Emittance Preservation

Verena Kain

CAS, Erice, March 2017

The importance of low emittance

• Low emittance is a key figure of merit for circular and linear colliders

$$\mathcal{L} = \frac{N_+ N_- f}{2\pi \Sigma_x \Sigma_y}$$
$$\Sigma_{x,y} = \sqrt{\sigma_{x,y+}^{*2} + \sigma_{x,y-}^{*2}}$$

- The luminosity depends directly on the horizontal and vertical emittance
- In case of round and the same beams for both beams

$$\mathcal{L} = \frac{N_+ N_- f}{4\pi\beta^*\varepsilon}$$

- Brightness is a key figure of merit for Synchrotron Light Sources
 - High photon brightness needs low electron beam emittance

Reasons for non-conserved emittances

- Liouville's theorem: area (→ emittance) in phase space stays constant under conservative forces
- Some effects to decrease emittance
 - Synchrotron radiation: charged particle undergoing acceleration will radiate electromagnetic waves
 - Radiation power depends on mass of particle like 1/m⁴
 - Comparison of p⁺ and e⁻ for the same energy

$$\frac{P_p}{P_e} = \left(\frac{m_e}{m_p}\right)^4 = 8.8 \times 10^{-14}$$

- Stochastic or e-cooling
- Many effects to increase emittance
 - Intra-beam scattering, power supply noise, crossing resonances, instabilities,...
 - Alignment errors, dispersion for e⁻ Linacs
 - Mismatch at injection into synchrotrons or linacs

Example: the LHC injector chain

- Proton beams through the LHC injector chain
 - $\beta\gamma$ normalized emittances

Significant blow up in both planes.

~ 50 % in horizontal plane from PSB to PS.

Big contribution from injection mismatch

Defining Emittance

• Defining action-angle variables

Cartesion coordinates

$$(x,x')$$
 (y,y') (z,δ)

Action-angle variables:

$$2J_x = \gamma_x x^2 + 2\alpha_x x' x + \beta_x x'^2$$
$$\tan \phi_x = -\beta_x \frac{x'}{x} - \alpha_x$$

The advantage of action-angle variables: The action of a particle is constant under symplectic transport

Preserving phase space

• Symplectic operations, i.e. matrices, preserve phase space areas

Defining Emittance

- J_x ... amplitude of the motion of a particle
 - The Cartesian variables expressed in action-angle variables

$$x = \sqrt{2\beta_x J_x} \cos \phi_x$$

$$x' = -\sqrt{\frac{2J_x}{\beta_x}} (\sin \phi_x + \alpha_x \cos \phi_x)$$

• The emittance is the average action of all particles in the beam:

$$\varepsilon_x = \langle J_x \rangle$$

Emittance – statistical definition

- Emittance \equiv spread of distribution in phase-space
- Defined via 2nd order moments

$$\sigma = \begin{pmatrix} \langle x^2 \rangle & \langle xx' \rangle \\ \langle xx' \rangle & \langle x'^2 \rangle \end{pmatrix}$$

RMS emittance:

$$\varepsilon = \sqrt{|\sigma|} = \sqrt{\langle x^2 \rangle \langle x'^2 \rangle - \langle xx' \rangle^2}$$

Steering (dipole) errors

- Precise delivery of the beam is important.
 - To avoid **injection oscillations** and emittance growth in rings
 - For stability on secondary particle production targets

Injection oscillations = if beam is not injected on the closed orbit, beam oscillates around closed orbit and eventually filaments (if not damped)

Reminder - Normalised phase space

• Transform real transverse coordinates x, x' by

$$\begin{bmatrix} \overline{\mathbf{X}} \\ \overline{\mathbf{X}'} \end{bmatrix} = \mathbf{N} \cdot \begin{bmatrix} x \\ x' \end{bmatrix} = \sqrt{\frac{1}{\beta_S}} \cdot \begin{bmatrix} 1 & 0 \\ \alpha_S & \beta_S \end{bmatrix} \cdot \begin{bmatrix} x \\ x' \end{bmatrix}$$
$$\overline{\mathbf{X}} = \sqrt{\frac{1}{\beta_S}} \cdot x$$
$$\overline{\mathbf{X}'} = \sqrt{\frac{1}{\beta_S}} \cdot \alpha_S x + \sqrt{\beta_S} x'$$

Reminder - Normalised phase space

• What will happen to particle distribution and hence emittance?

• What will happen to particle distribution and hence emittance?

• The beam will keep oscillating. The centroid will keep oscillating.

• What will happen to particle distribution and hence emittance?

• The beam will keep oscillating. The centroid will keep oscillating.

Injection Oscillations

- The motion of the centroid of the particle distribution over time
- Measured in a beam position monitor
 - Measures mean of particle distribution

Betatron oscillations.

Undamped.

Beam will keep oscillating.

- Turn-by-turn profile monitor: initial and after 1000 turns
 - Measures distribution in e.g. horizontal plane

- Now what happens with emittance definition and $\langle J_x \rangle$?
 - Mean amplitude in phase-space

- How does $\langle J_x \rangle$ behave for steering error in linear machine?
- And what about the rms definition?

• What will happen to particle distribution and hence emittance?

• The beam is filamenting....

• What will happen to particle distribution and hence emittance?

• The beam is filamenting....

• Phase-space after an even longer time

- Generation of non-Gaussian distributions:
 - Non-Gaussian tails

Injection oscillations

- Oscillation of centroid decays in amplitude
- Time constant of exponential decay: filamentation time τ

Injection oscillations

- Oscillation of centroid decays in amplitude
- Time constant of exponential decay: filamentation time τ

- How does $\langle J_x \rangle$ behave for steering error in non-linear machine?
- And what about the rms emittance

Calculate blow-up from steering error

- Consider a collection of particles
- The beam can be injected with a error in angle and position.
- For an injection error Δa (in units of sigma = $\sqrt{\beta \epsilon}$) the mis-injected beam is offset in normalised phase space by L = $\Delta a \sqrt{\epsilon}$

Blow-up from steering error

• The new particle coordinates in normalised phase space are

$$\overline{x}_{new} = \overline{x}_0 + L\cos\theta$$

$$\overline{x}_{new}' = \overline{x}_0' + L\sin\theta$$

• From before we know...

$$2J_x = \overline{x}^2 + \overline{x}'^2$$
$$\varepsilon_x = \langle J_x \rangle$$

Blow-up from steering error

• So if we plug in the new coordinates....

$$2J_{new} = \overline{x}_{new}^2 + \overline{x}_{new}^{\prime 2} = (\overline{x}_0 + L\cos\theta)^2 + (\overline{x}_0' + L\sin\theta)^2 \\ = \overline{x}_0^2 + \overline{x}_0^{\prime 2} + 2L(\overline{x}_0\cos\theta + \overline{x}_0'\sin\theta) + L^2$$

$$2\langle J_{new} \rangle = \langle \overline{x}_0^2 \rangle + \langle \overline{x}_0'^2 \rangle + \langle 2L(\overline{x}_0 \cos \theta + \overline{x}_0' \sin \theta) \rangle + L^2$$

$$= 2\varepsilon_0 + 2L(\langle \overline{x}_0 \cos \theta \rangle + \langle \overline{x}_0' \sin \theta \rangle) + L^2$$

$$= 2\varepsilon_0 + L^2 \qquad \mathbf{0} \qquad \mathbf{0}$$

• Giving for the emittance increase

$$\varepsilon_{new} = \langle J_{new} \rangle = \varepsilon_0 + L^2/2$$
$$= \varepsilon_0 (1 + \Delta a^2/2)$$

Blow-up from steering error

$$\frac{\varepsilon}{\varepsilon_0} = 1 + \frac{1}{2} \frac{\Delta x^2 + (\beta \Delta x' + \alpha \Delta x)^2}{\beta \varepsilon_0}$$

A numerical example....

Consider an offset Δa of 0.5 sigma for injected beam

$$\varepsilon_{new} = \varepsilon_0 \left(1 + \Delta a^2 / 2 \right)$$
$$= 1.125 \varepsilon_0$$

For nominal LHC beam: $\epsilon_{norm} = 3.5 \,\mu m$ allowed growth through LHC cycle ~ 10 %

How to correct injection oscillations?

- Instead of looking at one BPM over many turns, look at first turn for many BPMs
 - i.e. difference of first turn and closed orbit.
 - Treat the first turn of circular machine like transfer line for correction
 - Other possibility is measure first and second turn and minimize the difference between in algorithm

Example: SPS to LHC transfer

Example: LHC injection of beam 1

- Injection oscillation display from the LHC control room.
- The first 3 km of the LHC treated like extension of transfer line
- Only correctors in transfer line are used for correction

Injection point in LHC IR2

How to correct injection oscillations?

- What if there are shot-by-shot changes or bunch-by-bunch changes of the injection steering errors?
- Previous method: remove only static errors
- What if there are bunch-by-bunch differences in injected train of injection oscillations?

- → transverse feedback (damper)
 - Sufficient bandwidth to deal with bunch-by-bunch differences
- Damping time has to be faster than filamentation time

Transverse feedback system

 $T_{signal} = T_{beam} + n T_{rev}$

Steering error - damper

• Damper in simulation: injection oscillations damped faster than through filamentation

Same injection error

Steering error - damper

• And what about the emittance?

Steering error -damper

• Emittance growth with damper for damping time τ_d

Damper has limited gain

Emittance growth is function of ratio of filamentation time to damping time.

$$\frac{\varepsilon}{\varepsilon_0} = 1 + \frac{1}{2} \frac{\Delta x^2 + (\beta \Delta x' + \alpha \Delta x)^2}{\beta \varepsilon_0} \left(\frac{1}{1 + \tau_{DC}/\tau_d}\right)^2$$

- Optical errors occur in transfer line and ring, such that the beam can be injected with a mismatch.
- The shape of the injected beam corresponds to different α, β than the closed solution of the ring.

• At the moment of the injection the area in phase space might be the same

real phase-space

• Filamentation will produce an emittance increase.

The coordinates of the ellipse: betatron oscilation

$$x_2 = \sqrt{2\beta_2 J_x} \cos \phi \quad x'_2 = -\sqrt{\frac{2J_x}{\beta_2}} (\sin \phi + \alpha_2 \cos \phi)$$

applying the normalising transformation to the matched space

 $\begin{bmatrix} \overline{\mathbf{X}}_{2} \\ \overline{\mathbf{X}'}_{2} \end{bmatrix} = \sqrt{\frac{1}{\beta_{1}}} \cdot \begin{bmatrix} 1 & 0 \\ \alpha_{1} & \beta_{1} \end{bmatrix} \cdot \begin{bmatrix} x_{2} \\ x'_{2} \end{bmatrix}$

an ellipse is obtained in <u>normalised</u> phase space

$$2J_x = \overline{x}_2^2 \left[\frac{\beta_1}{\beta_2} + \frac{\beta_2}{\beta_1} (\alpha_1 - \alpha_2 \frac{\beta_1}{\beta_2})^2\right] + \overline{x'}_2^2 \frac{\beta_2}{\beta_1} - 2\overline{x}_2 \overline{x'}_2 \left[\frac{\beta_2}{\beta_1} (\alpha_1 - \alpha_2 \frac{\beta_1}{\beta_2})\right]$$

characterised by γ_{new} , β_{new} and α_{new} , where

$$\alpha_{new} = \frac{-\beta_2}{\beta_1} \left(\alpha_1 - \alpha_2 \frac{\beta_1}{\beta_2} \right), \qquad \beta_{new} = \frac{\beta_2}{\beta_1}, \quad \gamma_{new} = \frac{\beta_1}{\beta_2} + \frac{\beta_2}{\beta_1} \left(\alpha_1 - \alpha_2 \frac{\beta_1}{\beta_2} \right)^2$$

The coordinates of the ellipse: betatron oscilation

$$x_2 = \sqrt{2\beta_2 J_x} \cos \phi \quad x'_2 = -\sqrt{\frac{2J_x}{\beta_2}} (\sin \phi + \alpha_2 \cos \phi)$$

applying the normalising transformation to the matched space

$$\begin{bmatrix} \overline{\mathsf{X}}_2 \\ \overline{\mathsf{X}}_2' \end{bmatrix} = \sqrt{\frac{1}{\beta_1}} \cdot \begin{bmatrix} 1 & 0 \\ \alpha_1 & \beta_1 \end{bmatrix} \cdot \begin{bmatrix} x_2 \\ x'_2 \end{bmatrix} \qquad \qquad \begin{array}{c} \text{Remember:} \\ 2J_x = \gamma \cdot x^2 + 2\alpha \cdot x \cdot x' + \beta x'^2 \end{array}$$

an ellipse is obtained in <u>normalised</u> phase space

$$2J_x = \overline{x}_2^2 \left[\frac{\beta_1}{\beta_2} + \frac{\beta_2}{\beta_1} (\alpha_1 - \alpha_2 \frac{\beta_1}{\beta_2})^2\right] + \overline{x'}_2^2 \frac{\beta_2}{\beta_1} - 2\overline{x}_2 \overline{x'}_2 \left[\frac{\beta_2}{\beta_1} (\alpha_1 - \alpha_2 \frac{\beta_1}{\beta_2})\right]$$

characterised by γ_{new} , β_{new} and α_{new} , where

$$\alpha_{new} = \frac{-\beta_2}{\beta_1} \left(\alpha_1 - \alpha_2 \frac{\beta_1}{\beta_2} \right), \qquad \beta_{new} = \frac{\beta_2}{\beta_1}, \quad \gamma_{new} = \frac{\beta_1}{\beta_2} + \frac{\beta_2}{\beta_1} \left(\alpha_1 - \alpha_2 \frac{\beta_1}{\beta_2} \right)^2$$

From the general ellipse properties, see [4]

$$a = \frac{A}{\sqrt{2}} \left(\sqrt{H+1} + \sqrt{H-1} \right) \qquad b = \frac{A}{\sqrt{2}} \left(\sqrt{H+1} - \sqrt{H-1} \right)$$

$$A = \sqrt{2J}$$
where
$$H = \frac{1}{2} \left(\gamma_{new} + \beta_{new} \right)$$

$$= \frac{1}{2} \left(\frac{\beta_1}{\beta_2} + \frac{\beta_2}{\beta_1} \left(\alpha_1 - \alpha_2 \frac{\beta_1}{\beta_2} \right)^2 + \frac{\beta_2}{\beta_1} \right)$$
giving
$$\lambda = \frac{1}{\sqrt{2}} \left(\sqrt{H+1} + \sqrt{H-1} \right) \qquad \frac{1}{\lambda} = \frac{1}{\sqrt{2}} \left(\sqrt{H+1} - \sqrt{H-1} \right)$$

$$\overline{x}_{new} = \lambda \cdot A \sin(\phi + \phi_1)$$

$$\overline{x}'_{new} = \frac{1}{\lambda} \cdot A \cos(\phi + \phi_1)$$

$$a = A/\lambda$$

$$b = A \cdot \lambda$$

 $\overline{\mathbf{X}}$

We can evaluate the square of the distance of a particle from the origin as

$$2J_{new} = \overline{x}_{new}^2 + \overline{x}_{new}'^2 = \lambda^2 \cdot 2J_0 \sin^2(\phi + \phi_1) + \frac{1}{\lambda^2} 2J_0 \cos^2(\phi + \phi_1)$$

The new emittance is the average over all phases

If we're feeling diligent, we can substitute back for λ to give

$$\varepsilon_{new} = \frac{1}{2}\varepsilon_0 \left(\lambda^2 + \frac{1}{\lambda^2}\right) = H\varepsilon_0 = \frac{1}{2}\varepsilon_0 \left(\frac{\beta_1}{\beta_2} + \frac{\beta_2}{\beta_1} \left(\alpha_1 - \alpha_2\frac{\beta_1}{\beta_2}\right)^2 + \frac{\beta_2}{\beta_1}\right)$$

where subscript 1 refers to matched ellipse, 2 to mismatched ellipse.

How to measure oscillating width of distribution?

Profiles at matching monitor after injection with steering error.

Requires radiation hard fast cameras

Another limitation: only low intensity

Example of betatron mismatch measurement

• Measurement at injection into the SPS with matching monitor

Uncorrected measured horizontal beam size versus number of turns in the SPS. The oscillation indicates mismatch, the positive slope blow-up is due to the foil

G. Arduini et al., Mismatch Measurement and Correction Tools for the PS-SPS Transfer of the 26 GeV/c LHC Beam, 1999

Blow-up from thin scatterer

- Scattering elements are sometimes required in the beam
 - Thin beam screens (AI_2O_3 , Ti) used to generate profiles.
 - Metal windows also used to separate vacuum of transfer lines from vacuum in circular machines.
 - Foils are used to strip electrons to change charge state
- The emittance of the beam increases when it passes through, due to multiple Coulomb scattering.

 $\beta_c = v/c$, p = momentum, $Z_{inc} = particle charge /e$, L = target length, $L_{rad} = radiation length$

Each particles gets a random angle change $\theta_{\rm s}$ but there is no effect on the positions at the scatterer

$$\overline{x}_{new} = \overline{x}_0$$
$$\overline{x}'_{new} = \overline{x}'_0 + \sqrt{\beta}\Theta_s$$

After filamentation the particles have different amplitudes and the beam has a larger emittance

$$\varepsilon = \langle J_{new} \rangle$$

Blow-up from thin scatterer

<u>Need to keep β small to minimise blow-up</u> (small β means large spread in angles in beam distribution, so additional angle has small effect on distn.)

Blow-up from charge stripping foil

- For LHC heavy ions, Pb⁵⁴⁺ is stripped to Pb⁸²⁺ at 4.25GeV/u using a 0.8mm thick AI foil, in the PS to SPS line
- $\Delta \epsilon$ is minimised with low- β insertion ($\beta_{xy} \sim 5$ m) in the transfer line
- Emittance increase expected is about 8%

Summary of different effects

• Steering error

$$\frac{\varepsilon}{\varepsilon_0} = 1 + \frac{1}{2} \frac{\Delta x^2 + (\beta \Delta x' + \alpha \Delta x)^2}{\beta \varepsilon_0} = 1 + \frac{1}{2} \Delta a^2$$

• Steering error + damper

$$\frac{\varepsilon}{\varepsilon_0} = 1 + \frac{1}{2} \Delta a^2 (\frac{1}{1 + \tau_{DC} / \tau_d})^2$$

• Betatron mismatch

$$\frac{\varepsilon}{\varepsilon_0} = \frac{1}{2}(\beta_1\gamma_2 + \beta_2\gamma_1 - 2\alpha_1\alpha_2)$$

• Blow-up from thin scatter with scattering angle Θ_s

$$\frac{\varepsilon}{\varepsilon_0} = 1 + \frac{1}{2} \frac{\beta}{\varepsilon} \langle \Theta_s^2 \rangle$$

Summary of different effects

• Dispersion mismatch

$$\frac{\varepsilon}{\varepsilon_0} = 1 + \frac{1}{2} \frac{\Delta D^2 + (\beta \Delta D' + \alpha \Delta D)^2}{\beta \varepsilon_0} \left(\frac{\Delta p}{p}\right)^2$$

• Energy error

$$\frac{\varepsilon}{\varepsilon_0} = 1 + \frac{1}{2} \frac{D^2}{\beta \varepsilon_0} \left(\frac{\Delta p}{p}\right)^2$$

 Geometrical mismatch: tilt angle Θ between beam reference systems at injection point: e.g. horizontal plane

$$\frac{\varepsilon_x}{\varepsilon_{x0}} = 1 + \frac{1}{2} (\beta_x \gamma_y + \beta_y \gamma_x - 2\alpha_x \alpha_y - 2) \sin^2 \Theta$$

References

- [1] Beam Dynamics in High Energy Particle Accelerators, A. Wolsky
- [2] *Transfer Lines*, B. Goddard, CAS 2004
- [3] *Transfer Lines*, P. Bryant, CAS 1985
- [4] A selection of formulae and data useful for the design of A.G. synchrotrons, C. Bovet et al., 1970, CERN
- [5] Machine Protection and Beam Quality during the LHC Injection Process,
 V. Kain, CERN thesis, 2005
- [6] Expected emittance growth and beam tail repopulation from errors at injection into the LHC, B. Goddard et al., 2005, IPAC proceedings
- [7] Coupling at injection from tilt mismatch between the LHC and its transfer lines, K. Fuchsberger et al., 2009, CERN
- [8] *Emittance growth at the LHC injection from SPS and LHC kicker ripple*, G. Kotzian et al., 2008, IPAC proceedings
- [9] *Emittance preservation in linear accelerators*, M. Minty, DESY, 2005