Emittance Preservation

Verena Kain

CAS, Erice, March 2017

The importance of low emittance

• Low emittance is a key figure of merit for circular and linear colliders

$$
\mathcal{L} = \frac{N_+ N_- f}{2\pi \Sigma_x \Sigma_y}
$$

$$
\Sigma_{x,y} = \sqrt{\sigma_{x,y+}^{*2} + \sigma_{x,y-}^{*2}}
$$

- The luminosity depends directly on the horizontal and vertical emittance
- In case of round and the same beams for both beams

$$
\mathcal{L} = \tfrac{N_{+}N_{-}f}{4\pi\beta^{\ast}\varepsilon}
$$

- Brightness is a key figure of merit for Synchrotron Light Sources
	- High photon brightness needs low electron beam emittance

Reasons for non-conserved emittances

- Liouville's theorem: area (\rightarrow emittance) in phase space stays constant under conservative forces
- Some effects to decrease emittance
	- Synchrotron radiation: charged particle undergoing acceleration will radiate electromagnetic waves
		- Radiation power depends on mass of particle like 1/m⁴
		- Comparison of $p⁺$ and $e⁻$ for the same energy

$$
\frac{P_p}{P_e} = (\frac{m_e}{m_p})^4 = 8.8 \times 10^{-14}
$$

- Stochastic or e—cooling
- Many effects to increase emittance
	- Intra-beam scattering, power supply noise, crossing resonances, instabilities,...
	- Alignment errors, dispersion for e⁻ Linacs
	- **Mismatch at injection into synchrotrons** or linacs

Example: the LHC injector chain

- Proton beams through the LHC injector chain
	- βγ normalized emittances

Significant blow up in both planes.

~ 50 % in horizontal plane from PSB to PS.

Big contribution from injection mismatch

Defining Emittance

• Defining **action-angle variables**

Cartesion coordinates

$$
(x,x')\ (y,y')\ (z,\delta)
$$

Action-angle variables:

$$
2\overline{J_x} = \gamma_x x^2 + 2\alpha_x x' x + \beta_x x'^2
$$

$$
\tan \phi_x = -\beta_x \frac{x'}{x} - \alpha_x
$$

The advantage of action-angle variables: The action of a particle is constant under symplectic transport

Preserving phase space

• Symplectic operations, i.e. matrices, preserve phase space areas

Defining Emittance

- J_{x} … amplitude of the motion of a particle
	- The Cartesian variables expressed in action-angle variables

$$
x = \sqrt{2\beta_x J_x} \cos \phi_x
$$

$$
x' = -\sqrt{\frac{2J_x}{\beta_x}} (\sin \phi_x + \alpha_x \cos \phi_x)
$$

• The emittance is the average action of all particles in the beam:

$$
\boxed{\varepsilon_x = \bra{J_x}}
$$

Emittance – statistical definition

- Emittance \equiv spread of distribution in phase-space
- Defined via 2nd order moments

$$
\sigma = \begin{pmatrix} \langle x^2 \rangle & \langle xx' \rangle \\ \langle xx' \rangle & \langle x'^2 \rangle \end{pmatrix}
$$

• **RMS emittance:**

$$
\varepsilon = \sqrt{|\sigma|} = \sqrt{\langle x^2 \rangle \langle x'^2 \rangle - \langle xx' \rangle^2}
$$

Steering (dipole) errors

- Precise delivery of the beam is important.
	- To avoid **injection oscillations** and emittance growth in rings
	- For stability on secondary particle production targets

– Injection oscillations = if beam is not injected on the closed orbit, beam oscillates around closed orbit and eventually filaments (if not damped)

Reminder - Normalised phase space

• Transform real transverse coordinates *x*, *x* ' by

$$
\begin{bmatrix} \overline{\mathbf{X}} \\ \overline{\mathbf{X}} \end{bmatrix} = \mathbf{N} \cdot \begin{bmatrix} x \\ x' \end{bmatrix} = \sqrt{\frac{1}{\beta_S}} \cdot \begin{bmatrix} 1 & 0 \\ \alpha_S & \beta_S \end{bmatrix} \cdot \begin{bmatrix} x \\ x' \end{bmatrix}
$$

$$
\overline{\mathbf{X}} = \sqrt{\frac{1}{\beta_S}} \cdot \alpha_S x + \sqrt{\beta_S} x'
$$

Reminder - Normalised phase space

• What will happen to particle distribution and hence emittance?

• What will happen to particle distribution and hence emittance?

• The beam will keep oscillating. The centroid will keep oscillating.

• What will happen to particle distribution and hence emittance?

• The beam will keep oscillating. The centroid will keep oscillating.

Injection Oscillations

- The motion of the centroid of the particle distribution over time
- Measured in a beam position monitor
	- Measures mean of particle distribution

Betatron oscillations.

Undamped.

Beam will keep oscillating.

- Turn-by-turn profile monitor: initial and after 1000 turns
	- Measures distribution in e.g. horizontal plane

- Now what happens with emittance definition and $\langle J_x \rangle$?
	- Mean amplitude in phase-space

- How does $\langle J_x \rangle$ behave for steering error in linear machine?
- And what about the rms definition?

• What will happen to particle distribution and hence emittance?

• The beam is filamenting....

• What will happen to particle distribution and hence emittance?

• The beam is filamenting....

• Phase-space after an even longer time

- Generation of non-Gaussian distributions:
	- Non-Gaussian tails

Injection oscillations

- Oscillation of centroid decays in amplitude
- **Time constant of exponential decay: filamentation time** τ

Injection oscillations

- Oscillation of centroid decays in amplitude
- **Time constant of exponential decay: filamentation time** τ

- How does $\langle J_x \rangle$ behave for steering error in non-linear machine?
- And what about the rms emittance

Calculate blow-up from steering error

- Consider a collection of particles
- The beam can be injected with a error in angle and position.
- For an injection error Δa (in units of sigma = $\sqrt{\beta \epsilon}$) the mis-injected beam is offset in normalised phase space by $L = \Delta a \sqrt{\epsilon}$

Blow-up from steering error

• The new particle coordinates in normalised phase space are

$$
\overline{x}_{new} = \overline{x}_0 + L\cos\theta
$$

$$
\overline{x}_{new}' = \overline{x}_0' + L\sin\theta
$$

• From before we know…

$$
2J_x = \overline{x}^2 + \overline{x}'^2
$$

$$
\varepsilon_x = \langle J_x \rangle
$$

Blow-up from steering error

• So if we plug in the new coordinates….

$$
2J_{new} = \overline{x}_{new}^2 + \overline{x}_{new}'^2 = (\overline{x}_0 + L \cos \theta)^2 + (\overline{x}_0' + L \sin \theta)^2
$$

= $\overline{x}_0^2 + \overline{x}_0'^2 + 2L(\overline{x}_0 \cos \theta + \overline{x}_0' \sin \theta) + L^2$

$$
2\langle J_{new} \rangle = \langle \overline{x}_0^2 \rangle + \langle \overline{x}_0'^2 \rangle + \langle 2L(\overline{x}_0 \cos \theta + \overline{x}_0' \sin \theta) \rangle + L^2
$$

= $2\varepsilon_0 + 2L(\langle \overline{x}_0 \cos \theta \rangle + \langle \overline{x}_0' \sin \theta \rangle) + L^2$
= $2\varepsilon_0 + L^2$

• Giving for the emittance increase

$$
\varepsilon_{new} = \langle J_{new} \rangle = \varepsilon_0 + L^2/2
$$

= $\varepsilon_0 (1 + \Delta a^2/2)$

Blow-up from steering error

$$
\frac{\varepsilon}{\varepsilon_0} = 1 + \frac{1}{2} \frac{\Delta x^2 + (\beta \Delta x' + \alpha \Delta x)^2}{\beta \varepsilon_0}
$$

A numerical example….

Consider an offset Δa of 0.5 sigma for injected beam

$$
\varepsilon_{new} = \varepsilon_0 \left(1 + \Delta a^2 / 2 \right)
$$

$$
= 1.125 \varepsilon_0
$$

For nominal LHC beam: $\varepsilon_{\text{norm}} = 3.5 \,\mu\text{m}$ allowed growth through LHC cycle \sim 10 %

Misinjected beam Matched Beam $n_{new} = \varepsilon_0 \left(1 + \Delta a^2 / 2 \right)$ (a.5 $\sqrt{\frac{0.5}{\epsilon}}$ √ε $\overline{\mathsf{X}}$ X'

How to correct injection oscillations?

- Instead of looking at one BPM over many turns, look at first turn for many BPMs
	- i.e. difference of first turn and closed orbit.
	- Treat the first turn of circular machine like transfer line for correction
	- Other possibility is measure first and second turn and minimize the difference between in algorithm

Example: SPS to LHC transfer

Example: LHC injection of beam 1

- Injection oscillation display from the LHC control room.
- The first 3 km of the LHC treated like extension of transfer line
- Only correctors in transfer line are used for correction

Injection point in LHC IR2

How to correct injection oscillations?

- What if there are shot-by-shot changes or bunch-by-bunch changes of the

injoction atooring arrano? injection steering errors?
	- Previous method: remove only static errors
- What if there are bunch-by-bunch differences in injected train of injection oscillations? the LHC is filled through the LH
The LHC is filled through the LHC is filled through the LHC is filled that the LHC is filled that the LHC is t
 from the last pre-

- **→ transverse feedback (damper)** revered foodhack (damper) $f(x)$ is bunch in the horizontal plane for a function $f(x)$
	- **Sufficient bandwidth to deal with bunch-by-bunch differences**
- **Damping time has to be faster than filamentation time** $\overline{}$ in $\overline{}$ $\frac{1}{2}$ $\frac{1}{2}$ ing time has to be factor than filamentation time ing ume has to be

Transverse feedback system

 $T_{signal} = T_{beam} + n T_{rev}$

Steering error - damper

• Damper in simulation: injection oscillations damped faster than through filamentation

Same injection error

Steering error - damper

• And what about the emittance?

Steering error -damper

• Emittance growth with damper for damping time τ_{d}

Damper has limited gain

Emittance growth is function of ratio of filamentation time to damping time.

$$
\frac{\varepsilon}{\varepsilon_0} = 1 + \frac{1}{2} \frac{\Delta x^2 + (\beta \Delta x' + \alpha \Delta x)^2}{\beta \varepsilon_0} \left(\frac{1}{1 + \tau_{DC}/\tau_d}\right)^2
$$

- Optical errors occur in transfer line and ring, such that the beam can be injected with a mismatch.
- The shape of the injected beam corresponds to different α , β than the closed solution of the ring.

• At the moment of the injection the area in phase space might be the same

real phase-space

• Filamentation will produce an emittance increase.

The coordinates of the ellipse: betatron oscilation

$$
x_2 = \sqrt{2\beta_2 J_x} \cos \phi \quad x_2' = -\sqrt{\frac{2J_x}{\beta_2}} (\sin \phi + \alpha_2 \cos \phi)
$$

applying the normalising transformation to the matched space

 $\overline{}$ ⎦ $\begin{bmatrix} x_2 \\ x_1 \end{bmatrix}$ ⎣ ⎡ $|\cdot$ ⎦ $\begin{bmatrix} 1 & 0 \\ \alpha & \beta \end{bmatrix}$ ⎣ $\left| = \sqrt{\frac{1}{\beta}} \cdot \right|$ ⎦ $\left[\frac{X_2}{Y}\right]$ ⎣ ⎡ **2 2** α_1 | α_1 | β_1 | | x' **1 1 0** *x x* $\begin{array}{ccc} \mathbf{2} & \sqrt{\beta_1} & \alpha_1 & \beta_2 \end{array}$ 2 X' X

an ellipse is obtained in normalised phase space

$$
2J_x = \overline{x}_2^2 \left[\frac{\beta_1}{\beta_2} + \frac{\beta_2}{\beta_1} (\alpha_1 - \alpha_2 \frac{\beta_1}{\beta_2})^2\right] + \overline{x'}_2^2 \frac{\beta_2}{\beta_1} - 2\overline{x}_2 \overline{x}_2' \left[\frac{\beta_2}{\beta_1} (\alpha_1 - \alpha_2 \frac{\beta_1}{\beta_2})\right]
$$

characterised by γ_{new} , β_{new} and α_{new} , where

$$
\alpha_{new} = \frac{-\beta_2}{\beta_1} \left(\alpha_1 - \alpha_2 \frac{\beta_1}{\beta_2} \right), \qquad \beta_{new} = \frac{\beta_2}{\beta_1}, \quad \gamma_{new} = \frac{\beta_1}{\beta_2} + \frac{\beta_2}{\beta_1} \left(\alpha_1 - \alpha_2 \frac{\beta_1}{\beta_2} \right)^2
$$

The coordinates of the ellipse: betatron oscilation

$$
x_2 = \sqrt{2\beta_2 J_x} \cos \phi \quad x_2' = -\sqrt{\frac{2J_x}{\beta_2}} (\sin \phi + \alpha_2 \cos \phi)
$$

applying the normalising transformation to the matched space

$$
\begin{bmatrix} \overline{\mathbf{x}}_2 \\ \overline{\mathbf{x}}_2 \end{bmatrix} = \sqrt{\frac{1}{\beta_1}} \cdot \begin{bmatrix} 1 & 0 \\ \alpha_1 & \beta_1 \end{bmatrix} \cdot \begin{bmatrix} x_2 \\ x_2 \end{bmatrix}
$$
\nRemember:
\n
$$
2J_x = \gamma \cdot x^2 + 2\alpha \cdot x \cdot x' + \beta x'^2
$$

an ellipse is obtained in normalised phase space

$$
2J_x = \overline{x}_2^2 \left[\frac{\beta_1}{\beta_2} + \frac{\beta_2}{\beta_1} (\alpha_1 - \alpha_2 \frac{\beta_1}{\beta_2})^2\right] + \overline{x'}_2^2 \frac{\beta_2}{\beta_1} - 2\overline{x}_2 \overline{x}_2' \left[\frac{\beta_2}{\beta_1} (\alpha_1 - \alpha_2 \frac{\beta_1}{\beta_2})\right]
$$

characterised by γ_{new} , β_{new} and α_{new} , where

$$
\alpha_{new} = \frac{-\beta_2}{\beta_1} \left(\alpha_1 - \alpha_2 \frac{\beta_1}{\beta_2} \right), \qquad \beta_{new} = \frac{\beta_2}{\beta_1}, \quad \gamma_{new} = \frac{\beta_1}{\beta_2} + \frac{\beta_2}{\beta_1} \left(\alpha_1 - \alpha_2 \frac{\beta_1}{\beta_2} \right)^2
$$

From the general ellipse properties, see [4]

$$
a = \frac{A}{\sqrt{2}} \left(\sqrt{H+1} + \sqrt{H-1} \right) \qquad b = \frac{A}{\sqrt{2}} \left(\sqrt{H+1} - \sqrt{H-1} \right)
$$
\n
$$
A = \sqrt{2J}
$$
\nwhere\n
$$
H = \frac{1}{2} \left(\gamma_{\text{new}} + \beta_{\text{new}} \right)
$$
\n
$$
= \frac{1}{2} \left(\frac{\beta_1}{\beta_2} + \frac{\beta_2}{\beta_1} \left(\alpha_1 - \alpha_2 \frac{\beta_1}{\beta_2} \right)^2 + \frac{\beta_2}{\beta_1} \right)
$$
\ngiving\n
$$
\lambda = \frac{1}{\sqrt{2}} \left(\sqrt{H+1} + \sqrt{H-1} \right) \qquad \frac{1}{\lambda} = \frac{1}{\sqrt{2}} \left(\sqrt{H+1} - \sqrt{H-1} \right)
$$
\ngenerally\n
$$
\overline{x}_{\text{new}} = \lambda \cdot A \sin(\phi + \phi_1)
$$
\n
$$
\overline{x}_{\text{new}}' = \frac{1}{\lambda} \cdot A \cos(\phi + \phi_1)
$$
\n
$$
b = A \cdot \lambda
$$

 $\overline{\mathsf{x}}$

We can evaluate the square of the distance of a particle from the origin as

$$
2J_{new} = \overline{x}_{new}^2 + \overline{x}_{new}'^2 = \lambda^2 \cdot 2J_0 \sin^2(\phi + \phi_1) + \frac{1}{\lambda^2} 2J_0 \cos^2(\phi + \phi_1)
$$

The new emittance is the average over all phases

$$
\varepsilon_{new} = \langle J_{new} \rangle = \frac{1}{2} (\lambda^2 \langle 2J_0 \sin^2(\phi + \phi_1) \rangle + \frac{1}{\lambda^2} \langle 2J_0 \cos^2(\phi + \phi_1) \rangle)
$$

=
$$
\langle J_0 \rangle (\lambda^2 \langle \sin^2(\phi + \phi_1) \rangle + \frac{1}{\lambda^2} \langle \cos^2(\phi + \phi_1) \rangle)
$$

=
$$
\frac{1}{2} \varepsilon_0 (\lambda^2 + \frac{1}{\lambda^2})
$$
^{0.5}

If we're feeling diligent, we can substitute back for λ to give

$$
\varepsilon_{new} = \frac{1}{2} \varepsilon_0 \left(\lambda^2 + \frac{1}{\lambda^2} \right) = H \varepsilon_0 = \frac{1}{2} \varepsilon_0 \left(\frac{\beta_1}{\beta_2} + \frac{\beta_2}{\beta_1} \left(\alpha_1 - \alpha_2 \frac{\beta_1}{\beta_2} \right)^2 + \frac{\beta_2}{\beta_1} \right)
$$

where subscript 1 refers to matched ellipse, 2 to mismatched ellipse.

How to measure oscillating width of distribution?

Profiles at matching monitor after injection with steering error.

Requires radiation hard fast cameras

Another limitation: only low intensity

Example of betatron mismatch measurement

• Measurement at injection into the SPS with matching monitor

Uncorrected measured horizontal beam size versus number of turns in the SPS. The oscillation indicates mismatch, the positive slope blow-up is due to the foil

G. Arduini et al., Mismatch Measurement and Correction Tools for the PS-SPS Transfer of the 26 GeV/c LHC Beam, 1999

Blow-up from thin scatterer

- Scattering elements are sometimes required in the beam
	- Thin beam screens (Al_2O_3 , Ti) used to generate profiles.
	- Metal windows also used to separate vacuum of transfer lines from vacuum in circular machines.
	- Foils are used to strip electrons to change charge state
- The emittance of the beam increases when it passes through, due to multiple Coulomb scattering.

β^c = v/c, *p* = momentum, *Zinc* = particle charge /*e*, *L* = target length, *Lrad* = radiation length

Each particles gets a random angle change θ_s but there is no effect on the positions at the scatterer

$$
\overline{x}_{new} = \overline{x}_0
$$

$$
\overline{x}_{new}' = \overline{x}_0' + \sqrt{\beta} \Theta_s
$$

After filamentation the particles have different amplitudes and the beam has a larger emittance

$$
\varepsilon = \langle J_{new} \rangle
$$

Blow-up from thin scatterer

Need to keep β small to minimise blow-up (small β means large spread in angles in beam distribution, so additional angle has small effect on distn.)

Blow-up from charge stripping foil

- For LHC heavy ions, Pb^{54+} is stripped to Pb^{82+} at 4.25GeV/u using a 0.8mm thick Al foil, in the PS to SPS line
- $\Delta \varepsilon$ is minimised with low- β insertion (β_{xy} ~5 m) in the transfer line
- Emittance increase expected is about 8%

Summary of different effects

• Steering error

$$
\frac{\varepsilon}{\varepsilon_0} = 1 + \frac{1}{2} \frac{\Delta x^2 + (\beta \Delta x' + \alpha \Delta x)^2}{\beta \varepsilon_0} = 1 + \frac{1}{2} \Delta a^2
$$

• Steering error + damper

$$
\frac{\varepsilon}{\varepsilon_0} = 1 + \frac{1}{2} \Delta a^2 \left(\frac{1}{1 + \tau_{DC}/\tau_d} \right)^2
$$

• Betatron mismatch

$$
\frac{\varepsilon}{\varepsilon_0} = \frac{1}{2}(\beta_1 \gamma_2 + \beta_2 \gamma_1 - 2\alpha_1 \alpha_2)
$$

• Blow-up from thin scatter with scattering angle Θ_s

$$
\tfrac{\varepsilon}{\varepsilon_0}=1+\tfrac{1}{2}\tfrac{\beta}{\varepsilon}\langle\Theta_s^2\rangle
$$

Summary of different effects

• Dispersion mismatch

$$
\frac{\varepsilon}{\varepsilon_0} = 1 + \frac{1}{2} \frac{\Delta D^2 + (\beta \Delta D' + \alpha \Delta D)^2}{\beta \varepsilon_0} \left(\frac{\Delta p}{p}\right)^2
$$

• Energy error

$$
\tfrac{\varepsilon}{\varepsilon_0} = 1 + \tfrac{1}{2} \tfrac{D^2}{\beta \varepsilon_0} (\tfrac{\Delta p}{p})^2
$$

• Geometrical mismatch: tilt angle Θ between beam reference systems at injection point: e.g. horizontal plane

$$
\frac{\varepsilon_x}{\varepsilon_{x0}} = 1 + \frac{1}{2}(\beta_x \gamma_y + \beta_y \gamma_x - 2\alpha_x \alpha_y - 2)\sin^2 \Theta
$$

References

- [1] *Beam Dynamics in High Energy Particle Accelerators*, A. Wolsky
- [2] *Transfer Lines*, B. Goddard, CAS 2004
- [3] *Transfer Lines*, P. Bryant, CAS 1985
- [4] *A selection of formulae and data useful for the design of A.G. synchrotrons*, C. Bovet et al., 1970, CERN
- [5] *Machine Protection and Beam Quality during the LHC Injection Process*, V. Kain, CERN thesis, 2005
- [6] *Expected emittance growth and beam tail repopulation from errors at injection into the LHC*, B. Goddard et al., 2005, IPAC proceedings
- [7] *Coupling at injection from tilt mismatch between the LHC and its transfer lines*, K. Fuchsberger et al., 2009, CERN
- [8] *Emittance growth at the LHC injection from SPS and LHC kicker ripple*, G. Kotzian et al., 2008, IPAC proceedings
- [9] *Emittance preservation in linear accelerators*, M. Minty, DESY, 2005