Single and Multi-turn Fast Extraction

- Introduction
- Single-turn fast extraction:
 - Basic design considerations, principles and concepts
 - Important parameters for kickers and septa
 - Examples: CERN PSB, PS and SPS extraction systems
- Multi-turn fast extraction:
 - Basic principles and concepts
 - Mechanical (non-resonant) splitting vs. magnetic (resonant) splitting
 - Examples: CERN PS CT and MTE extraction systems

Matthew Fraser, CERN (TE-ABT-BTP)

Single and Multi-turn Fast Extraction

Introduction

Matthew Fraser, CERN (TE-ABT-BTP)

Introduction

• In many ways extraction is simply the reverse process of injection

Introduction

- In many ways extraction is simply the reverse process of injection
- Usually higher energy than injection \Rightarrow stronger elements ($\int B.dI$)
 - At high energies many kicker and septum modules may be required
 - Space-charge effects are less of a concern
 - Losses and activation are far more important
- Different extraction techniques exist, depending on requirements:
 - Fast single-turn extraction: ≤1 turn
 - transfer between machines in complex of synchrotrons, to experimental (production) targets, safely dump the circulating beam (fast abort) etc.
 - Fast multi-turn extraction: few turns
 - uniformly fill a synchrotron with a larger circumference or vary spill length
 - Slow resonant multi-turn extraction: many thousands of turns
 - providing experimental target, or patient, with "long" uniform spills
 - Other **exotic types**: bent crystals, charge-exchange extraction etc...

Introduction

- In many ways extraction is simply the reverse process of injection
- Usually higher energy than injection \Rightarrow stronger elements ($\int B.dI$)
 - At high energies many kicker and septum modules may be required
 - Space-charge effects are less of a concern
 - Losses and activation are far more important
- Different extraction techniques exist, depending on requirements:
 - Fast single-turn extraction: ≤1 turn
 - transfer between machines in complex of synchrotrons, to experimental (production) targets, safely dump the circulating beam (fast abort) etc.
 - Fast multi-turn extraction: few turns
 - uniformly fill a synchrotron with a larger circumference or vary spill length
 - Slow resonant multi-turn extraction: many thousands of turns
 - providing experimental target, or patient, with "long" uniform spills
 - Other exotic types: bent crystals, charge-exchange extraction etc...

Design considerations

• Extraction systems should be considered from the conception of an accelerator: in the past they could be added years after commissioning!

Design considerations

- Extraction systems should be considered from the conception of an accelerator: in the past they could be added years after commissioning!
- Important **for high momentum machines** where the layout, performance and protection may be significantly influenced by the extraction system:
 - destination/user:
 - precision of beam delivery, tolerated beam loss / emittance blow-up
 - failure scenarios and their mitigation (at high energy/intensity):
 - integral part of machine protection system
 - see M. Barnes' lectures: *Kicker Magnets,* A. Nordt's lecture: *Machine Protection and Activation* and W. Bartmann's lectures: *Transfer Line Design…*
 - **insertion regions** may be required to meet specific requirements:
 - optics, integration, aperture, interference with other essential sub-systems
 - see B. Holzer's lectures: *Review of Transverse Dynamics*
- All of the above affect the choice of hardware employed: it's an iterative process!

Fast extraction: spatial considerations

- Important considerations:
 - optimum phase advance between kicker and septum, e.g. ≈ QD in between:
 β_x large at F-quads (near kicker and septum in this case)
 - aperture, e.g. inside quads, position of septum etc.
 - integration constraints, e.g. extracted beam trajectory

Fast extraction: spatial considerations

- Important considerations:
 - optimum phase advance between kicker and septum, e.g. ≈ QD in between:
 $β_x$ large at F-quads (near kicker and septum in this case)
 - aperture, e.g. inside quads, position of septum etc.
 - integration constraints, e.g. extracted beam trajectory

Fast extraction: spatial considerations

- Important considerations:
 - optimum phase advance between kicker and septum, e.g. ≈ QD in between:
 β_x large at F-quads (near kicker and septum in this case)
 - aperture, e.g. inside quads, position of septum etc.
 - integration constraints, e.g. extracted beam trajectory

Fast extraction: temporal considerations

• For clean transfer, particle-free gaps in the circulating beam are essential:

- kicker field must have time to rise (and fall) before it is seen by the beam
- gaps limit total intensity
- repetition rate of kicker system: pulsed-power supply must have time to recharge, which typically takes many turns: t_{recharge} >> t_{rev}
 - continuous extraction over sequential turns (usually) requires transverse manipulation: *discussed later in this lecture (multi-turn extraction)*

kicker

Normalised phase space at the kicker location:

location, s

kicker

Normalised phase space at the kicker location:

location, s

kicker

Reminder: transformation to normalised

 $\frac{\bar{\boldsymbol{X}}}{\bar{\boldsymbol{X}}'} = \boldsymbol{N} \cdot \begin{bmatrix} x \\ x' \end{bmatrix} = \sqrt{\frac{1}{\beta(s)}} \cdot \begin{bmatrix} 1 & 0 \\ \alpha(s) & \beta(s) \end{bmatrix} \cdot \begin{bmatrix} x \\ x' \end{bmatrix}$

phase space:

Normalised phase space at the kicker location:

 $\sqrt{\varepsilon}$

Fast Extraction – CERN Accelerator School – Beam Injection, Extraction & Transfer, Erice, Italy, 2017

location, s

septum

kicker

 $(\overline{\overline{X}, \overline{X}'})$, $\Delta \mu$

location, s

Kick optimisation: β at the kicker

 Intuitively, we can see in real phase space why a large β-function at the kicker improves the separation between extracted and circulating beams:

Kick optimisation: β at the kicker

 Intuitively, we can see in real phase space why a large β-function at the kicker improves the separation between extracted and circulating beams:

Kick optimisation: β at the kicker

 Intuitively, we can see in real phase space why a large β-function at the kicker improves the separation between extracted and circulating beams:

 When the beam divergence is small, we can easily "jump" outside the circulating beam

Kick optimisation: β at the septum

• Again, in **real** phase space we can see why a large β -function improves the spatial separation at the septum, $\Delta \mu_{kicker -> septum} = \pi/2$:

Kick optimisation: β at the septum

• Again, in **real** phase space we can see why a large β -function improves the spatial separation at the septum, $\Delta \mu_{kicker -> septum} = \pi/2$:

 $\Delta x_{\rm blade} \propto \sqrt{}$

Fast Extraction – CERN Accelerator School – Beam Injection, Extraction & Transfer, Erice, Italy, 2017

Kick optimisation: β at the septum

 Again, in real phase space we can see why a large β-function improves the spatial separation at the septum, Δµ_{kicker -> septum} = π/2 :

Kick optimisation: summary

• To minimise the kicker deflection required:

• In terms of integrated field (for small angles!)...

$$\Delta x'_{\text{kicker}} = \frac{s}{\rho} \approx \frac{B_0 \int_0^s dl}{B_0 \rho} = \frac{q}{p} \int B \, dl = \frac{q}{p} B_0 L_{eff}$$

$$\Delta x'_{\text{kicker}}$$

Fast Extraction – CERN Accelerator School – Beam Injection, Extraction & Transfer, Erice, Italy, 2017

 $\Delta x'_{\text{kicker}}$

ρ

- Definition/parameterization of the kicker pulse depends strongly on the application, some examples:
 - single-turn extraction
 - destination: transfer between injectors for a high energy collider

- Definition/parameterization of the kicker pulse depends strongly on the application, some examples:
 - single-turn extraction
 - destination: transfer between injectors for a high energy collider

- Definition/parameterization of the kicker pulse depends strongly on the application, some examples:
 - single-turn extraction
 - destination: transfer between injectors for a high energy collider

- Definition/parameterization of the kicker pulse depends strongly on the application, some examples:
 - single-turn extraction
 - destination: transfer between injectors for a high energy collider

- Definition/parameterization of the kicker pulse depends strongly on the application, some examples:
 - single-turn extraction
 - destination: transfer between injectors for a high energy collider

- Definition/parameterization of the kicker pulse depends strongly on the application, some examples:
 - multi-burst extraction
 - destination: fixed target physics programme/high-energy collider filling

- Definition/parameterization of the kicker pulse depends strongly on the application, some examples:
 - multi-burst extraction
 - destination: fixed target physics programme/high-energy collider filling

- Definition/parameterization of the kicker pulse depends strongly on the application, some examples:
 - single-turn extraction
 - destination: to a dump for fast beam abort

Septa parameters: field quality

- Although the field homogeneity is also a design consideration for kickers, due to the relative strength of septa (typically 10x stronger), it is more critical for septa:
 - field homogeneity, shot-to-shot jitter (power converter pulse timing)

Septa parameters: field quality

- Although the field homogeneity is also a design consideration for kickers, due to the relative strength of septa (typically 10x stronger), it is more critical for septa:
 - field homogeneity, shot-to-shot jitter (power converter pulse timing)

Septa parameters: field quality

- Although the field homogeneity is also a design consideration for kickers, due to the relative strength of septa (typically 10x stronger), it is more critical for septa:
 - field homogeneity, shot-to-shot jitter (power converter pulse timing)

Other constraints...

- We must also not forget...
 - integration constraints: can the extraction equipment fit in the machine?
 - mechanical aperture of the machine... see the appendix for more details
 - failure scenarios
 - beam size at beam intercepting devices

Closed-orbit bumps

- Local, closed-orbit bumps are regularly used during extraction:
 - to bring the circulating beam close to the septum (slow bump) reducing the kicker strength
 - to control multi-turn extraction (intensity and emittance) by shaving the beam on a septum turn-by-turn (fast bump)
- Closed-orbit bumps are also commonly used for injection
- Dipole "bumper" magnets used to steer the closed-orbit away from the nominal trajectory in a localised part of the synchrotron.
- Standard bump configurations exist for different requirements:
 - π-bump
 - 3 and 4-magnet bumps

Closed-orbit bumps

- Local, closed-orbit bumps are regularly used during extraction:
 - to bring the circulating beam close to the septum (slow bump) reducing the kicker strength
 - to control multi-turn extraction (intensity and emittance) by shaving the beam on a septum turn-by-turn (fast bump)
- Closed-orbit bumps are also commonly used for injection
- Dipole "bumper" magnets used to steer the closed-orbit away from the nominal trajectory in a localised part of the synchrotron.
- Standard bump configurations exist for different requirements:
 - π-bump
 - 3 and 4-magnet bumps

Closed-orbit bumps

- Local, closed-orbit bumps are regularly used during extraction:
 - to bring the circulating beam close to the septum (slow bump) reducing the kicker strength
 - to control multi-turn extraction (intensity and emittance) by shaving the beam on a septum turn-by-turn (fast bump)
- Closed-orbit bumps are also commonly used for injection
- Dipole "bumper" magnets used to steer the closed-orbit away from the nominal trajectory in a localised part of the synchrotron.
- Standard bump configurations exist for different requirements:
 - π-bump
 - 3 and 4-magnet bumps

π-bump

 The simplest closed bump, the π-bump, is constrained by a phase advance of 180° between two dipole bumper magnets

- first magnet opens the bump (kick = Δ_1), the second closes it (kick = Δ_2)

π-bump

- The simplest closed bump, the π-bump, is constrained by a phase advance of 180° between two dipole bumper magnets
 - first magnet opens the bump (kick = Δ_1), the second closes it (kick = Δ_2)

3-magnet ("coil") bump

- In a real accelerator more degrees of freedom are often needed...
 - a third magnet can be added to close the bump for (almost) any value of phase advance, $\Delta\mu$: either the **position or angle** can be matched

3-magnet ("coil") bump

- In a real accelerator more degrees of freedom are often needed...
 - a third magnet can be added to close the bump for (almost) any value of phase advance, $\Delta \mu$: either the **position or angle** can be matched

4-magnet ("coil") bump

• To control both **position and angle** (x_S,x'_S) at a given point a fourth magnet is needed:

- The first two bumpers select position and angle at a given location, e.g. at the extraction septum or Point S in this case
- The second two bumpers ensure closure, returning the beam onto the closed orbit:
 - see the appendix for more details...

Closed-orbit bumps: other considerations

- Typically, we use optics codes (e.g. MADX) to match bumps and to include more constraints:
 - usually mechanical aperture in the extraction region is of concern and the position of the bumped beam must be controlled at multiple points S₁, S₂...
 - ...more bumper magnets may be needed
- Many other topics can be discussed:
 - orthogonal 4-magnet bumps:
 - "Odd" and "even" bumps can be superimposed to move the beam's position and angle independently at a given point S:

- non-closure of bumps:
 - a mismatched bump will look like a dipole error steering
- sensitivity to machine working point:
 - a bump is closed for a given tune (phase advance)... if the working point of the machine is changed, the magnet strengths should be adjusted accordingly.

Example: SPS fast extraction to LHC (1)

- Things to note:
 - 4-magnet bump
 - deflection in quads
 - almost symmetric
 - maximum amplitude close to septum
 - normalized phase space variables can be intuitive!

Example: SPS fast extraction to LHC (2)

- Things to note:
 - large $β_x$ at MKE and MSE
 - Δµ_{kicker->septum} ≈ 67°
 - enlarged aperture of QDA.419
 - extracted beam passes through a window in quad coil!

*given at upstream end of element

 A fast extraction system can be designed to extract using a single kicker system through different septa to different extraction lines:

Figure 1 : Fast ejection from straight section 58 into the east experimental area

 A fast extraction system can be designed to extract using a single kicker system through different septa to different extraction lines:

Figure 1 : Fast ejection from straight section 58 into the east experimental area

 A fast extraction system can be designed to extract using a single kicker system through different septa to different extraction lines:

Figure 1 : Fast ejection from straight section 58 into the east experimental area

Kickers and septa may be separated by large distances around a synchrotron, with the correct phase advance. For septa on the outside, i.e. x > 0:

$$\Delta x_{\text{septum}} = (-1)^{n-1} \left| \Delta x'_{\text{kicker}} \right| \sqrt{\beta_{\text{kicker}} \beta_{\text{septum}}} \sin(\mu_{\text{kicker} \rightarrow \text{septum}}) \quad \text{where} \quad \mu_{\text{kicker} \rightarrow \text{septum}} = \frac{2n-1}{2}\pi, \text{ where } n = 1, 2, 3 \dots$$

- A single kicker system can service different extraction channels located around the synchrotron:
 - destination of beam chosen by kicker polarity and energizing local bump
 - might be a necessity in smaller machines where space is limited
- Implications:
 - reduced cost and maintenance
 - reduced impedance
 - reduced acceptance and stability of extracted beam
- See the appendix for a recent proposal at SPS

Beam 'shaved' off on the electrostatic septum each turn

Fast closed orbit bumpers (pulsing turn-by-turn)

- Fast modulated bump deflects beam onto the septum, turn-by-turn
- The machine tune rotates the beam in phase space, turn-by-turn
- Intrinsically a high-loss process: thin septum essential
- Often combine thin electrostatic septa with magnetic septa ($\Delta \mu_{ES-MS} \neq 0$)

Beam 'shaved' off on the electrostatic septum each turn

Fast closed orbit bumpers (pulsing turn-by-turn)

- Fast modulated bump deflects beam onto the septum, turn-by-turn
- The machine tune rotates the beam in phase space, turn-by-turn
- Intrinsically a high-loss process: thin septum essential
- Often combine thin electrostatic septa with magnetic septa ($\Delta \mu_{ES-MS} \neq 0$)

Beam 'shaved' off on the electrostatic septum each turn

Fast closed orbit bumpers (pulsing turn-by-turn)

- Fast modulated bump deflects beam onto the septum, turn-by-turn
- The machine tune rotates the beam in phase space, turn-by-turn
- Intrinsically a high-loss process: thin septum essential
- Often combine thin electrostatic septa with magnetic septa ($\Delta \mu_{ES-MS} \neq 0$)

Beam 'shaved' off on the electrostatic septum each turn

Fast closed orbit bumpers (pulsing turn-by-turn)

- Fast modulated bump deflects beam onto the septum, turn-by-turn
- The machine tune rotates the beam in phase space, turn-by-turn
- Intrinsically a high-loss process: thin septum essential
- Often combine thin electrostatic septa with magnetic septa ($\Delta \mu_{ES-MS} \neq 0$)

- A brute force method used to lengthen the spill from a synchrotron:
 - useful for filling a larger synchrotron (reduce filling time)
 - or... providing experiments with spills over a few turns: < 15 turns
- The circulating beam is "shaved" on a turn-by-turn basis by a septum:
 - the spill length and intensity is controlled by...
 - ...a fast programmable closed-bump: forces the beam into the septum
 - ...the fractional part of the tune ΔQ : rotates the beam into the septum

- A brute force method used to lengthen the spill from a synchrotron:
 - useful for filling a larger synchrotron (reduce filling time)
 - or... providing experiments with spills over a few turns: < 15 turns
- The circulating beam is "shaved" on a turn-by-turn basis by a septum:
 - the spill length and intensity is controlled by...
 - ...a fast programmable closed-bump: forces the beam into the septum
 - ...the fractional part of the tune ΔQ : rotates the beam into the septum

- A brute force method used to lengthen the spill from a synchrotron:
 - useful for filling a larger synchrotron (reduce filling time)
 - or... providing experiments with spills over a few turns: < 15 turns
- The circulating beam is "shaved" on a turn-by-turn basis by a septum:
 - the spill length and intensity is controlled by...
 - ...a fast programmable closed-bump: forces the beam into the septum
 - ...the fractional part of the tune ΔQ : rotates the beam into the septum

- A brute force method used to lengthen the spill from a synchrotron:
 - useful for filling a larger synchrotron (reduce filling time)
 - or... providing experiments with spills over a few turns: < 15 turns
- The circulating beam is "shaved" on a turn-by-turn basis by a septum:
 - the spill length and intensity is controlled by...
 - ...a fast programmable closed-bump: forces the beam into the septum
 - ...the fractional part of the tune ΔQ : rotates the beam into the septum

- A brute force method used to lengthen the spill from a synchrotron:
 - useful for filling a larger synchrotron (reduce filling time)
 - or... providing experiments with spills over a few turns: < 15 turns
- The circulating beam is "shaved" on a turn-by-turn basis by a septum:
 - the spill length and intensity is controlled by...
 - ...a fast programmable closed-bump: forces the beam into the septum
 - ...the fractional part of the tune ΔQ : rotates the beam into the septum

- A brute force method used to lengthen the spill from a synchrotron:
 - useful for filling a larger synchrotron (reduce filling time)
 - or... providing experiments with spills over a few turns: < 15 turns
- The circulating beam is "shaved" on a turn-by-turn basis by a septum:
 - the spill length and intensity is controlled by...
 - ...a fast programmable closed-bump: forces the beam into the septum
 - ...the fractional part of the tune ΔQ : rotates the beam into the septum

- A brute force method used to lengthen the spill from a synchrotron:
 - useful for filling a larger synchrotron (reduce filling time)
 - or... providing experiments with spills over a few turns: < 15 turns
- The circulating beam is "shaved" on a turn-by-turn basis by a septum:
 - the spill length and intensity is controlled by...
 - ...a fast programmable closed-bump: forces the beam into the septum
 - ...the fractional part of the tune ΔQ : rotates the beam into the septum

- A brute force method used to lengthen the spill from a synchrotron:
 - useful for filling a larger synchrotron (reduce filling time)
 - or... providing experiments with spills over a few turns: < 15 turns
- The circulating beam is "shaved" on a turn-by-turn basis by a septum:
 - the spill length and intensity is controlled by...
 - ...a fast programmable closed-bump: forces the beam into the septum
 - ...the fractional part of the tune ΔQ : rotates the beam into the septum

- A brute force method used to lengthen the spill from a synchrotron:
 - useful for filling a larger synchrotron (reduce filling time)
 - or... providing experiments with spills over a few turns: < 15 turns
- The circulating beam is "shaved" on a turn-by-turn basis by a septum:
 - the spill length and intensity is controlled by...
 - ...a fast programmable closed-bump: forces the beam into the septum
 - ...the fractional part of the tune ΔQ : rotates the beam into the septum

- A brute force method used to lengthen the spill from a synchrotron:
 - useful for filling a larger synchrotron (reduce filling time)
 - or... providing experiments with spills over a few turns: < 15 turns
- The circulating beam is "shaved" on a turn-by-turn basis by a septum:
 - the spill length and intensity is controlled by...
 - ...a fast programmable closed-bump: forces the beam into the septum
 - ...the fractional part of the tune ΔQ : rotates the beam into the septum

- A brute force method used to lengthen the spill from a synchrotron:
 - useful for filling a larger synchrotron (reduce filling time)
 - or... providing experiments with spills over a few turns: < 15 turns
- The circulating beam is "shaved" on a turn-by-turn basis by a septum:
 - the spill length and intensity is controlled by...
 - ...a fast programmable closed-bump: forces the beam into the septum
 - ...the fractional part of the tune ΔQ : rotates the beam into the septum

- A brute force method used to lengthen the spill from a synchrotron:
 - useful for filling a larger synchrotron (reduce filling time)
 - or... providing experiments with spills over a few turns: < 15 turns
- The circulating beam is "shaved" on a turn-by-turn basis by a septum:
 - the spill length and intensity is controlled by...
 - ...a fast programmable closed-bump: forces the beam into the septum
 - ...the fractional part of the tune ΔQ : rotates the beam into the septum

- A brute force method used to lengthen the spill from a synchrotron:
 - useful for filling a larger synchrotron (reduce filling time)
 - or... providing experiments with spills over a few turns: < 15 turns
- The circulating beam is "shaved" on a turn-by-turn basis by a septum:
 - the spill length and intensity is controlled by...
 - ...a fast programmable closed-bump: forces the beam into the septum
 - ...the fractional part of the tune ΔQ : rotates the beam into the septum

- A brute force method used to lengthen the spill from a synchrotron:
 - useful for filling a larger synchrotron (reduce filling time)
 - or... providing experiments with spills over a few turns: < 15 turns
- The circulating beam is "shaved" on a turn-by-turn basis by a septum:
 - the spill length and intensity is controlled by...
 - ...a fast programmable closed-bump: forces the beam into the septum
 - ...the fractional part of the tune ΔQ : rotates the beam into the septum

- A brute force method used to lengthen the spill from a synchrotron:
 - useful for filling a larger synchrotron (reduce filling time)
 - or... providing experiments with spills over a few turns: < 15 turns
- The circulating beam is "shaved" on a turn-by-turn basis by a septum:
 - the spill length and intensity is controlled by...
 - ...a fast programmable closed-bump: forces the beam into the septum
 - ...the fractional part of the tune ΔQ : rotates the beam into the septum

- A brute force method used to lengthen the spill from a synchrotron:
 - useful for filling a larger synchrotron (reduce filling time)
 - or... providing experiments with spills over a few turns: < 15 turns
- The circulating beam is "shaved" on a turn-by-turn basis by a septum:
 - the spill length and intensity is controlled by...
 - ...a fast programmable closed-bump: forces the beam into the septum
 - ...the fractional part of the tune ΔQ : rotates the beam into the septum

- A brute force method used to lengthen the spill from a synchrotron:
 - useful for filling a larger synchrotron (reduce filling time)
 - or... providing experiments with spills over a few turns: < 15 turns
- The circulating beam is "shaved" on a turn-by-turn basis by a septum:
 - the spill length and intensity is controlled by...
 - ...a fast programmable closed-bump: forces the beam into the septum
 - ...the fractional part of the tune ΔQ : rotates the beam into the septum

- A brute force method used to lengthen the spill from a synchrotron:
 - useful for filling a larger synchrotron (reduce filling time)
 - or... providing experiments with spills over a few turns: < 15 turns
- The circulating beam is "shaved" on a turn-by-turn basis by a septum:
 - the spill length and intensity is controlled by...
 - ...a fast programmable closed-bump: forces the beam into the septum
 - ...the fractional part of the tune ΔQ : rotates the beam into the septum

- A brute force method used to lengthen the spill from a synchrotron:
 - useful for filling a larger synchrotron (reduce filling time)
 - or... providing experiments with spills over a few turns: < 15 turns
- The circulating beam is "shaved" on a turn-by-turn basis by a septum:
 - the spill length and intensity is controlled by...
 - ...a fast programmable closed-bump: forces the beam into the septum
 - ...the fractional part of the tune ΔQ : rotates the beam into the septum

- A brute force method used to lengthen the spill from a synchrotron:
 - useful for filling a larger synchrotron (reduce filling time)
 - or... providing experiments with spills over a few turns: < 15 turns
- The circulating beam is "shaved" on a turn-by-turn basis by a septum:
 - the spill length and intensity is controlled by...
 - ...a fast programmable closed-bump: forces the beam into the septum
 - ...the fractional part of the tune ΔQ : rotates the beam into the septum

- A brute force method used to lengthen the spill from a synchrotron:
 - useful for filling a larger synchrotron (reduce filling time)
 - or... providing experiments with spills over a few turns: < 15 turns
- The circulating beam is "shaved" on a turn-by-turn basis by a septum:
 - the spill length and intensity is controlled by...
 - ...a fast programmable closed-bump: forces the beam into the septum
 - ...the fractional part of the tune ΔQ : rotates the beam into the septum

- A brute force method used to lengthen the spill from a synchrotron:
 - useful for filling a larger synchrotron (reduce filling time)
 - or... providing experiments with spills over a few turns: < 15 turns
- The circulating beam is "shaved" on a turn-by-turn basis by a septum:
 - the spill length and intensity is controlled by...
 - ...a fast programmable closed-bump: forces the beam into the septum
 - ...the fractional part of the tune ΔQ : rotates the beam into the septum

- A brute force method used to lengthen the spill from a synchrotron:
 - useful for filling a larger synchrotron (reduce filling time)
 - or... providing experiments with spills over a few turns: < 15 turns
- The circulating beam is "shaved" on a turn-by-turn basis by a septum:
 - the spill length and intensity is controlled by...
 - ...a fast programmable closed-bump: forces the beam into the septum
 - ...the fractional part of the tune ΔQ : rotates the beam into the septum

Continuous Transfer at the CERN PS

- Continuous Transfer was used at the CERN PS to fill the SPS uniformly:
 - filling time and resulting duty cycle (and thus protons on target) is optimized with 2 transfers of 5-turns each at 14 GeV in SPS:

Continuous Transfer at the CERN PS

- Continuous Transfer was used at the CERN PS to fill the SPS uniformly:
 - filling time and resulting duty cycle (and thus protons on target) is optimized with 2 transfers of 5-turns each at 14 GeV in SPS:

CT: performance aspects

- CT results in a **smaller emittance** in the plane that is "sliced":
 - exploited to overcome the vertical aperture limitation in the SPS
 - horizontal and vertical emittances are exchanged in the transfer line:
 - 3 skew quads in the TT10 transfer line used to exchange emittance before injection to the SPS: see W. Bartmann's lectures on "Transfer Line Design..."

CT: performance aspects

- CT results in a **smaller emittance** in the plane that is "sliced":
 - exploited to overcome the vertical aperture limitation in the SPS
 - horizontal and vertical emittances are exchanged in the transfer line:
 - 3 skew quads in the TT10 transfer line used to exchange emittance before injection to the SPS: see W. Bartmann's lectures on "Transfer Line Design..."
- Beam loss during extraction and unavoidable induced radio-activation:
 - particles impinging the septum are scattered around the machine aperture
 - electrostatic septum is irradiated making hands-on maintenance difficult
 - potential **limit for total intensity** throughput:
 - \approx 40% of the all losses along the accelerator chain for the SPS FT physics programme occur at the PS electrostatic septum
 - e.g. for a future SPS Beam Dump Facility requesting $5 \times 10^{19} \text{ p}^+/\text{yr}$, about $0.7 \times 10^{19} \text{ p}^+/\text{yr}$ would be lost on the PS electrostatic septum

CT: performance aspects

- CT results in a **smaller emittance** in the plane that is "sliced":
 - exploited to overcome the vertical aperture limitation in the SPS
 - horizontal and vertical emittances are exchanged in the transfer line:
 - 3 skew quads in the TT10 transfer line used to exchange emittance before injection to the SPS: see W. Bartmann's lectures on "Transfer Line Design..."
- Beam loss during extraction and unavoidable induced radio-activation:
 - particles impinging the septum are scattered around the machine aperture
 - electrostatic septum is irradiated making hands-on maintenance difficult
 - potential **limit for total intensity** throughput:
 - \approx 40% of the all losses along the accelerator chain for the SPS FT physics programme occur at the PS electrostatic septum
 - e.g. for a future SPS Beam Dump Facility requesting $5 \times 10^{19} \text{ p}^+/\text{yr}$, about $0.7 \times 10^{19} \text{ p}^+/\text{yr}$ would be lost on the PS electrostatic septum
- Turn-by-turn **mismatch** causes emittance growth in receiving machine:
 - each slice has a different emittance and optical parameters
 - each slice has a different centroid and trajectory error
 - spills with both uniform intensity and emittance are not possible

CT: constant intensity vs. emittance

• The fast closed bump can be adjusted turn-by-turn giving 4 free parameters when slicing:

CT: constant intensity vs. emittance

• The fast closed bump can be adjusted turn-by-turn giving 4 free parameters when slicing:

CT: turn-by-turn trajectory variation

• Turn-by-turn variation in the extracted beam centroid:

CT: turn-by-turn trajectory variation

• Turn-by-turn variation in the extracted beam centroid:

CT: turn-by-turn trajectory variation

• Turn-by-turn variation in the extracted beam centroid:

CT: losses

 Typically ~ 6% of the beam is lost around the ring during extraction, depending on how well the extraction has been optimised:

Magnetic splitting: motivation

- Aim to do away with mechanical splitting, with several advantages:
 - Losses reduced significantly (no need for an electrostatic septum)
 - attractive for higher energy applications
 - Phase space matching improved with respect to CT
 - 'beamlets' have same emittance and optical parameters at extraction

Magnetic splitting

- Non-linear fields can be used to split a beam in phase space:
 - Sextupoles and octupoles can be used to create islands of stability inside the circulating beam
 - A slow (adiabatic) tune variation across a resonance can capture particles into separate islands
 - Variation of the **tune** moves the islands to large amplitudes
- Pioneered over the last 25 years at CERN:
 - for further reading a list of references is found at the end of the talk [ref 20-25]
 - see appendix for measurement results carried out in the PS!

Non-linear beam dynamics (1)

• A vast subject (out of the scope of this lecture!) to solve the non-linear equation of motion (a driven simple harmonic oscillator):

perturbing fields

$$\frac{d^2 \bar{X}}{d\phi^2} + Q^2 \bar{X} = -Q^2 \beta^{3/2} \frac{\Delta B(\bar{X},\phi)}{(B\rho)}$$

Non-linear beam dynamics (1)

• A vast subject (out of the scope of this lecture!) to solve the non-linear equation of motion (a driven simple harmonic oscillator):

...these terms include harmonic functions of ϕ , driving resonances

- Many mathematical tools exist to help understand such dynamics:
 - the Hamiltonian
 - Taylor maps and Lie transformations
 - Perturbation theory, normal form analysis, etc.
- However, nowadays we can "cheat" and solve the equation of motion by integrating it numerically to gain insight:
 - one turn map + non-linear thin lens kick (sextupole and/or octupole)
• We can learn a lot by tracking a few particles over a few 100 turns:

 $\Delta Q_x = 0.248$ Example: 1.5 Crossing 1/4 - integer resonance 1.0 • i.e. $Q_x = integer + 0.25$ 0.5 Sextupole OFF and octupole OFF: 0.0 X • $K_2 = K_3 = 0$ Ramping tune from below -0.5resonance: -1.0• $\Delta Q_x = 0.248$ to 0.252 $K_2 = K_3 = 0$ 12 particles, 1000 turns 0.0 0.5 1.0 1.5 \overline{X}

• We can learn a lot by tracking a few particles over a few 100 turns:

- Example:
 - Crossing 1/4 integer resonance
 - i.e. Q_x = integer + 0.25
 - Sextupole ON and octupole ON:
 - $K_2 \neq K_3 \neq 0$
 - Ramping tune from below resonance:
 - $\Delta Q_x = 0.248$ to 0.252
 - 12 particles, 1000 turns

• We can learn a lot by tracking a few particles over a few 100 turns:

- Example:
 - Crossing 1/4 integer resonance
 - i.e. Q_x = integer + 0.25
 - Sextupole ON and octupole ON:
 - $K_2 \neq K_3 \neq 0$
 - Ramping tune from below resonance:
 - $\Delta Q_x = 0.248$ to 0.252
 - 12 particles, 1000 turns

• We can learn a lot by tracking a few particles over a few 100 turns:

one-turn map, function of the machine tune $\left(\begin{array}{c} \bar{X} \\ \bar{X}' \end{array}\right)_{n+1} = R(2\pi Q) \left(\begin{array}{c} \bar{X} \\ \bar{X}' + K_2 \bar{X}^2 + K_3 \bar{X}^3 \end{array}\right)_n$

thin lens approximation of a sextupole and octupole at the same location in the ring

Ratio of K_2/K_3 can be used to tailor the phase space and size of the islands

- Example:
 - Crossing 1/4 integer resonance
 - i.e. Q_x = integer + 0.25
 - Sextupole ON and octupole ON:
 - $K_2 \neq K_3 \neq 0$
 - Ramping tune from below resonance:
 - $\Delta Q_x = 0.248$ to 0.252
 - 12 particles, 1000 turns

• We can learn a lot by tracking a few particles over a few 100 turns:

one-turn map, function of the machine tune $\left(\begin{array}{c} \bar{X} \\ \bar{X}' \end{array}\right)_{n+1} = R(2\pi Q) \left(\begin{array}{c} \bar{X} \\ \bar{X}' + K_2 \bar{X}^2 + K_3 \bar{X}^3 \end{array}\right)_n$

thin lens approximation of a sextupole and octupole at the same location in the ring

> Ratio of K_2/K_3 can be used to tailor the phase space and size of the islands

- Example:
 - Crossing 1/4 integer resonance
 - i.e. Q_x = integer + 0.25
 - Sextupole ON and octupole ON:
 - $K_2 \neq K_3 \neq 0$
 - Ramping tune from below resonance:
 - $\Delta Q_x = 0.248$ to 0.252
 - 12 particles, 1000 turns

• We can learn a lot by tracking a few particles over a few 100 turns:

one-turn map, function of the machine tune $\left(\begin{array}{c} \bar{X} \\ \bar{X}' \end{array}\right)_{n+1} = R(2\pi Q) \left(\begin{array}{c} \bar{X} \\ \bar{X}' + K_2 \bar{X}^2 + K_3 \bar{X}^3 \end{array}\right)_n$

thin lens approximation of a sextupole and octupole at the same location in the ring

> Ratio of K_2/K_3 can be used to tailor the phase space and size of the islands

- Example:
 - Crossing 1/4 integer resonance
 - i.e. Q_x = integer + 0.25
 - Sextupole ON and octupole ON:
 - $K_2 \neq K_3 \neq 0$
 - Ramping tune from below resonance:
 - $\Delta Q_x = 0.248$ to 0.252
 - 12 particles, 1000 turns

• We can learn a lot by tracking a few particles over a few 100 turns:

one-turn map, function of the machine tune $\left(\begin{array}{c} \bar{X} \\ \bar{X}' \end{array}\right)_{n+1} = R(2\pi Q) \left(\begin{array}{c} \bar{X} \\ \bar{X}' + K_2 \bar{X}^2 + K_3 \bar{X}^3 \end{array}\right)_n$

thin lens approximation of a sextupole and octupole at the same location in the ring

> Ratio of K_2/K_3 can be used to tailor the phase space and size of the islands

- Example:
 - Crossing 1/4 integer resonance
 - i.e. Q_x = integer + 0.25
 - Sextupole ON and octupole ON:
 - $K_2 \neq K_3 \neq 0$
 - Ramping tune from below resonance:
 - $\Delta Q_x = 0.248$ to 0.252
 - 12 particles, 1000 turns

• We can learn a lot by tracking a few particles over a few 100 turns:

one-turn map, function of the machine tune $\left(\begin{array}{c} \bar{X} \\ \bar{X}' \end{array}\right)_{n+1} = R(2\pi Q) \left(\begin{array}{c} \bar{X} \\ \bar{X}' + K_2 \bar{X}^2 + K_3 \bar{X}^3 \end{array}\right)_n$

thin lens approximation of a sextupole and octupole at the same location in the ring

Ratio of K_2/K_3 can be used to tailor the phase space and size of the islands

- Example:
 - Crossing 1/4 integer resonance
 - i.e. Q_x = integer + 0.25
 - Sextupole ON and octupole ON:
 - $K_2 \neq K_3 \neq 0$
 - Ramping tune from below resonance:
 - $\Delta Q_x = 0.248$ to 0.252
 - 12 particles, 1000 turns

• We can learn a lot by tracking a few particles over a few 100 turns:

one-turn map, function of the machine tune $\left(\begin{array}{c} \bar{X} \\ \bar{X}' \end{array}\right)_{n+1} = R(2\pi Q) \left(\begin{array}{c} \bar{X} \\ \bar{X}' + K_2 \bar{X}^2 + K_3 \bar{X}^3 \end{array}\right)_n$

thin lens approximation of a sextupole and octupole at the same location in the ring

> Ratio of K_2/K_3 can be used to tailor the phase space and size of the islands

- Example:
 - Crossing 1/4 integer resonance
 - i.e. Q_x = integer + 0.25
 - Sextupole ON and octupole ON:
 - $K_2 \neq K_3 \neq 0$
 - Ramping tune from below resonance:
 - $\Delta Q_x = 0.248$ to 0.252
 - 12 particles, 1000 turns

Multi-turn extraction suitable for the PS

- For an n^{th} order stable resonance n + 1 islands will be created:
 - the 4th order resonance works for the CERN PS scenario:

MTE: performance aspects (1)

- MTE is complex and operational implementation faced many challenges:
 - Fluctuations in splitting efficiency:

$$\eta_{MTE} = \frac{\left\langle I_{\text{island}} \right\rangle}{I_{\text{total}}}$$

• aim for (20 ± 1) % of the beam in each island (imposed by SPS)

- Sensitivity to power converter ripple:
 - fluctuations shown to be correlated to low frequency noise (≈ 5 kHz) on unsynchronized power converters, affecting the machine tune
 - ripple reduced, power converters to be synchronised and their (stepmode) frequency to be increased to ≈ 10 kHz

MTE: performance aspects (2)

- MTE is complex and operational implementation faced many challenges:
 - Transverse damper excitation is imperative to increase the capture probability during island formation:

- theoretical studies on-going to understand the mechanism
- Vertical emittance and transmission at low-energy in SPS:
 - work is on-going to create and preserve smaller emittances throughout the accelerator chain
 - charge exchange injection in the PSB will help in the long term

MTE: performance aspects (3)

- There are many other issues too detailed for this lecture:
 - available mechanical aperture
 - operation of a dummy septum with other beam types whilst shadowing the septum for MTE
 - control of magnetic reproducibility and stability for splitting:
 - non-linear coupling, chromaticity and energy spread
 - rotation of the islands after splitting for correct presentation at septum
 - control of tune as slow bump turned on (to better than 10^{-3})
 - turn-by-turn extraction trajectory differences

... consult reference list for more information!

Losses: CT vs. MTE

- Beam is requested **de-bunched** by the SPS (no particle-free abort gap)
 - islands and core swept over the magnetic septum as the kicker field rises: local shielded protection installed upstream to absorb losses
 - losses in PS improved from ~ 6% to < 2%

Losses: CT vs. MTE

- Beam is requested **de-bunched** by the SPS (no particle-free abort gap)
 - islands and core swept over the magnetic septum as the kicker field rises: local shielded protection installed upstream to absorb losses
 - losses in PS improved from ~ 6% to < 2%

Activation: after CT operation

Activation: after MTE operation

Summary

- The basic principles and design considerations for **fast extraction** were reviewed:
 - kick optimisation
 - important design parameters for kickers and septa
 - bumps and "non-local" extraction
- Two different techniques for **multi-turn fast extraction** were described:
 - mechanical splitting vs. magnetic splitting
- Examples of extraction systems at CERN were given to illustrate the different **fast extraction techniques**

Acknowledgements

- A large amount of material in this presentation was provided by colleagues at CERN including D. Cotte, S. Gilardoni, M. Giovannozzi, B. Goddard and G. Sterbini to name just a few...!
- A special thanks to A. Huschauer and F. Velotti for their comments on the final draft!

Thanks for your attention!

References

- [1] V. Forte, Recombination Kicker Waveform Measurements, LIU-PSB Meeting 177, 19 July 2016, CERN (2016)
- [2] F. Velotti et al., Performance Studies Of The Sps Beam Dump System For HL-LHC Beams, Proc. of IPAC'14, Dresden, Germany, CERN-ACC-2014-0239 (2014)
- [3] C. Wiesner et al., LBDS Studies: MKB Retriggering, ABT-BTP Section Meeting, 15 February 2017, Geneva, CERN (2017)
- [4] F.M. Velotti, Higher Brightness Beams From The Sps For The HI-Ihc Era, PhD Thesis, EPFL (2017)
- [5] V.D. Rudko, S.V. Avramenko, A.A Loguinov et al., Multiturn fast extraction of the proton beam from the U-70 synchrotron, Instrum Exp Tech (2016) 59: 325
- [6] D. C. Fiander, D. Grier, K.-D. Metzmacher, and P. Pearce, A modulated fast bump for the CPS continuous transfer, IEEE Trans. Nucl. Sci. 24, 1340 (1977)
- [7] D. Bloess, J. Boucheron, D. Fiander, D. Grier, A. Krusche, F. Ollenhauer, P. Pearce, H. Riege, and G. C. Schneider, The Control System for the CERN Proton Synchrotron Continuous Transfer Ejection, CERN 78-04 (1978).
- [8] J. Barranco García and S. Gilardoni, Simulation and optimization of beam losses during continuous transfer extraction at the CERN Proton Synchrotron, Phys. Rev. ST Accel. Beams 14, 030101 (2011).
- [9] D. Cotte, MTE at PS : considerations from OP, MTE Internal Review, 19 October 2015, CERN (2015).
- [10] R. Cappi and M. Giovannozzi, Computation of betatron mismatch and emittance blow-up for multi-turn extraction, CERN-PS (AE) 2002-083 (2002).
- [11] A. Franchi et al., Trajectory Correction in the Transfer Line TT2-TT10 for the Continuous Transfer (CT), CERN-AB-Note-2008-005 (2008)
- [12] M. Giovannozzi (ed.), The CERN PS multi-turn extraction based on beam splitting in stable islands of transverse phase space : Design Report, CERN-2006-011 (2006)
- [13] Videos available online: https://ab-project-mte.web.cern.ch/ab-project-mte
- [14] A. Huschauer, Beam Dynamics Studies for High-Intensity Beams in the CERN Proton Synchrotron, PhD Thesis, TU Wien, CERN-THESIS-2016-06 (2016)
- [15] G. Sterbini et al, Status of MTE at the PS, MTE Internal Review, 19 October 2015, CERN (2015)
- [16] C. Bertone et al., Studies And Implementation Of The Ps Dummy Septum To Mitigate Irradiation Of Magnetic Septum In Straight Section 16, CERN-ACC-2014-0043 (2008)
- [17] A. Huschauer et al., Transverse Beam Splitting Made Operational: Recent Progress Of The Multi-turn Extraction At The Cern Proton Synchrotron, Proc. of HB 2016, Malmo, Sweden (2016)
- [18] S. Abernethy et al., Operational performance of the CERN injector complex with transversely split beams, Phys. Rev. ST Accel. Beams 20, 014001 (2017)
- [19] G. Dumont, RP Survey of PSB, PS and SPS, MSWG meeting 2016 #2, CERN, 4 March 2016 (2016)

MTE references:

- [20] R. Cappi and M. Giovannozzi, Report No. CERN PS 2002-083 (AE), CERN (2002)
- [21] R. Cappi and M. Giovannozzi, Multiturn extraction: performance analysis of old and new approaches, Nucl. Instrum. Methods Phys. Res., Sect. A 519, 442 (2004)
- [22] R. Cappi and M. Giovannozzi, Novel Method for Multiturn Extraction: Trapping Charged Particles in Islands of Phase Space, Phys. Rev. Lett. 88, 104801 (2002).
- [23] S. Gilardoni, M. Giovannozzi, M. Martini, E. Métral, P. Scaramuzzi, R. Steerenberg, and A.-S. Müller, Resonant multi-turn extraction: Principle and experiments, Nucl. Instrum. Methods Phys. Res., Sect. A 561, 249 (2006).
- [24] S. Gilardoni, M. Giovannozzi, M. Martini, E. Métral, P. Scaramuzzi, R. Steerenberg, and A.-S. Müller, Experimental evidence of adiabatic splitting of charged particle beams using stable islands of transverse phase space, Phys. Rev. ST Accel. Beams 9, 104001 (2006).
- [25] A. Franchi, S. Gilardoni, and M. Giovannozzi, Progresses in the studies of adiabatic splitting of charged particle beams by crossing nonlinear resonances, Phys. Rev. ST Accel. Beams 12, 014001 (2009).

Appendix

SPS QDA coil window

Fast Extraction – CERN Accelerator School – Beam Injection, Extraction & Transfer, Erice, Italy, 2017

Aperture considerations: kicker

- Extraction kicker is usually positioned on the circulating beam and therefore its vertical aperture is constrained by the injected beam size:
 - see C. Bracco's lecture: *Injection: Hadron Beams* and the appendix for more details

Fast Extraction – CERN Accelerator School – Beam Injection, Extraction & Transfer, Erice, Italy, 2017

Aperture considerations: kicker

- Extraction kicker is usually positioned on the circulating beam and therefore its vertical aperture is constrained by the injected beam size:
 - see C. Bracco's lecture: *Injection: Hadron Beams* and the appendix for more details

Aperture considerations: septum

- Extraction septum position is usually constrained by injected beam size:
 - septa are rarely actuated closer to the beam as its emittance damps during acceleration: mechanics are typically unreliable, unrepeatable, slow
 - slow orbit bumps are used instead to move the beam to the septum

Aperture considerations: septum

- Extraction septum position is usually constrained by injected beam size:
 - septa are rarely actuated closer to the beam as its emittance damps during acceleration: mechanics are typically unreliable, unrepeatable, slow
 - slow orbit bumps are used instead to move the beam to the septum

Aperture considerations: septum

- Extraction septum position is usually constrained by injected beam size:
 - septa are rarely actuated closer to the beam as its emittance damps during acceleration: mechanics are typically unreliable, unrepeatable, slow
 - slow orbit bumps are used instead to move the beam to the septum

Aperture considerations: septum

- Extraction septum position is usually constrained by injected beam size:
 - septa are rarely actuated closer to the beam as its emittance damps during acceleration: mechanics are typically unreliable, unrepeatable, slow
 - slow orbit bumps are used instead to move the beam to the septum

Extraction aperture and tolerances (1)

- The main concerns for the extraction aperture are beam loss induced heating (cooling) and activation (maintenance/damage) of the septum
- Aperture is usually written in terms of the betatron beam size:

$$\sigma_{\rm x} = \sqrt{K_{\beta}\beta_{\rm x}\varepsilon_{\rm x}}$$

Take care, sometimes aperture (n_{σ}) includes dispersion:

$$\sigma_{\rm x} = \sqrt{K_{\beta}\beta_{\rm x}\varepsilon_{\rm x} + K_D D_{\rm x}^2 \delta_{\Delta p,\rm beam}^2}$$

- − where the symbols have their usual meaning and K_{β} and K_{D} are safety factors, generally taken as ≈ 1.2
- Bumped, circulating beam aperture:

$$n_{\sigma_{\rm x},\rm bumped} = \frac{A_{\rm circ}}{\sum_{x_{\rm septum}} - x_{\rm bump}} - \delta_{x,\rm CO} - \delta_{x,\rm alignment} - (\delta_{\Delta p,\rm offset} + \delta_{\Delta p,\rm beam}) K_D D_x}{\sigma_{\rm x}}$$

- where:
 - $\delta_{x,CO}$ is the error on the closed-orbit position
 - $\delta_{x,alignment}$ is the mechanical alignment tolerance of septum position
 - $\delta_{\Delta p, \text{offset}}$ and $\delta_{\Delta p, \text{beam}}$ are the momentum offset error and spread of the beam

Extraction aperture and tolerances (2)

- Circulating beam aperture:
 - usually only a concern at injection
 - larger ϵ , larger closed-orbit errors due to injection oscillations
- Extracted beam aperture:

$$n_{\sigma_{x},\text{extr}} = \frac{\Delta x_{\text{kicker}} + x_{\text{bump}} - (\Delta x_{\text{blade}} + x_{\text{septum}}) - \delta_{x,\text{CO}} - \delta_{x,\text{alignment}} - (\delta_{\Delta p,\text{offset}} + \delta_{\Delta p,\text{beam}})K_{D}D_{x}}{\sigma_{x}}$$

- dependent on the kick strength and septum blade thickness
- The vertical aperture for the extracted beam is usually critical because of the narrow septum gap:

$$n_{\sigma_y,\text{extr}} = \frac{y_{gap} / 2 - \delta_{y,\text{CO}} - \delta_{y,\text{alignment}}}{\sigma_y}$$

- typically no dispersion in the non-bending plane of synchrotron
- vertical aperture not always the most critical, see the Lambertson septum

Kickers: electric vs. magnetic

A quick comparison between the highest and lowest energy extraction systems at CERN:

ELENA: 100 keV antiprotons: Bp = 45.7 mT m

LHC Beam Dump: 7 TeV protons: Bp = 23.4 kT m

- Kickers do not have to be magnets... •
 - at low kinetic energy, i.e. at small beam velocities v, the electric force is more efficient than the magnetic force
 - electrostatic rigidity vs. magnetic rigidity:

$$\chi_e = E_0 \rho = \frac{pv}{q} [V] \quad \Delta x'_{\text{kicker}} = \frac{E_0 L_{eff}}{\chi_e}$$

$$\chi_m = B\rho = \frac{p}{q} [\text{Tm}] \qquad \Delta x'_{\text{kicker}} = \frac{B_0 L_{eff}}{\chi_m}$$

- **ELENA:** 100 keV antiprotons: $E\rho = 45.7 \times 10^{-3} \times 0.0146c = 200 \text{ kV} \leftarrow$
- **LHC Beam Dump:** 7 TeV protons: $E\rho = 23.4 \times 10^3 \text{ x } c = 7.02 \text{ TV}$

Fast Extraction – CERN Accelerator School – Beam Injection, Extraction & Transfer, Erice, Italy, 2017

~ 4 MV an enormous voltage to hold-off and switch! 30 kV is already challenging enough!

Kicker parameters: pulse shape

- Definition/parameterization of the kicker pulse depends strongly on the application, some examples:
 - single-turn extraction
 - destination: to an absorber/beam dump

NKBV_E NKBV_C NKBV_C NKBV_E

Fast Extraction – CERN Accelerator School – Beam Injection, Extraction & Transfer, Erice, Italy, 2017

Kicker parameters: pulse shape

- Definition/parameterization of the kicker pulse depends strongly on the application, some examples:
 - multi-burst extraction
 - destination: fixed target physics programme

Kicker parameters: pulse shape

- Definition/parameterization of the kicker pulse depends strongly on the application, some examples:
 - multi-burst extraction
 - destination: fixed target physics programme

CERN Neutrinos to Gran Sasso (CNGS) SPS extraction (400 GeV):

4-magnet ("coil") bump

• To control both **position and angle** (x_S, x'_S) at a given point a fourth magnet is needed: Point S (α_S, β_S)

First two bumpers select the position and angle at point S:

$$\begin{pmatrix} x_{s} \\ x'_{s} \end{pmatrix} = M_{1 \to S} \begin{pmatrix} 0 \\ \Delta_{1} \end{pmatrix} + M_{2 \to S} \begin{pmatrix} 0 \\ \Delta_{2} \end{pmatrix}$$
$$= \begin{pmatrix} M_{1 \to 3, 12} \Delta_{1} + M_{2 \to 3, 12} \Delta_{2} \\ M_{1 \to 3, 22} \Delta_{1} + M_{2 \to 3, 22} \Delta_{2} \end{pmatrix}$$

Summing kicks from each bumper gives 2 simultaneous equations:

$$x_{s} = M_{1 \to 3, 12} \Delta_{1} + M_{2 \to 3, 12} \Delta_{2}$$
$$x'_{s} = M_{1 \to 3, 22} \Delta_{1} + M_{2 \to 3, 22} \Delta_{2}$$

Solving for the bumper kick strengths one can write:

$$\Delta_1 = \frac{1}{\sqrt{\beta_1 \beta_s}} \frac{\cos \Delta \mu_{2s} - \alpha_s \sin \Delta \mu_{2s}}{\sin \Delta \mu_{12}} x_s - \sqrt{\frac{\beta_s}{\beta_1}} \frac{\sin \Delta \mu_{2s}}{\sin \Delta \mu_{12}} x'_s$$
$$\Delta_2 = -\frac{1}{\sqrt{\beta_2 \beta_s}} \frac{\cos \Delta \mu_{1s} - \alpha_s \sin \Delta \mu_{1s}}{\sin \Delta \mu_{12}} x_s + \sqrt{\frac{\beta_s}{\beta_2}} \frac{\sin \Delta \mu_{1s}}{\sin \Delta \mu_{12}} x'_s$$

One can derive by symmetry the strengths of Δ_3 and Δ_4 by applying the following transformations to the above equations:

$$\beta_1 \rightarrow \beta_4, \ \beta_2 \rightarrow \beta_3, \ \alpha_s \rightarrow -\alpha_s, \ x_s \rightarrow -x_s, \ \Delta\mu_{1s} \rightarrow \Delta\mu_{s4}, \ \Delta\mu_{2s} \rightarrow \Delta\mu_{s3}$$

"Non-local" extraction concept

 A fast extraction system can be designed to extract using a single kicker system through different septa to different extraction lines:

Figure 1 : Fast ejection from straight section 58 into the east experimental area

Example: potential upgrade at SPS

- SPS impedance could be reduced by removing extraction kickers (MKE) from LSS6:
 - Kickers in LSS4 used to extract both LHC beams from LSS4 and LSS6

Example: potential upgrade at SPS

- SPS impedance could be reduced by removing extraction kickers (MKE) from LSS6:
 - Kickers in LSS4 used to extract both LHC beams from LSS4 and LSS6

No turn-on of kicker

- For a fail-safe beam abort system **passive redundancy** must be built into the design:
 - multiple, independently powered kicker modules can be employed
 - redundancy in the power module circuitry, e.g. two switches in parallel
 - multiple trigger signals generated by redundant control electronics
 - aperture and kick strength over-specified to allow clean extraction even with missing kicker module(s)
- As well as **active interlock** and **monitoring** systems:
 - kicker voltage (and all other critical systems, septum current etc.) surveyed and compared to the measured beam rigidity:
 - synchronous beam dump immediately triggered if voltage of kicker power module is out of tolerance
 - check for cable connectivity:
 - synchronous beam dump if cable disconnected or connectivity lost
 - **post-operational checks** after each dump is executed:
 - identify any changes or non-conformity in the dump system (not only the kickers) before it is armed and readied again

What can go wrong?

- When the **beam energy exceeds** ≈ 200 kJ the risk of damaging the accelerator is significant:
 - − Damage evident on copper for > 2×10¹² p⁺ at 450 GeV with $\sigma_{x,y} \approx$ 1 mm
 - see A. Nordt's lecture "Machine Protection and Activation"
- Failures associated with beam extraction equipment are typically very fast and difficult to catch, for example:
 - <u>No turn-on of kicker</u>: missing kick strength, see appendix for more details!
 - Erratic turn-on of kicker: sweep circulating beam in the machine
 - <u>Asynchronous triggering of kicker</u>, <u>flash-over</u> (short-circuit) <u>in kicker</u>, <u>magnet</u> <u>failure</u> (e.g. septum)
- At high energy **failure is not an option**:
 - mitigation techniques need considering from the design stage
- At lower energy/intensity the **induced activation** is the main concern:
 - Beam inhibited by BLMs or RP monitors only after the failure has occurred, e.g. beam lost in septum due to power converter failure

- Extraction system for a high energy collider needs to abort at any moment throughout the cycle (injection, ramp, beams in collision):
 - switches of kicker power supply must be held at high voltage for long periods of time
 - erratic triggering of the kicker will happen sooner or later...
- Consequences depend on the total number of independently powered kicker modules in the dump system:
 - <u>One power module</u>: beam swept across entire machine aperture, septum and into the extraction channel:
 - beam extracted in an <u>asynchronous</u> dump
 - <u>A few power modules</u>: single kicker erratic will steer the beam directly into the machine aperture:
 - quick <u>re-triggering of other kickers</u> important to safely extract beam
 - <u>A very large number of power modules</u>: single kicker erratic results in a minor perturbation to closed orbit:
 - beam safely steered inside machine aperture and dumped <u>synchronously</u> later

- If a single kicker module turns on erratically the others must re-trigger quickly to keep sweep speed of the beam fast on the machine aperture:
 - Quick fail-safe re-trigger system (t_{retrigger} < kicker rise-time!)
 - Passive protection devices must be used to mask sensitive equipment if energy deposition during sweep is above the damage limit
 - Load taken by passive protection devices must be taken into account

- If a single kicker module turns on erratically the others must re-trigger quickly to keep sweep speed of the beam fast on the machine aperture:
 - Quick fail-safe re-trigger system (t_{retrigger} < kicker rise-time!)
 - Passive protection devices must be used to mask sensitive equipment if energy deposition during sweep is above the damage limit
 - Load taken by passive protection devices must be taken into account

- If a single kicker module turns on erratically the others must re-trigger quickly to keep sweep speed of the beam fast on the machine aperture:
 - Quick fail-safe re-trigger system (t_{retrigger} < kicker rise-time!)
 - Passive protection devices must be used to mask sensitive equipment if energy deposition during sweep is above the damage limit
 - Load taken by passive protection devices must be taken into account

Example: LHC beam dump (1)

deposited in septum in the event erration kicker trigger or asynchronous dump:

mobile 9 m long single-sided absorber of carbon fibre reinforced carbon (CfC) designed to protect downstream superconducting quadrupole in the event of an erratic kicker trigger or asynchronous dump. TCDQ is combined with a downstream fixed steel mask TCDQM:

Example: LHC beam dump (2)

Example: U-70 IHEP-Protvino (MFE)

 Recent tests to provide a proton radiography facility with spills from the U-70 synchrotron at 70 GeV over 10 turns (≈ 50 µs):

Continuous Transfer at the CERN PS

- Continuous Transfer was used at the CERN PS to fill the SPS uniformly:
 - a single 10-turn transfer was first operational with protons at 10 GeV

Continuous Transfer at the CERN PS

- Continuous Transfer was used at the CERN PS to fill the SPS uniformly:
 - a single 10-turn transfer was first operational with protons at 10 GeV

CT: extraction system layout

(slightly out of date... see next schematic!)

CT: extraction system layout (2)

Fast Extraction – CERN Accelerator School – Beam Injection, Extraction & Transfer, Erice, Italy, 2017

Continuous Transfer at the CERN PS

CT: losses (2)

 Losses on the electrostatic septum can be understood with simple, and more advanced, simulation models:

CT: losses (2)

 Losses on the electrostatic septum can be understood with simple, and more advanced, simulation models:

CT: operational aspects

- Electrostatic septum angle (SEH31) must be well aligned to reduce beam loss, see the appendix for more details!
- Spill adjusted with slow bump (BSW31) and turn-by-turn adjustment of fast bump (BFA21 – 9):

-\[0 0]/--^(SFTPRO CT File View Control Ontion PIX.SIN × PAX.STR X SFTPR01[2] FTARGET Cycle from Larger kick required 548.9600000 C[ms] 00835.000000 170.0010250 170.0016750 548.9600000 835.0317250 835.0335250 Apr 29 02:50:21 2015 Apr 29 02:49:36 201 Time-of-flight between fast PE.BFA21STA-SA[mV] PE.BFA09STA-SA[mV] to push 5th turn over PE.BFA21STA-SA[mV] bumpers is important to keep PE.BFA09STA-SA[nV the septum current bump closed turn-by-turn 800 kicker 500 time 400-300 PEY SEVEN SE 200 100 835 0000 835,0050 835.0100 835.0150 835.0200 835.0250 835.0300 835 0350 835 0400 835.0450 Cims Update Unfreeze Freeze 🕫 🗋 🖓 🖉 题题

CT: operational aspects

- Electrostatic septum angle (SEH31) must be well aligned to reduce beam loss, see the appendix for more details!
- Spill adjusted with slow bump (BSW31) and turn-by-turn adjustment of fast bump (BFA21 – 9):

Time-of-flight between fast bumpers is important to keep bump closed turn-by-turn

MTE cycle

- Splitting is carried out at flat-top (14 GeV):
 - non-linearities are applied (seXtupoles and Octupoles)
 - tune is swept (<u>Q</u>uadrupoles)
 - excitation from damper applied
 - beam adiabatically debunched and partially recaptured at 200 MHz

Fast Extraction – CERN Accelerator School – Beam Injection, Extraction & Transfer, Erice, Italy, 2017

MTE: extraction system layout

• We can learn a lot by tracking a few particles over a few 100 turns:

• We can learn a lot by tracking a few particles over a few 100 turns:

- Example:
 - Crossing 1/4 integer resonance
 - i.e. $Q_x = integer + 0.25$
 - Sextupole ON and octupole OFF:
 - $K_2 \neq 0, K_3 = 0$
 - Ramping tune from below resonance:
 - $\Delta Q_x = 0.248$ to 0.252
 - 12 particles, 1000 turns

• We can learn a lot by tracking a few particles over a few 100 turns:

- Example:
 - Crossing 1/4 integer resonance
 - i.e. $Q_x = integer + 0.25$
 - Sextupole ON and octupole OFF:
 - $K_2 \neq 0, K_3 = 0$
 - Ramping tune from below resonance:
 - $\Delta Q_x = 0.248$ to 0.252
 - 12 particles, 1000 turns

• We can learn a lot by tracking a few particles over a few 100 turns:

- Example:
 - Crossing 1/4 integer resonance
 - i.e. Q_x = integer + 0.25
 - Sextupole ON and octupole OFF:
 - $K_2 \neq 0, K_3 = 0$
 - Ramping tune from below resonance:
 - $\Delta Q_x = 0.248$ to 0.252
 - 12 particles, 1000 turns

• We can learn a lot by tracking a few particles over a few 100 turns:

- Example:
 - Crossing 1/4 integer resonance
 - i.e. Q_x = integer + 0.25
 - Sextupole ON and octupole OFF:
 - $K_2 \neq 0, K_3 = 0$
 - Ramping tune from below resonance:
 - $\Delta Q_x = 0.248$ to 0.252
 - 12 particles, 1000 turns

• We can learn a lot by tracking a few particles over a few 100 turns:

- Example:
 - Crossing 1/4 integer resonance
 - i.e. Q_x = integer + 0.25
 - Sextupole ON and octupole OFF:
 - $K_2 \neq 0, K_3 = 0$
 - Ramping tune from below resonance:
 - $\Delta Q_x = 0.248$ to 0.252
 - 12 particles, 1000 turns

Fast Extraction - CERN Accelerator School - Beam Injection, Extraction & Transfer, Erice, Italy, 2017

• We can learn a lot by tracking a few particles over a few 100 turns:

- Example:
 - Crossing 1/4 integer resonance
 - i.e. $Q_x = integer + 0.25$
 - Sextupole ON and octupole OFF:
 - $K_2 \neq 0, K_3 = 0$
 - Ramping tune from below resonance:
 - $\Delta Q_x = 0.248$ to 0.252
 - 12 particles, 1000 turns

Fast Extraction - CERN Accelerator School - Beam Injection, Extraction & Transfer, Erice, Italy, 2017

• We can learn a lot by tracking a few particles over a few 100 turns:

- Example:
 - Crossing 1/4 integer resonance
 - i.e. Q_x = integer + 0.25
 - Sextupole ON and octupole OFF:
 - $K_2 \neq 0, K_3 = 0$
 - Ramping tune from below resonance:
 - $\Delta Q_x = 0.248$ to 0.252
 - 12 particles, 1000 turns

Fast Extraction - CERN Accelerator School - Beam Injection, Extraction & Transfer, Erice, Italy, 2017

We can learn a lot by tracking a few particles over a few 100 turns:

1.5

- Example:
 - Crossing 1/4 integer resonance
 - i.e. $Q_x = integer + 0.25$
 - Sextupole ON and octupole OFF:
 - $K_2 \neq 0, K_3 = 0$
 - Ramping tune from below resonance:
 - $\Delta Q_x = 0.248$ to 0.252
 - 12 particles, 1000 turns

 $\Delta Q_x = 0.252$

- In the PS case we end up with two beams circulating on distinct closed orbits in the machine (in the horizontal plane):
 - the islands are a separate, continuous entity (if de-bunched) wrapped around the machine circumference 4 times

- In the PS case we end up with two beams circulating on distinct closed orbits in the machine (in the horizontal plane):
 - the islands are a separate, continuous entity (if de-bunched) wrapped around the machine circumference 4 times

- In the PS case we end up with two beams circulating on distinct closed orbits in the machine (in the horizontal plane):
 - the islands are a separate, continuous entity (if de-bunched) wrapped around the machine circumference 4 times

- In the PS case we end up with two beams circulating on distinct closed orbits in the machine (in the horizontal plane):
 - the islands are a separate, continuous entity (if de-bunched) wrapped around the machine circumference 4 times

- In the PS case we end up with two beams circulating on distinct closed orbits in the machine (in the horizontal plane):
 - the islands are a separate, continuous entity (if de-bunched) wrapped around the machine circumference 4 times

- In the PS case we end up with two beams circulating on distinct closed orbits in the machine (in the horizontal plane):
 - the islands are a separate, continuous entity (if de-bunched) wrapped around the machine circumference 4 times

PS test: splitting in three stable islands [ref 13]

Exciting the unstable 1/3rd resonance the central island (beam core) is depleted. In the movie the evolution of the beam profile is shown. It was measured at a single machine section by means of horizontal flying wire installed in section 54 of the CERN Proton Synchrotron. Essentially no losses are observed for a moderate separation of the beamlets. No optimization of the working point was performed due to problems with the beam instrumentation. The beam used is a **single-bunch**, **medium-intensity** (about 2.6x10¹²) proton beam.

Fast Extraction – CERN Accelerator School – Beam Injection, Extraction & Transfer, Erice, Italy, 2017

PS test: splitting into six stable islands [ref 13]

The 1/5th stable resonance was also crossed. No beam losses were observed. The beam used is a **single-bunch**, **medium-intensity** (about 2.6x10¹²) proton beam. The movie shows a superposition of different measurements in terms of the octupole settings during the trapping process

