opJmizaJons	will	be	checked	in	soon.	
	 18	



•  Need	to	adapt	GARFIELD	to	a	
parallel	programming	
framework.	

•  Shared	memory	or	distributed	
memory	architecture?	

Serial	simulaJon	workflow	

Distributed	memory	architecture	

19	

ParallelizaJon	of	GARFIELD++	

Counter < N

Start

Randomize the 
position of primary 

electron

Ev
en

t

Counter = 0

Initialize Garfield

Stop

Increment 
Counter

Calculate Electron 
Avalanche

Analyze Results

Generate Electric 
Field

Garfield Sim
ulation



Parallel	Garfield	(pGarfield++)	

•  Based	on	Message	Passing	
interface	(MPI)	architecture	

•  Random	number	generaJon	
•  Master	distributes	the	
workload	and	gathers		
the	results	back.	

1 2 3

0

Workers Workers

Master

a
b

4

Random Number
Server

a
b

a
b

c c

c

CPU

Memory

CPU

Memory

CPU

Memory

CPU

Memory

Network

Master Client Client Server

Number of processes (Size)
MPI Launcher

Application executable
Arguments

Rank=0 Rank=1 Rank=2 Rank=3

20	



Performance	Results:	Speedup	

Performance	was	evaluated	on	the	HPC	cluster	at	Texas	A&M	University	at	Qatar.	
The	HPC	cluster	(named	RAAD)	is	a	42+	TFLOP,	2208-core	Intel	Xeon	system.	

21	



22	

Conclusions	

This	work	was	supported	by	the	Qatar	NaJonal	Research	
Fund	under	the	project	NPRP-5-464-1-080	

•  With	the	combinaJon	of	the	algorithm	opJmizaJons	and	the	
parallelizaJon	of	GARFIELD++	we	can	reduce	substanJally	the	
simulaJon	Jme	

•  The	simulaJon	output	is	not	affected	by	these	opJmizaJons,	
preliminary	results	show	consistent	results	between	the	un-
opJmized	and	the	opJmized	versions	(within	staJsJcal	
uncertainJes)	

•  Some	of	these	changes	already	propagated	into	SVN	
•  We	will	conJnue	working	on	our	opJmizaJon	studies	


