Timing, Synchronization & Longitudinal Aspects I

H. Damereau
CERN

CAS Course on
Beam Injection, Extraction and Transfer

13 March 2017
Outline

• Introduction

• General concepts
 • Signals with noise, transmission of RF signals
 • Phase detectors and dividers

• Beam transfer
 • Fundamental periodicity
 • Transfer between circular lepton accelerators

• Transfer between hadron accelerators
 • Beam phase loop, bucket numbering
 • Transfer process: Synchronization, transfer triggers
 • Longitudinal matching

• Summary
Introduction
Introduction

• Two or more people must be synchronized to meet
 → Calendar item: date, time and location
 → Typical uncertainty: some minutes

• Slightly more precision required to have a meeting with a particle beam
 → Typical uncertainty: some nanoseconds down to femtoseconds

→ To be at the right time in the right place

→ Set conditions and generate timings and RF signals with a given time relation with respect to the beam
→ Make beam feel comfortable in its new accelerator
Timescales

Proton bunches in low energy synchrotrons

Hadron colliders

Electron storage rings

Plasma wakefield experiments

→ Geometrical size: few meters to some km
Synchronization for beam transfer

• How to get the beam through the accelerator?

Source \[\rightarrow\] Exit

• How to transfer beam from accelerator A to B?

Accelerator A \[\rightarrow\] Accelerator B

• Beam passes many elements on its way:
 \[\rightarrow\] RF structures \[\rightarrow\] Must be in phase
 \[\rightarrow\] Septa, bumper and kicker magnet \[\rightarrow\] Trigger
 \[\rightarrow\] Fast beam instrumentation \[\rightarrow\] Trigger
 \[\rightarrow\] RF systems in source and target accelerator \[\rightarrow\]
 Correct phase with respect to beam
Particle velocity

• Particle velocity depends on its type:

\[\beta = \frac{v}{c} = \sqrt{1 - \left(\frac{E_0}{E}\right)^2} \]

- Old television set (30 kV):
 - Electrons at 30% of \(c_0 \)
 - Protons just at 0.7%

- Small synchrotron (500 MeV):
 - Electrons at 99.99995%
 - Protons at 75.8%

→ Many electron accelerators at ‘fixed’ frequency
Synchronization needs for particle types

<table>
<thead>
<tr>
<th>Lepton accelerators</th>
<th>Hadron accelerators</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Velocity $v \approx c$ in high energy accelerators</td>
<td>• Slow, even velocity change relevant to the multi-GeV range</td>
</tr>
<tr>
<td>• Synchrotron radiation damping (mainly circular accelerators)</td>
<td>• Negligible or small damping from synchrotron radiation</td>
</tr>
<tr>
<td>• Short bunches</td>
<td>• Long bunches</td>
</tr>
<tr>
<td>• Storage rings: $\sim 10...100$ ps</td>
<td>• Synchrotrons: $1...1000$ ns (depends on RF frequency)</td>
</tr>
<tr>
<td>• Linear free electron lasers: $50...200$ fs</td>
<td>• Linear accelerators: typically few ns</td>
</tr>
</tbody>
</table>

→ Fixed frequencies
→ High precision

→ Variable (sweeping) frequencies
→ Moderate precision
Bunch-to-bucket transfer

• Bunch from sending accelerator into the bucket of receiving

Advantages:
→ Particles always subject to longitudinal focusing
→ No need for RF capture of de-bunched beam in receiving accelerator
→ No particles at unstable fixed point
→ Time structure of beam preserved during transfer to the next
Noise on signals
Degradation of signal quality due to noise
- Amplitude and/or phase jitter
- What is the difference between a coherent signal and noise?

- Amplitude of **coherent**, quasi monochromatic signal (at 200 MHz) is independent of observation bandwidth

- Incoherent noise power (dominated by spectrum analyzer front-end amplifier/mixer) is proportional to bandwidth

- Thermal noise power \(\frac{P}{\Delta f} = k_B T = 1.38 \cdot 10^{-23} \text{ J/K} \cdot 296 \text{ K} \approx -174 \text{ dBm/Hz} \)
Analysis of phase noise

• Compare noise power with carrier power as reference

\[\text{Ratio of carrier to noise: } \text{dBc} \]

\[\Delta f = 1 \text{ Hz for normalization} \]

• Noise power density

\[\mathcal{L}(f) = \frac{\text{Power density}}{\text{Carrier power}} \left[\frac{\text{dBc}}{\text{Hz}} \right] = \frac{1}{2} S_{\phi}(f) \]

→ Its integral is the phase jitter and using \(\Delta t = \frac{\Delta \phi}{2\pi f_c} \)

the jitter in time becomes

\[\Delta t_{\text{rms}} = \frac{1}{2\pi f_c} \sqrt{\int_{f_1}^{f_2} S_{\phi}(f) \, df} \]
Typical phase noise plots

- Measure phase noise of a synthesized lab generator

<table>
<thead>
<tr>
<th>Frequency range</th>
<th>Δt_{rms} [fs]</th>
</tr>
</thead>
<tbody>
<tr>
<td>10...100 Hz</td>
<td>12.4</td>
</tr>
<tr>
<td>100 Hz ...1 kHz</td>
<td>5.4</td>
</tr>
<tr>
<td>1...10 kHz</td>
<td>5.4</td>
</tr>
<tr>
<td>10...100 kHz</td>
<td>11.1</td>
</tr>
<tr>
<td>100 kHz...1 MHz</td>
<td>13.0</td>
</tr>
<tr>
<td>Total</td>
<td>31.0</td>
</tr>
</tbody>
</table>

→ Note: jitter values can be added as square root of quadratic sum

$$\Delta t_{\text{rms}} = \sqrt{\Delta t_{\text{rms},1}^2 + \Delta t_{\text{rms},2}^2 + \ldots}$$

→ Convenient split to relevant ranges
Signal transmission
Transmission of reference signals

- Thermal drift of long *coaxial cables* or optical fibres

- Thermal coefficient of delay:
 \[\text{TCD} = \frac{\Delta\tau}{\tau} \cdot \frac{1}{\Delta T} = \frac{\Delta\phi}{\phi} \cdot \frac{1}{\Delta T} \]

- **Example:** 2 km long RG223 cable with ~10 \(\mu\)s delay
 - \(\Delta T\) of only 1°C (room temperature) changes delay by ~0.5 ns
 - 1.8° at 10 MHz (CERN PS), but 73° at 400 MHz (LHC)
- Optical fibres are typically 10...100 times more stable
- What to do if this is still not sufficient?
Transmission of reference signals

- Measured drift of optical fibres over long distance standard optical fibre

 Measured temperature and delay drift of ~6.3 km fiber

- Drift by about 1 ns insufficient for requirements of setup

 → Active compensation of delay
Example: Active drift compensation

- Precise synchronization of proton beam from CERN SPS with plasma wake-field experiment AWAKE

Prototype hardware

→ Expect picosecond precision over several kilometres

D. Barrientos, J. Molendijk
Transmission of reference signals

- Total delay composed of coarse (steps of 10 ps) and fine ~30 ps range: \(\tau = \tau_{\text{coarse}} + \tau_{\text{fine}} \)

\[\begin{align*}
\tau_{\text{coarse}} [\text{ns}] & \quad 5.05 \quad 5.00 \quad 4.95 \\
\tau_{\text{fine}} [\text{ps}] & \quad 25 \quad 20 \quad 15 \quad 10 \quad 5
\end{align*} \]

- Precision difficult to evaluate without 2nd ‘reference’ link
- Arrival of two beams in AWAKE experiment stable to better ~100 ps over months

D. Barrientos, J. Molendijk
Overview of transmission methods

Various approaches:

1) RF distribution
 \[f \sim 100\text{MHz} \ldots \text{GHz} \]

2) Carrier is optically
 \[f \sim \text{GHz} \]

3) Carrier is optically + detection
 \[f \sim 200\text{THz} \]

4) Pulsed optical source
 \[\Delta f \sim 5\text{THz} \]
Phase detection
Frequency and phase

- Two signals at different frequencies ω_1 and ω_2

\rightarrow Phase difference, $\Delta\phi$, between both signals changes linearly

\rightarrow Ambiguity to distinguish between $\Delta\phi = -\pi, \pi, -3\pi, 3\pi,...$

\rightarrow Saw-tooth in phase means constant frequency difference

\rightarrow Equivalence of frequency and phase

$$\omega = \frac{d\phi}{dt} \quad \leftrightarrow \quad \phi = \int \omega \, dt$$
How to detect phase differences?

- Example: analogue 4 quadrant multiplier and low pass filter

\[
\sin(\omega_1 t + \phi_1) \quad \rightarrow \quad \frac{1}{2} \left\{ \cos[(\omega_1 - \omega_2) t + (\phi_1 - \phi_2)] - \cos[(\omega_1 - \omega_2) t + (\phi_1 + \phi_2)] \right\}
\]

\sin(\omega_2 t + \phi_2)

- Signals:
How to detect phase differences?

- Example: analogue 4 quadrant multiplier and low pass filter

\[
\sin(\omega_1 t + \phi_1) \quad \rightarrow \quad \sin(\omega_2 t + \phi_2) \quad \rightarrow \quad \frac{1}{2} \cos[(\omega_1 - \omega_2)t + (\phi_1 - \phi_2)] \quad \rightarrow \quad \cos[(\omega_1 - \omega_2)t + (\phi_1 + \phi_2)]
\]

Remove ripple \(\rightarrow\) Low-pass filter

- Signals:
How to detect phase differences?

- Example: analogue 4 quadrant multiplier and low pass filter

\[
\frac{1}{2} \{ \cos[(\omega_1 - \omega_2)t + (\phi_1 - \phi_2)] - \cos[(\omega_1 - \omega_2)t + (\phi_1 + \phi_2)] \}
\]

Remove ripple \(\rightarrow\) Low-pass filter

Relative: arbitrary shift by \(90^\circ\)

- Signals:

- Phase discriminator in approximately \(+/\pm90^\circ\) range
Further phase detection techniques

Multitude of different phase discriminators

<table>
<thead>
<tr>
<th>Type</th>
<th>Range</th>
<th>Behavior</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analogue 4 quadrant multiplier</td>
<td>π</td>
<td>Sinusoidal: $s_{\text{out}} \sim \cos \phi$</td>
</tr>
<tr>
<td>Exclusive OR gate</td>
<td>π</td>
<td>Linear: $s_{\text{out}} \sim \phi - 3\pi/2$, or $s_{\text{out}} \sim -\phi + \pi/2$</td>
</tr>
<tr>
<td>Sample and hold</td>
<td>π</td>
<td>Sinusoidal: $s_{\text{out}} \sim \sin \phi$</td>
</tr>
<tr>
<td>Flip-flop phase detector</td>
<td>π</td>
<td>Linear: $s_{\text{out}} \sim \phi - \pi$</td>
</tr>
<tr>
<td>Tri-state double flip-flop</td>
<td>2π</td>
<td>Linear: $s_{\text{out}} \sim \phi$</td>
</tr>
<tr>
<td>Balanced optical microwave phase detector (Sagnac loop)</td>
<td>$<\pi$</td>
<td>Sinusoidal: $s_{\text{out}} \sim \sin \phi$ (clipped)</td>
</tr>
</tbody>
</table>

- **Full phase coverage of 2π range excludes ambiguity of $\pm \pi$**
 - Avoids locking of phase loop with unwanted offset
- **Measure phase at high frequencies for precision**
Dividers
Frequency dividers

- Generate signals using frequency division from f_{RF}

\[f_{RF} \rightarrow \frac{f_{RF}}{n} \rightarrow \frac{f_{RF}}{n} \rightarrow \frac{f_{RF}}{n} \rightarrow \frac{f_{RF}}{m} \]

- Works (well, on paper), so what is the problem?
 → Dividers are nothing but counters! Initial value?
Synchronizing multiple dividers

- Generate signals using frequency division from f_{RF}

- How to fix?
 - Reset from master to slave divider(s) to force initial condition

→ Never more than one divider without reset!
Multiple divider with counting offset

• Counter with programmable offset value

$\frac{f_{RF}}{n}$

Offset

Counter to n

$x = 0?$

$x = 0?$

$\frac{f_{RF}}{n}$

$\frac{f_{RF}}{n}$

→ Single counter/divider split in two output branches
→ Impossible to lose relative phase of outputs
→ More complicated set-up allows also $\frac{f_{RF}}{m}$ and $\frac{f_{RF}}{n}$, etc.
Fundamental periodicity
Example: BESSY II booster and storage ring

- Storage ring circumference 240 m, $f_{RF} = 499.6$ MHz
- Circumference ratio of Booster and storage ring: $2/5$

→ Everything repeats with periodicity of
 - 5 turns in booster
 - 2 turns in storage ring

Sync. divider

Master: $f_{RF} = 500$ MHz

\[
\begin{array}{c}
16 \\
\downarrow \\
1 \\
\downarrow \\
1/10 \\
\downarrow \\
1/25 \\
\downarrow \\
1/50 \\
\end{array}
\]

- 3.125 MHz, f_{rev} booster
- 1.25 MHz, f_{rev} storage ring
- 0.625 MHz, periodicity

Each gray point represents 4 RF buckets
Example: SLS booster and storage ring

- Storage ring circumference 288 m, $f_{RF} = 499.6$ MHz
- Circumference ratio of Booster and storage ring: $15/16$

→ Fundamental periodicity (super-period)

16 turns of booster corresponding to 15 turns in storage ring
Fundamental periodicity for transfer

- Two accelerators with revolution periods $T_{\text{rev},1}$ and $T_{\text{rev},2}$

$$T_{\text{rev},2} = \frac{m}{n} T_{\text{rev},1} \quad \rightarrow \quad T_{\text{super}} = T_{\text{common}} = T_{\text{fiducial}} = mT_{\text{rev},1} = nT_{\text{rev},2}$$

→ Beam transfer may take place at every period $mT_{\text{rev},1}$ or $nT_{\text{rev},2}$

→ This periodicity is, depending on the accelerator and laboratory, called super-period, common or fiducial period

→ In case of integer ratio of revolution frequencies, beam can be transferred once every turn of the larger accelerator

<table>
<thead>
<tr>
<th>Sending</th>
<th>Receiving</th>
<th>Ratio</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>BESSY booster</td>
<td>BESSY SR</td>
<td>2/5</td>
<td>Fixed frequency</td>
</tr>
<tr>
<td>SLS booster</td>
<td>SLS SR</td>
<td>15/16</td>
<td>Fixed frequency</td>
</tr>
<tr>
<td>J-PARC RCS</td>
<td>J-PARC MR</td>
<td>2/9</td>
<td>Profit from ratio for bucket selection</td>
</tr>
<tr>
<td>PS booster</td>
<td>PS</td>
<td>1/4</td>
<td></td>
</tr>
<tr>
<td>PS</td>
<td>SPS</td>
<td>1/11</td>
<td></td>
</tr>
<tr>
<td>PS</td>
<td>AD</td>
<td>3/1</td>
<td>Particle type and energy change at transfer</td>
</tr>
<tr>
<td>SPS</td>
<td>LHC</td>
<td>7/27</td>
<td>f_c as low 1.6 kHz</td>
</tr>
</tbody>
</table>
Synchronous triggers

How to generate beam synchronous triggers?
→ Chains of counters to re-synchronize timings

Each step re-synchronizes with respect counter clock
- ‘Start engine button’ synchronous to nothing
- Complete system of two accelerators periodic with timing #1
- Timing #2 marks, e.g., a delay in number of turns
- Timing #3 counts f_{RF} clocks to fine adjust, e.g., bucket number
Timing counters may use different clocks, as long as the clocks are derived from the same source.

- Reproducible delay between clock #2 and #3
- Tree structures of timings
Circular electron/lepton accelerators

- Simplification for most electron accelerators:
 - Leptons are **practically at speed of light**
 - Synchrotron radiation **damping forces bunches into buckets**
 - Beam synchronous **timing triggers can be derived by counting RF master clock** (or its sub-multiples)
 - Everything is predictable from the beginning

→ Let’s get frequencies moving
Transfer between hadron accelerators
Circular hadron accelerators: master clock sweeps
Need again synchronous timings with respect to beam
 → Kicker magnets
 → Beam instrumentation
RF manipulations require bunches in certain buckets
 → Beating pattern due to multiple RF harmonics
 → Splits behaviour for different buckets
 → Bucket numbering
Need to know longitudinal beam position for transfer
 → Where (in phase/in time) is the beam?
Phase-locked loop

- Frequency re-generation and multiplication
- Voltage controlled oscillator (VCO) locked in phase to input

\[\frac{d\phi}{dt} = K_{VCO}V_{in} \]

\[\omega_{VCO} = 2\pi f_{VCO} \]

\[f_{out} = n \cdot f_{in} \]

\[\phi_{out}/n - \phi_{in} = \text{const.} \]

→ Fixed phase relationship:
→ Optional divider:
Beam phase loop

- **Phase pick-up**
- **Beam phase**
- **RF cavity**
- **Cavity phase**
- **Power amplifier**
- **Digital synthesizer**
- **Loop corr.**
- **DDS**
- **Precision VFO**
- **RF**
- **Slow signal**
- **$h f_{rev}$**

Beam phase loop with beam phase as reference for RF system
Benefits of beam phase loop at transfer

- Adapt RF phase to bunch phase **before beam blows-up**
 - Fast compared to timescale of synchrotron frequency, f_s

→ Even large transients (injection, transition) can be controlled
→ Small longitudinal emittance blow-up

Rigid RF, no phase loop

With phase loop
Start counting with injection

\[f_{RF} \]

- Start of divider/counter?

\[h \]

→ Get it right from injection

\[1 \]

→ Use output from divider as reference for incoming beam

Beam
synchro-
 nous \(f_{rev} \)
Start counting with injection

- **Start of divider/counter?**
 - Get it right from injection
 - Use output from divider as reference for incoming beam

- **Before injection:**
 - Distribute delayed revolution frequency to sending accelerator
 - Bunches are injected synchronously with $f_{\text{rev, delayed}}$
 - **Shifted** with respect to f_{RF} and f_{rev}
Start counting with injection

- Start of divider/counter?
 - Get it right from injection
 - Use output from divider as reference for incoming beam

- Before injection:
 - Distribute delayed revolution frequency to sending accelerator
 - Bunches are injected synchronously with $f_{\text{rev, delayed}}$
 - Shifted with respect to f_{RF} and f_{rev}
Beam phase loop without beam?

→ Just replace beam by a simple RF generator!

Beam phase loop

Beam phase emulator

Phase pick-up

RF cavity

Δφ

Cavity phase

DDS VCO

Power amplifier

RF

Slow signal

h \cdot f_{rev} from B

f_{out} = f_{in} \pm Δf

Beam synchronous

h \cdot f_{rev}

φ_{err} \sim Δf
Synchronization chain for bucket counting

- Incoming beam has reproducible phase with respect to RF bucket, synchronous f_{rev} and beam phase emulating generator
 → Straightforward switch to beam signals, already locked in phase
Synchronization chain for bucket counting

• Incoming beam has reproducible phase with respect to RF bucket, synchronous f_{rev} and beam phase emulating generator
 → Straightforward switch to beam signals, already locked in phase
 → Beam phase with respect to f_{rev} always known
Bucket numbering
Bucket numbering for RF manipulations

<table>
<thead>
<tr>
<th></th>
<th>Triple splitting</th>
<th>Batch compression</th>
</tr>
</thead>
<tbody>
<tr>
<td>Injection harmonic</td>
<td>[Image]</td>
<td>[Image]</td>
</tr>
<tr>
<td>Periodicity of RF</td>
<td>Every bucket</td>
<td>Only one beating along circumference</td>
</tr>
<tr>
<td>manipulation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Injection bucket</td>
<td>4 buckets difference between both injections</td>
<td>Both injections into independently defined buckets</td>
</tr>
<tr>
<td>selection</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

→ Must inject into the correct bucket numbers
Example: PS injection bucket selection

- Bunches must be placed into the correct buckets numbers
- Harmonic number change only for even number of bunches

→ Bucket number control during both transfers PSB → PS

→ How to handle changing number of bunches?
Intermediate summary

• Basic techniques of signal synchronizations
 → Beware of dividers

• Beam transfer between circular lepton accelerators
 → Constant frequency
 → Predictable, independently from beam
 → Fundamental periodicity

• Beam transfer between circular hadron accelerators
 → Beam is reference, keep track
Timing, Synchronization & Longitudinal Aspects

II

H. Damerau
CERN

CAS Course on Beam Injection, Extraction and Transfer

13 March 2017
Outline

• Introduction

• General concepts
 • Signals with noise, transmission of RF signals
 • Phase detectors and dividers

• Beam transfer
 • Fundamental periodicity
 • Transfer between circular lepton accelerators

• Transfer between hadron accelerators
 • Beam phase loop, bucket numbering
 • Transfer process: Synchronization, transfer triggers
 • Longitudinal matching

• Summary
Synchronization and transfer
Steps of beam transfer synchronization

1. • Set bending fields in both accelerators to the same magnetic rigidity

2. • Synchronize sending or receiving accelerator

→ **Ready for transfer**

3. • Start counting clock of **fundamental periodicity**
 • Trigger bump and septum elements

4. • Start counting f_{rev} clock (sending/receiving accelerator)
 • Start counting **bucket clock**

5. • Fine delay
 • Ejection and injection kickers triggers

→ **Transfer**
Match bending field of both accelerator

• Same magnetic rigidity ρB of sending (1) and receiving (2) accelerators

\[F_Z = F_L \rightarrow \frac{p}{q} = \rho B \]

\[\rho_1 B_1 = \rho_2 B_2 \]

→ No rule without exception: Particle type change at transfer

• Proton to anti-proton conversion, e.g.,
 120 GeV/c $\neq 8$ GeV/c (Fermilab), 26 GeV/c $\neq 3.6$ GeV/c (CERN),

• Charge state change at transfer, e.g. LHC ion injector chain
 Pb$^{54+}$ in LEIR/PS \rightarrow Pb$^{82+}$ (in SPS)
Match RF frequencies

- RF frequencies of both accelerators must have appropriate ratio assuming that the beam velocity is unchanged

\[
f_{\text{rev}} = \frac{f_{\text{RF}}}{h} = \frac{\beta c}{2\pi R}
\]

\[
\beta c = 2\pi R_1 f_{\text{rev},1} = 2\pi R_2 f_{\text{rev},2} \quad \rightarrow \quad R_1 \frac{f_{\text{RF},1}}{h_1} = R_2 \frac{f_{\text{RF},2}}{h_2}
\]

→ Common choice of most circular electron accelerators \(f_{\text{RF},1} = f_{\text{RF},2} \)
→ Harmonic number, \(h \), proportional to circumference, \(2\pi R \)
→ Again no rule without exception: Production of antiprotons in target in transfer line
Distance between bunches

- Distance of bunches (bunch spacing, τ_{bunch}) from source accelerator must match distance of buckets

 - Example: $\tau_{\text{bunch}} = 2/f_{\text{RF}}$

 - Example: $\tau_{\text{bunch}} = 5/f_{\text{RF}}$

- Common case: $f_{\text{RF,2}} = n \cdot f_{\text{RF,1}}$

 - $f_{\text{RF,LHC}} = 2 \cdot f_{\text{RF,SPS}}$ and $f_{\text{RF,SPS}} = 5 \cdot f_{\text{RF,PS}}$

- Several exceptional cases:

 - No bunch distance with single bunch \rightarrow more flexibility

 - Adjust bunch spacing using multiple RF systems
Exception: double-harmonic RF at transfer

- Was used at CERN PSB-to-PS to transfer 2 bunches at once
- Circumference ratio $C_{PS}/C_{PSB} = 4$

\rightarrow Ratio virtually moved to $2/7$: use $h_{RF} = 2 + 1$

1. Add h_1 component such that bunches approach to 245 ns (small spacing) \rightarrow big spacing becomes 327 ns

2. Synchronize on h_1 to the PS

3. Trigger extraction kicker in-between the small spacing

4. Eject two bunches per ring at a distance of 327 ns

Spacing larger than $C_{PSB}/2 \rightarrow h_{PS} = 7$, $C_{PS}/7$

Christian Carli
Steps of beam transfer synchronization

1. Set bending fields in both accelerators to the same magnetic rigidity

2. Synchronize sending or receiving accelerator

→ Ready for transfer

3. Start counting clock of fundamental periodicity
 • Trigger bump and septum elements

4. Start counting f_{rev} clock (sending/receiving accelerator)
 • Start counting bucket clock

5. Fine delay
 • Ejection and injection kickers triggers

→ Transfer
Before synchronization

• Even with magnetic rigidity matched: revolution frequencies not at theoretical ratio due to imperfections

→ Bunches and buckets slip in phase

But: important question left unanswered!
Who is the boss?

- Transfer beam to a downstream machine: **Bunch-to-bucket**
 1. Protons between synchrotrons → **Synchronize accelerators**

2. Move relative phase of RF together with beam between both machines to hit the empty buckets

Sending accelerator is, the boss?

Receiving accelerator is the boss?
Choice of master for transfer synchronization

- **Sending accelerator is master of transfer**
 - Receiving accelerator adapts to incoming beam
 - Common choice when receiving accelerator has no beam before transfer
 - Interesting for only single beam transfer, e.g., protons from PS → AD for antiproton production

- **Receiving accelerator is master of transfer**
 - Sending accelerator adapts to incoming beam
 - Common choice when receiving accelerator has already beam before transfer (multiple injections)
 - Most common at CERN, e.g., proton injector chain PSB → PS → SPS → LHC
Before synchronization

- Simple test case of circumference ratio 2: \(C_2 = 2C_1 \)

Source accelerator is master at transfer

Target accelerator is master at transfer
Before synchronization

- Simple test case of circumference ratio 2: \(C_2 = 2C_1 \)

\[\rightarrow \text{Synchronize both accelerator to force: } f_{\text{rev},1} = 2f_{\text{rev},2} \]
Simple synchronization process

1. Move beam to off-momentum (B const.):
 \[
 \frac{df}{f} = \frac{\gamma^2_{tr} - \gamma^2}{\gamma^2 \gamma^2_{tr}} \frac{dp}{p}
 \]
 → Well defined frequency difference between accelerators

2. Measure azimuth error, when beam at correct azimuth
 → Close synchronization loop
 → Moves beam to ref. momentum

1. Move beam to off-momentum (B const.):
 \[
 \frac{df}{f} = \frac{\gamma^2_{tr} - \gamma^2}{\gamma^2 \gamma^2_{tr}} \frac{dp}{p}
 \]
 → Well defined frequency difference between accelerators

2. Measure azimuth error, when beam at correct azimuth
 → Close synchronization loop
 → Moves beam to ref. momentum

Bunch should be here

Beam azimuth (from phase loop) → Beam phase (from master)

Act on f_{RF} of slave

Locked!

200 ms
Example: Synchronization of SPS to LHC

→ **LHC is master** for beam transfer from SPS

Arrival at flat-top +30 ms
Measure $\Delta\tau$ of azimuth SPS-LHC
Re-measure $\Delta\tau$ of azimuth
Close fine re-phasing loop at $f_{\text{RF, LHC}}$
Ready for transfer

Set $f_{\text{rev,SPS}} = \frac{27}{7} f_{\text{rev,LHC}}$
Apply frequency bump
Apply frequency bump

→ Coarse and fine re-phasing to perfectly align bunches with respect to target buckets (400 MHz, 2.5 ns) in LHC
→ Complete synchronization process takes about 500 ms

SPS Phase synchro

SPS turns (10000 turns correspond to 231 ms)
Example: Fast cogging of booster at FNAL

- Rapid cycling synchrotron from 400 MeV to 8 GeV
- Total cycle length is only 25 ms → How to synchronize fast?

1. Measure beam phase early in the cycle and predict azimuth at flat-top
2. Apply radial/frequency bumps already during acceleration
After synchronization

- Simple test case of circumference ratio 2: \(C_2 = 2C_1 \)

Source or target accelerator is master at transfer

\[\rightarrow \text{Revolution frequencies coupled: } f_{\text{rev,1}} = 2f_{\text{rev,2}} \]

\[\rightarrow \text{Transfer can be triggered every turn of the target accelerator} \]
Example: Ejection bucket numbering in PS

- Azimuthal position of 1st bunch ambiguous after RF manipulations
 → Number of buckets and bunches changes during acceleration

- But: Synchronous $f_{\text{rev,PS}}$ signal with reproducible phase to beam
 → ‘Re-numbering’ of buckets by shifting reference from SPS

→ Shift of external reference $f_{\text{rev,PS}}$ adjustable in SPS bucket units
 → Synchronize external and beam synchronous $f_{\text{rev,PS}}$
Example: Ejection synchronization chain

→ Multiple ‘batches’ are transferred from PS to 11 times larger SPS

Outgoing beam \(\phi \) const. \(f_{\text{rev,PS}} \) internal \(\phi \) const. \(f_{\text{rev,PS}} \) reference \(\phi \) const. \(f_{\text{rev,PS}}, f_{\text{RF,SPS}} \) for synchro.

Beam phase loop

Synchronization loop

Ejection divider

→ Beam phase with respect to \(f_{\text{rev}} \) always known
Steps of beam transfer synchronization

1. • Set bending fields in both accelerators to the same magnetic rigidity

2. • Synchronize sending or receiving accelerator

→ Ready for transfer

3. • Start counting clock of fundamental periodicity
 • Trigger bump and septum elements

4. • Start counting f_{rev} clock (sending/receiving accelerator)
 • Start counting bucket clock

5. • Fine delay
 • Ejection and injection kickers triggers

→ Transfer
Synchronous triggers

→ Cascade of trigger counters for fast transfer elements
 • Very similar to transfer with lepton synchrotrons
Steps of beam transfer synchronization

1. Set bending fields in both accelerators to the same magnetic rigidity

2. Synchronize sending or receiving accelerator

→ Ready for transfer

3. Start counting clock of fundamental periodicity
 • Trigger bump and septum elements

4. Start counting f_{rev} clock (sending/receiving accelerator)
 • Start counting bucket clock

5. Fine delay
 • Ejection and injection kickers triggers

→ Transfer
Example: Turn count control at extraction

- J-PARC rapid cycling synchrotron and main ring ratio: 4.5
 - Transfer possible once every two turns of main ring
 - Transfer of 4 times two bunches

Counter on f_{rev} of source (RCS) set normally

Counter on f_{rev} of source (RCS) delayed by one turn

→ Beam synchronous timing can also be used to control target azimuth (bucket number) of transferred beam
Energy matching
Energy matching of incoming beam

- **Ideal beam** circulates with the expected revolution frequency \((\Delta f = 0)\) on the central orbit \((\Delta R = 0) \rightarrow \Delta p = 0\)
- **Real beam** behaviour is calculated using

<table>
<thead>
<tr>
<th>Variables</th>
<th>Equations</th>
</tr>
</thead>
<tbody>
<tr>
<td>(B, p, R)</td>
<td>(\frac{dp}{p} = \gamma^2 \frac{dR}{R} + \frac{dB}{B})</td>
</tr>
<tr>
<td>(f, p, R)</td>
<td>(\frac{dp}{p} = \gamma^2 \frac{df}{f} + \gamma^2 \frac{dR}{R})</td>
</tr>
<tr>
<td>(B, f, p)</td>
<td>(\frac{dB}{B} = \gamma^2 \frac{df}{f} + \frac{\gamma^2 - \gamma_{tr}^2}{\gamma^2} \frac{dp}{p})</td>
</tr>
<tr>
<td>(B, f, R)</td>
<td>(\frac{dB}{B} = \gamma^2 \frac{df}{f} + (\gamma^2 - \gamma_{tr}^2) \frac{dR}{R})</td>
</tr>
</tbody>
</table>
Energy matching of incoming beam

- **Ideal beam** circulates with the expected revolution frequency ($\Delta f = 0$) on the central orbit ($\Delta R = 0$) $\rightarrow \Delta p = 0$
- **Real beam** behaviour is calculated using

<table>
<thead>
<tr>
<th>Variables</th>
<th>Equations</th>
</tr>
</thead>
<tbody>
<tr>
<td>B, p, R</td>
<td>$\frac{dp}{p} = \gamma^2 \frac{dR}{R} + \frac{dB}{B}$</td>
</tr>
<tr>
<td>f, p, R</td>
<td>$\frac{dp}{p} = \gamma^2 \frac{df}{f} + \gamma^2 \frac{dR}{R}$</td>
</tr>
<tr>
<td>B, f, p</td>
<td>$\frac{dB}{B} = \gamma^2 \frac{df}{f} + \frac{\gamma^2 - \gamma^2_{tr}}{\gamma^2} \frac{dp}{p}$</td>
</tr>
<tr>
<td>B, f, R</td>
<td>$\frac{dB}{B} = \gamma^2 \frac{df}{f} + (\gamma^2 - \gamma^2_{tr}) \frac{dR}{R}$</td>
</tr>
</tbody>
</table>

- **Choice of two parameters** from B, p, R, f directly constrains all others

\rightarrow **Example:** at *fixed* magnetic field ($\Delta B = 0$), revolution frequency and radial position are directly linked
Energy matching without RF

• Observe de-bunching (no RF) with periodic trigger at $n \cdot f_{\text{rev}}$

→ Does the beam circulate with the expected f_{rev}?

at the central orbit?

- Changing B alone insufficient, since f_{rev} and R linked (const. p)

→ Change two parameters to fix the others, e.g., B and p or B and f

→ All parameters are constrained
Longitudinal matching equations
Recap of longitudinal beam dynamics (1)

For a single harmonic RF system

\[H \left(\phi, \frac{\Delta E}{\omega_{\text{rev}}} \right) = -\frac{1}{2} \frac{\hbar \eta \omega_{\text{rev}}}{p R} \left(\frac{\Delta E}{\omega_{\text{rev}}} \right)^2 + \frac{qV}{2\pi} \left[\cos \phi - \cos \phi_0 + (\phi - \phi_0) \sin \phi_0 \right] \]

with \(\phi = \phi_0 + \Delta \phi \) it becomes

\[H \left(\Delta \phi, \frac{\Delta E}{\omega_{\text{rev}}} \right) = -\frac{1}{2} \frac{\hbar \eta \omega_{\text{rev}}}{p R} \left(\frac{\Delta E}{\omega_{\text{rev}}} \right)^2 + \frac{qV}{2\pi} \left[\cos(\phi_0 + \Delta \phi) - \cos \phi_0 + \Delta \phi \sin \phi_0 \right] \]

using \(\cos(\phi_0 + \Delta \phi) = \cos \phi_0 \cos \Delta \phi - \sin \phi_0 \sin \Delta \phi \)

\[\simeq \cos \phi_0 \left(1 - \frac{1}{2} \Delta \phi^2 \right) - \sin \phi_0 \Delta \phi \]

The Hamiltonian simplifies to

\[H \left(\Delta \phi, \frac{\Delta E}{\omega_{\text{rev}}} \right) \simeq -\frac{1}{2} \frac{\hbar \eta \omega_{\text{rev}}}{p R} \left(\frac{\Delta E}{\omega_{\text{rev}}} \right)^2 - \frac{1}{2} \frac{qV}{2\pi} \Delta \phi^2 \cos \phi_0 \]
Recap of longitudinal beam dynamics (2)

\[H \left(\Delta\phi, \frac{\Delta E}{\omega_{\text{rev}}} \right) \approx -\frac{1}{2} \frac{h \eta \omega_{\text{rev}}}{p R} \left(\frac{\Delta E}{\omega_{\text{rev}}} \right)^2 - \frac{1}{2} \frac{q V}{2 \pi} \Delta\phi^2 \cos \phi_0 \]

- In the centre of the bucket, particles move on elliptical trajectories in \(\Delta\phi-\Delta E \) phase space
- Hamiltonian is constant on these trajectories

→ Aspect ratio of the elliptical trajectories must be identical in sending and receiving accelerator
• Compare two particles on the same trajectory

1. No phase deviation

2. No energy deviation

→ $\Delta \phi$ depends on frequency → use physical duration $\Delta \tau$ instead

$$\Delta \phi = 2\pi f_{RF} \Delta \tau = h \omega_{\text{rev}} \Delta \tau$$

→ Also replacing $pR = \frac{E \beta^2}{\omega_{\text{rev}}}$
Physical aspect ratio of bucket trajectories (2)

→ Hamiltonian equal for both extreme particles, hence

\[
\frac{1}{2} \frac{h \eta \omega_{\text{rev}}^2}{E \beta^2} \left(\frac{\Delta E}{\omega_{\text{rev}}} \right)^2 = \frac{1}{2} \frac{qV}{2 \pi} \frac{h^2 \omega_{\text{rev}}^2}{E \beta^2} \Delta \tau^2 \cos \phi_0
\]

which can be simplified to

\[
\left(\frac{\Delta E}{\Delta \tau} \right)^2 = \frac{qV}{2 \pi} \frac{h \omega_{\text{rev}}^2}{E \beta^2} \frac{\cos \phi_0}{\eta}
\]

→ This aspect ratio \(\Delta E/\Delta \tau \) must remain unchanged at transfer
Matched bunch-to-bucket transfer

\[\frac{\Delta E}{\Delta \tau} = \frac{qV}{2\pi} E \beta^2 h \omega_{\text{rev}} \frac{\cos \phi_0}{\eta} \]

Equating \(\left(\frac{\Delta E}{\Delta \tau} \right)^2 \) for sending (1) and receiving (2) accelerator gives a general matching condition.

\[q_1 V_1 E_1 \beta_1^2 h_1 \omega_{\text{rev},1} \frac{\cos \phi_{0,1}}{\eta_1} = q_2 V_2 E_2 \beta_2^2 h_2 \omega_{\text{rev},2} \frac{\cos \phi_{0,2}}{\eta_2} \]

For most cases (fixed energy and no particle type change)

\[q_1 = q_2 \quad \beta_1 = \beta_2 \quad E_1 = E_2 \quad \cos \phi_{0,1} = \cos \phi_{0,2} = 1 \]

It simplifies to the voltage ratio between RF systems:

\[\frac{V_1}{V_2} = \left(\frac{R_1}{R_2} \right)^2 \frac{\eta_1}{\eta_2} \frac{h_2}{h_1} \]
Simple matched transfer example

- Transfer between to accelerators with $f_{RF,2} = f_{RF,1}/2$

→ Phase space aspect ratio:

$$\Delta E = \beta \omega_{rev} \sqrt{\frac{qV}{2\pi} E h} \left| \frac{\cos \phi_0}{\eta} \right| \cdot \Delta \tau$$

![Source (1) bucket](image1)

![Target (2) bucket](image2)
Simple matched transfer example

- Transfer between to accelerators with $f_{RF,2} = f_{RF,1}/2$

→ Phase space aspect ratio:

$$\Delta E = \beta \omega_{rev} \sqrt{\frac{qV}{2\pi} Eh \left| \frac{\cos \phi_0}{\eta} \right|} \cdot \Delta \tau$$

→ Obvious case of matched bunch-to-bucket transfer
Longitudinal matching
Longitudinal matching at injection

- Long. emittance is only preserved for **correct RF voltage**

→ **Bunch is fine,**

longitudinal emittance remains constant

→ **Dilution of bunch results in increase of long. emittance**
Longitudinal matching

Matched case
\[\Delta \phi = 0, \frac{V_{\text{inj}}}{V_{\text{RF}}} = 1 \]

Longitudinal mismatch
\[\Delta \phi = 0, \frac{V_{\text{inj}}}{V_{\text{RF}}} = 2 \]

→ **Bunch is fine,**
 longitudinal emittance remains constant

→ **Dilution of bunch results in increase of long. emittance**
Matching of phase and energy

- What is the difference?

-45° phase error at injection
 - Can be easily corrected by bucket phase

Equivalent energy error
 - Phase does not help: requires beam energy change
Example: mismatch at injection to PS

• Deliberate longitudinal mismatch at injection for blow-up

Mountain range

→ Intentional mismatch contributes to controlled longitudinal blow-up

Bunch length evolution

Amplitude [a.u.]

Time [μs]

4σ bunch length [ns]

Controlled blow-up

Mismatch

(Gaussian fit)
No problem with electron accelerators

- Synchrotron radiation damping matches bunches by itself
- Phase and energy oscillations decay

\[\frac{\Delta p}{p} [%] \]

\[\phi [2\pi \text{ rad}] \]

\[\text{Septum blade} \]

→ Mismatched injection can be a useful tool
Summary

• Basic techniques of signal synchronizations
 → Beware of dividers

• Beam transfer between circular lepton accelerators
 → Constant frequency

• Beam transfer between circular hadron accelerators
 → Variable frequency
 → Moving target

• Follow the beam
 → No need to measure → keep track
 → Matching between accelerators
A big Thank You

to all colleagues providing support, material and feedback

Masamitsu Aiba, Maria-Elena Angloletta, Kalantari Babak, Diego Barrientos, Philippe Baudrenghien, Chandra Bhat, Thomas Bohl, Craig Drennan, Roland Garoby, Christopher Gough, Steven Hancock, Stephan Hunziker, Andreas Jankowiak, Boris Keil, Karim Lihem, J. Molendijk, Holger Schlarb, Fumihiko Tamura, Frank Tecker, Daniel Valuch and many more...
Thank you very much for your attention!
References

• A. Gallo, Timing and Synchronization, CAS course, 2015, http://cas.web.cern.ch/cas/Poland2015/Lectures/Presentations/99Thursday08/Gallo.pdf
• H. Schlarb, Timing and Synchronization, CAS course, 2013, https://cas.web.cern.ch/cas/Norway-2013/Lectures/Schlarb.pptx
For a single harmonic RF system

\[H(\phi, \dot{\phi}) = \frac{1}{2} \dot{\phi}^2 + \frac{\omega_s^2}{\cos\phi_0} [\cos\phi_0 - \cos\phi + (\phi - \phi_0) \sin\phi_0] \]

with \(\phi = \phi_0 + \Delta\phi \) it becomes

\[H(\Delta\phi, \dot{\phi}) = \frac{1}{2} \dot{\phi}^2 + \frac{\omega_s^2}{\cos\phi_0} [\cos\phi_0 - \cos(\phi_0 + \Delta\phi) - \Delta\phi \sin\phi_0] \]

using \(\cos(\phi_0 + \Delta\phi) = \cos\phi_0 \cos\Delta\phi - \sin\phi_0 \sin\Delta\phi \)

\[\simeq \cos\phi_0 \left(1 - \frac{1}{2} \Delta\phi^2 \right) - \sin\phi_0 \Delta\phi \]

this simplifies to

\[H(\Delta\phi, \dot{\phi}) \simeq \frac{1}{2} \dot{\phi}^2 + \frac{1}{2} \omega_s^2 \Delta\phi^2 \]