
OVERVIEW OF ISOTOPES/NUCLEAR MEDICINE WHERE DO WE NEED/WANT GO IN THE COMING 10 YEARS

Professor Dr. Richard P. Baum

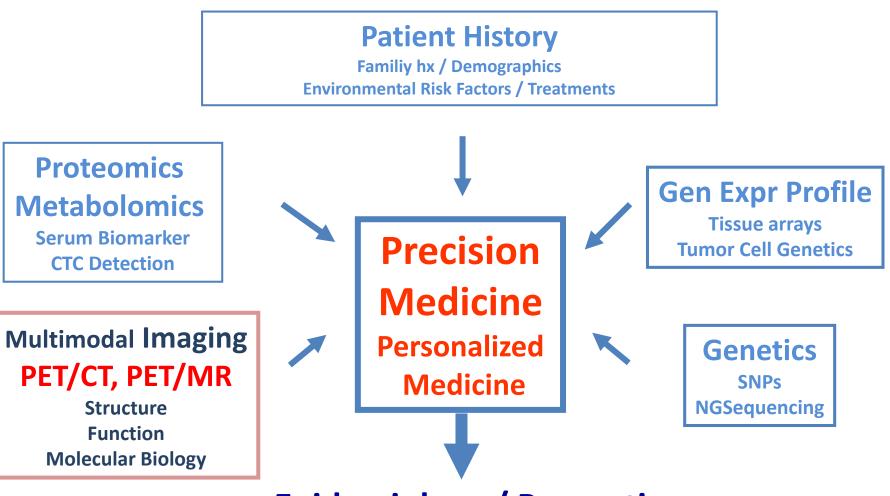
THERANOSTICS Center for Molecular Radiotherapy & Molecular Imaging (PET/CT) ENETS Center of Excellence, Zentralklinik Bad Berka, Germany

www.PRRTinfo.org richard.baum@zentralklinik.de

2nd Divonne Brainstorming Meeting on CERN Medical Applications Domaine de Divonne, February 19-21, 2016

Prediction is very difficult, especially about the future. Niels Bohr, Danish physicist (1885 - 1962) It's tough to make predictions, especially about the future. Yogi Berra

FUTURE OF CANCER TREATMENT


Cancers will be classified by molecular phenotypes Organ site \rightarrow secondary classification

Molecular phenotypes will be determined by molecular pathology and by molecular imaging studies (PET, SPECT, MRI, optical) using cancer type specific probes.

Treatment will be targeted specifically against the tumor

PRECISION MEDICINE

Neuroendocrine tumors and prostate cancer are a <u>paradigm</u> for this approach as molecular radiotherapy is applied based on molecular features (i.e. somatostatin receptor/PSMA expression) of tumors and not based on the organ of origin of the tumor.

Epidemiology / Prevention Early Diagnosis, Risk Assessment Therapy Selection and Monitoring

Thera(g)nostics

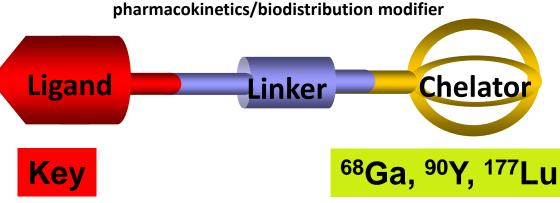
- Theranostics is the combination of a Diagnostic Tool that helps to define the right Therapeutic Tool for a specific disease – we see what we treat.
- Used first by John Funkhouser/pharma industry at the beginning of the 90's at the same time the concept of Personalized Medicine appeared.
- Concerning radioisotopes, the term "THERAGNOSTICS" was created by Suresh Srivastava (Brookhaven National Laboratory).
- In NM, THERANOSTICS is easy to apply and to understand, because of an easy switch of the radionuclide from Dx to Rx on the same vector.
- The most prominent and oldest application is radioiodine.

Personalized Medicine

- The right treatment, for the right patient, at the right time, at the right dose.
- first time », not anymore targeting the "disease" but the "specific tumor of a patient".

•The concept of PM has now been extended to Personalized Health Care that includes all steps relevant for the cure of the patient at an individual level from the first sign of disease up to full recovery, including the physicians, the technologies, the drugs and of course all economic aspects, but also extended to the environment, relatives, nurses...

Molecular Nuclear Medicine and THERANOSTICS within MNM are definitely part of Personalized Health Care.


THERANOSTIC – we see what we treat Targeted Molecular Imaging and Therapy The Key-Lock Principle

Schematic Representation of a Drug for Imaging and Targeted Therapy

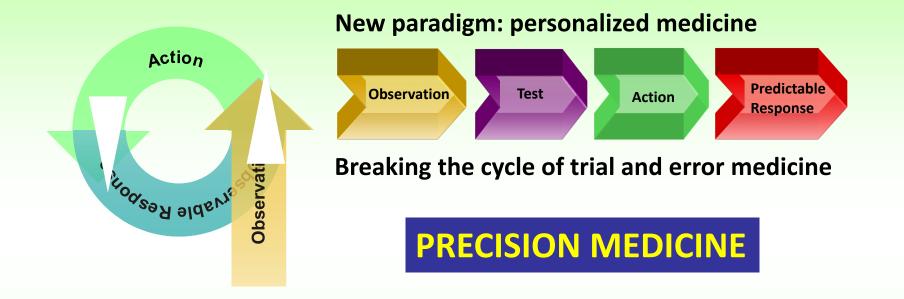
Targets

- Antigens
 e.g. CD20, HER2)
- GPCR e.g. SSTR
- Enzymes & inhibitors e.g. PSMA
- Transporters

Molecular Address

- Antibodies, minibodies, Affibodies, SHALs, aptamers
- Regulatory peptides (agonists & antagonists)
- Amino Acids

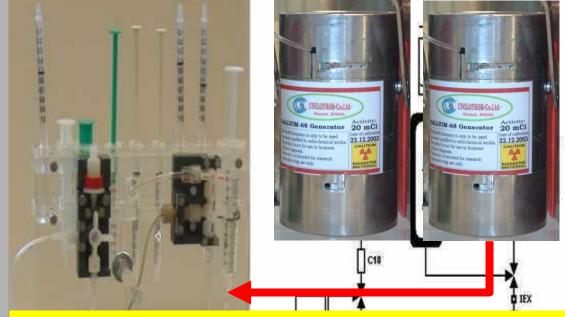
Reporting Unit

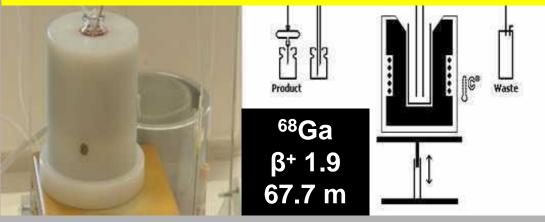

- ^{99m}Tc, ¹¹¹In, ⁶⁷Ga
- ⁶⁴Cu, ⁶⁸Ga
- Gd³⁺

Cytotoxic Unit

- ⁹⁰Y, ¹⁷⁷Lu, ²¹³Bi
- ¹⁰⁵Rh, ⁶⁷Cu, ^{186,188}Re

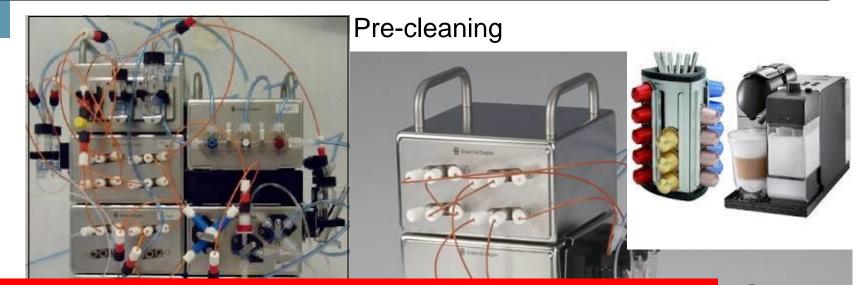
Courtesy Helmut Mäcke (modified)


From Trial and Error Medicine to Personalized Medicine


Targeted radionuclide therapy has unique promise for personalized treatment of cancer, because both the targeting vehicle and the radionuclide can be tailored to the individual patient.

Developed in close collaboration between Radiopharmacy PET/CT Center, Zentralklinik Bad Berka and Institute of Nuclear Chemistry Johannes Gutenberg-Universität, Mainz, Germany Zhernosekov K, Filosofov DV, Baum RP.... Rösch F J Nucl Med 2007 (Oct); 48:1741-48

Simultaneous use of several generators



⁶⁸Ga-elution, <u>purificaton</u> and synthesis module

First clinical studies in 2004, up to now over 10,000 studies done at ZKL Bad Berka


European approval process by EMA for Gallium-68 generators successfully completed in June 2014

Eckert & Ziegier

More or less it works like a Cappucino machine...

Modular-Lab Pharm Tracer – fully automated click'n'start cassette-based synthesis system for the daily routine production of radiopharmaceuticals

Ga-68 Labeled Tracers in Clinical Use in Bad Berka

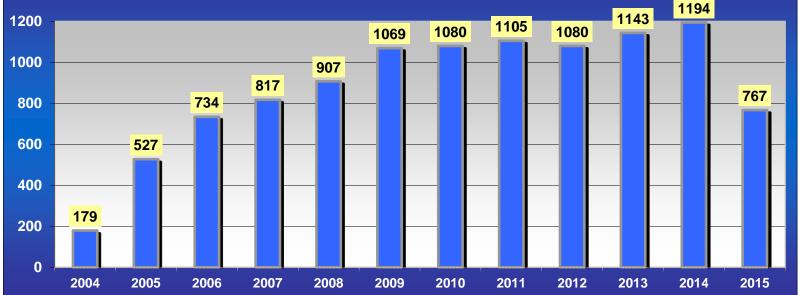
...and many more to come!

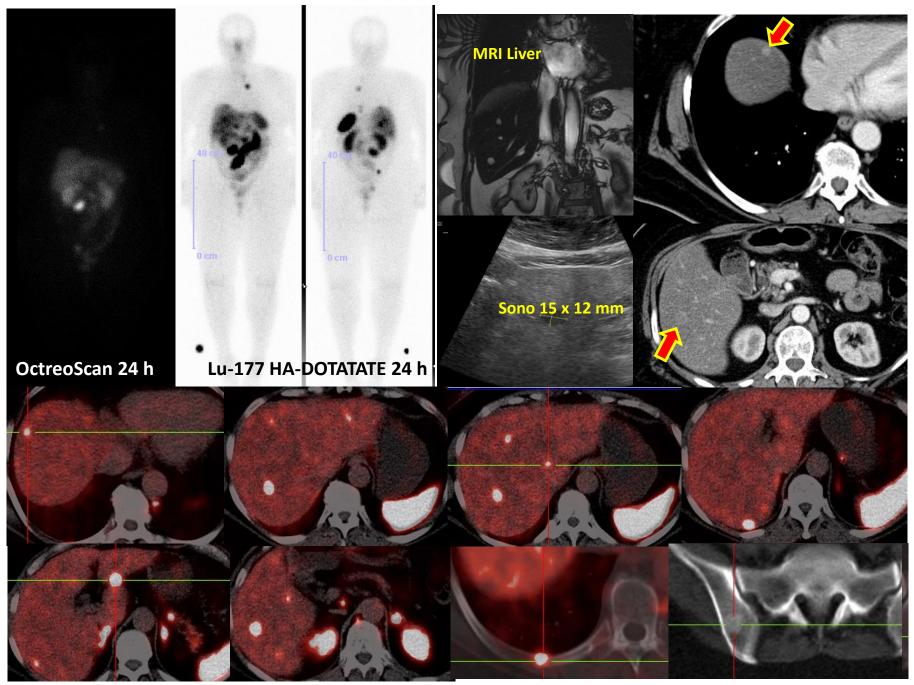
- [⁶⁸Ga-DOTA,Tyr³]octreotide (DOTA-TOC)
- 44Sc-DOTA,Tyr3]octreotide (DOTA-TOC)* potential for dosimetry
- [⁶⁸Ga-DATA,Tyr³]octreotide (DATA-TOC)* possible kit preparation
- [68Ga-DOTA,1-Nal]octreotide (DOTA-NOC)
- [⁶⁸Ga-DOTA]-TATE
- [⁶⁸Ga-DOTA]-Lanreotide
- [68Ga-DOTA]-Bombesin / AMBA, DEMOBESIN and Sarabesin
- [68Ga-DOTA]-D-Glu-Gastrin (MTC, NET)
- [⁶⁸Ga-DOTA]-F(ab')₂-herceptin (breast cancer)
- ⁶⁸Ga-DOTA-Tyrosin (brain tumors)* potential for brain tumor THERANOSTICS
- ⁶⁸Ga-DOTA-HSA Microspheres (lung perfusion)
- ⁶⁸Ga-NODAGA-RGD (angiogenesis)
- 68Ga-BPAMP & NO2A-BP (bone metastases)* potential for bone THERANOSTICS
- ⁶⁸Ga-DOTA-α-MSH (melanoma)
- 68Ga-DOTA-SHAL (lymphoma)
- 68Ga-PSMA (prostate cancer

⁶⁸Ga-CXCR4 (lymphoma and many different cancers)

*made in Mainz first clinical use in Bad Berka

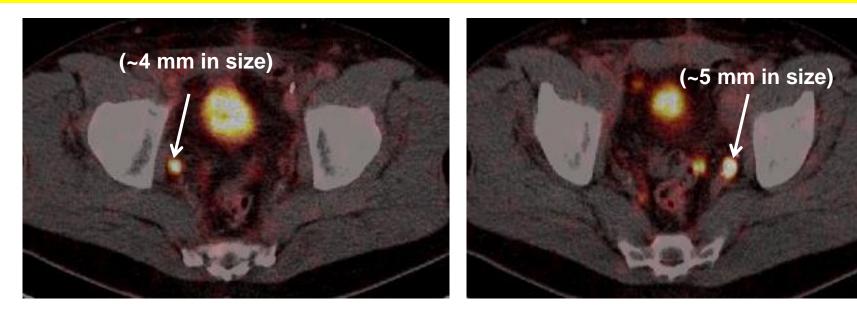
Center for Molecular Radiotherapy / Department of Molecular Imaging (PET/CT) Zentralklinik Bad Berka

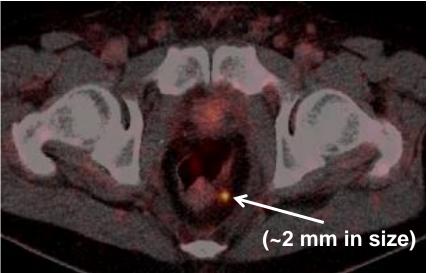



Dept. of Molecular Imaging, Zentralklinik Bad Berka

Installation Biograph mCT Flow on February 24, 2014

>95% oncological studies (fast WB)


Ga-68 PET/CT Studies



Ga-68 DOTATOC mCT Flow PET/CT

THERANOSTICS Center for Molecular Radiotherapy and Molecular Imaging Zentralklinik Bad Berka

Ga-68 PSMA PET/CT: METASTATIC ILIAC AND PERIRECTAL NODES

Tc-99m MDP Scintigraphy

Lu-177 BPAMD Therapy Scan

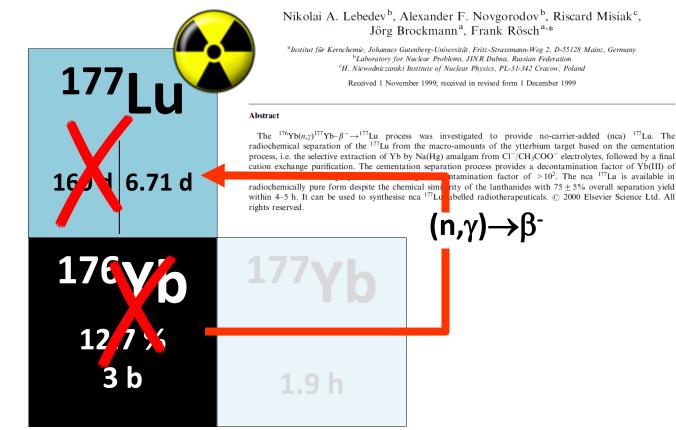
42.1 70

Biograph mCT Flow – 15 min whole body scan using Ga-68 NO2A-BP for measuring osteoblastic activity in bone metastases. Treatment of the same patient by Lu-177 BPAMD – Theranostic pairs

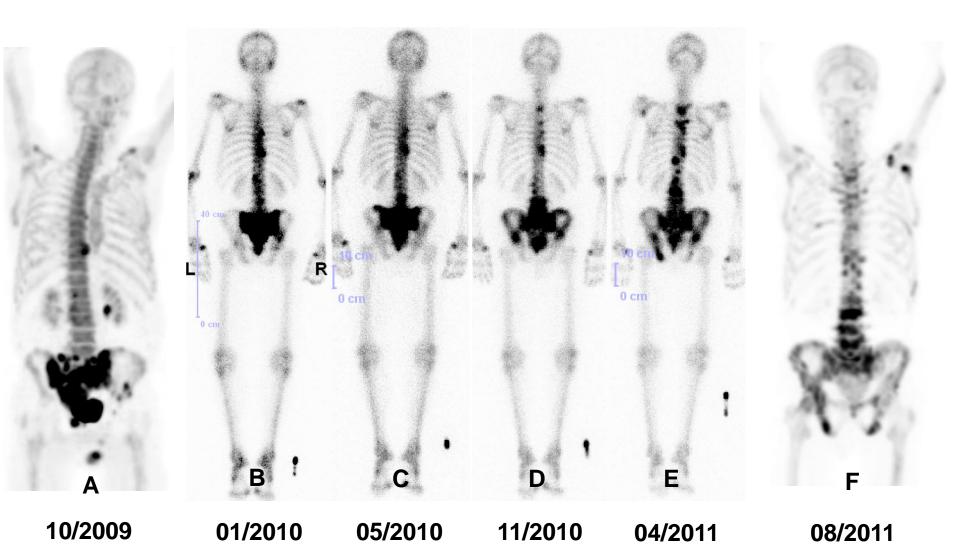
0 cm

¹⁷⁷Lu production CARRIER FREE: A NUCLEAR CHEMISTS POINT OF VIEW

Applied **Radiation and** Isotopes


www.elsevier.com/locate/apradiso

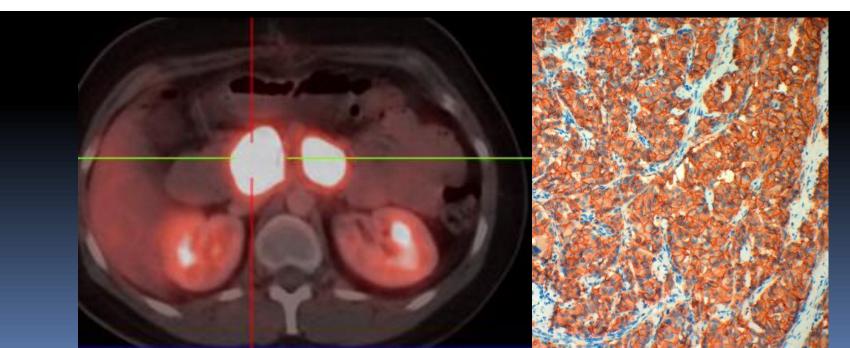
PERGAMON


Applied Radiation and Isotopes 53 (2000) 421-425

Radiochemical separation of no-carrier-added ¹⁷⁷Lu as produced via the 176 Yb (n,γ) 177 Yb \rightarrow 177 Lu process

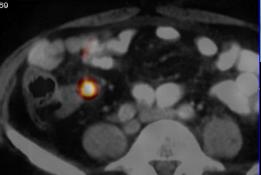
DEVELOPED AT THE TRIGA MAINZ REACTOR IN 2000

ntamination factor of $>10^2$. The nca ¹⁷⁷Lu is available in radiochemically pure form despite the chemical similarity of the lanthanides with $75 \pm 5\%$ overall separation yield within 4-5 h. It can be used to synthesise nca ¹⁷⁷Lu abelled radiotherapeuticals. © 2000 Elsevier Science Ltd. All



A: F-18 PET/CT MIP image pre-therapy;
F: F-18 PET/CT MIP image after 4 cycles of Lu-177 BPAMD treatment;
B, C, D, E: Lu-177 BPAMD whole-body planar images 45 hours after injection (first, second, third and fourth cycles respectively).

ORIGINAL ARTICLE


Molecular imaging with ⁶⁸Ga-SSTR PET/CT and correlation to immunohistochemistry of somatostatin receptors in neuroendocrine tumours

Daniel Kaemmerer • Luisa Peter • Amelie Lupp • Stefan Schulz • Jörg Sänger • Vikas Prasad • Harshad Kulkarni • Sven-Petter Haugvik • Merten Hommann • Richard Paul Baum

From Molecular Imaging to Therapy

lleum NET, size 4 mm

Ileum NET

IHC Scoring for SSTR1-5

Ga-68 DOTA-SMS PET/CT in 34 histologically documented GEP NET patients 44 surgical specimens generated

Only lesions > 1.5 cm on PET/CT were selected to avoid partial volume effect on the semiquantitative parameters Somatostatin receptor imaging using Ga-68 DOTA-NOC PET/CT

results in accurate estimation of the receptor density.

Image Analysis Results SSTR-2	Correlation	Liver Mets SUVmax PET/CT
N1	Correlation Coefficient	-0,733
	P Value	0.02
N2	Correlation Coefficient	-0.750
	P Value umber of Patients:9	0.0158

Results

The correlation coefficients for SUV max, SUVmean, and MTV ranged from 0.83 to 0.99 (p<0.005).

The tumor SUVmax showed a significant correlation with immunohistopathology scores.

A correlation was also found between SSTR1-5 staining and the corresponding pathology grading.

Ga-68 DOTA-SSTR PET/CT provides in vivo histopathology!

Digitalized Histopathology Combined with Receptor PET/CT

From Tissue to Molecular Imaging to Therapy

Surgical specimen

Tissue SamplingTissue Staining

Definiens XD Image Analysis

and Shield

Digital pathology - virtual microscopy

Histopathological Grading

- Receptor density
 on tumor cells
- Proliferation rate (Ki-67 / MIB1)
- Tumor-specific features, e.g. CgA, Synaptophysin
- Genetic profiling

Prognosis

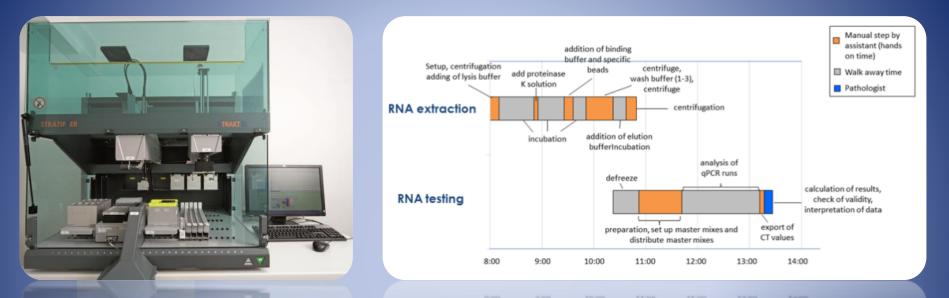
- Selection of most appropriate peptide for Receptor PET/CT
- Therapy guidance peptide receptor radionuclide therapy (PRRT) versus chemotherapy vs localised therapy vs molecular targeted therapies etc.

Management Strategy

On the Way to Precision Medicine

PET/CT - ileum NET, Ø 4 mm

Elisabeth - Krankenho


Institut für

NET TYPER

Molecular analysis of neuroendocrine tumors by quantitative mRNA analysis of formalin fixed tissue samples

Molecular analysis of DNA and mRNA from formalin fixed, paraffin embedded tissue samples

Advantages of molecular assessment of Target Genes:

- 1) High Specificity
- no cross-reactivity as for IHC; Isoforms and mutations detectable
- 2) High Sensitivity
- low tissue input required (1,5mm x 5µm); few molecules detectable
- 3) Objective Testing no subjective interpretation; high reproducibility & reliability
 - **Fully quantitative** large dynamic range (2 logs); no "upper limit" in positive cases
- 5) Fast & automated result until lunch (2.5h RNA for extraction & 2h for measurement)

www.patho-koeln.de

Dr. Ralph M. Wirtz

www.STRATIFYER.com

PATHOLOGIE am St. Elisabeth - Krankenhaus		am St. Elisabeth Krankenhaus Köln. Abteilung für Molekularpathologie Werhmannstraße 1 D- 50935 Köln	
<u>NET Typer</u>			
Targets			
negative	CXCR4	positive	
26 27 28 29 30 31	32 33 34 35 36	37 38 39 40 41 42	
Strongly overexpressing CXCR	4-positive Tumour (CXC	R4 = 37,72 / 3,4 fold above Cut-Off)	
negative	SSTR2	positive	
26 27 28 29 30 31	32 33 34 35 36	37 38 39 40 41 42	
Strongly overexpressing SSTR2	A-positive Tumour (SSTR:	2A = 37,72 / 3,4 fold above Cut-Off)	
<u>Receptors</u>			
negative	SSTR1	positive	
26 27 28 29 30 31	32 33 34 35 36	37 38 39 40 41 42	
STR1-negative Tumour (SSTR1	= 24 00 / STR1 undeter	table	
negative	SSTR3	positive	
26 27 28 29 30 31	32 33 34 35 36	37 38 39 40 41 42	
STR3-negative Tumour (SSTR)	otobau Sata2 00 45	table	
negative	SSTR4		
26 27 28 29 30 31	32 33 34 35 36	37 38 39 40 41 42	
Weakly expressing SSTR4-neg	ative Tumour (SSTR1= 28	.66 / 2.5 fold below Cut-Off)	
negative	SSTR5		
26 27 28 29 30 31	32 33 34 35 36	37 38 39 40 41 42	
Weakly expressing SSTR5-posi	live Turnour (SSTR1= 32,0	15 / 4,0 fold above Cut-Off)	

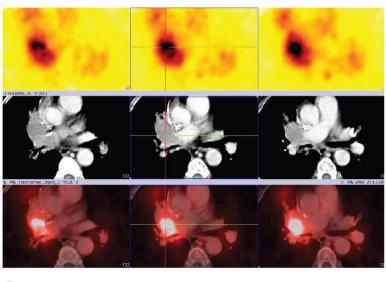
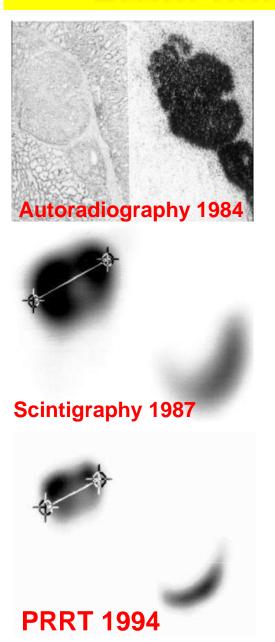
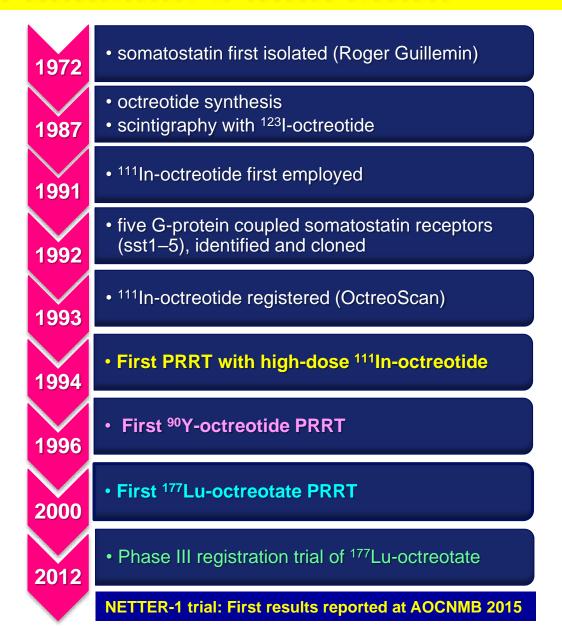


Figure 6: ⁶⁸Ga-CPCR4-2 PET/CT (transversal images): local recurrence of an centrally localized SCLC (upper panel: PET scan, middle panel: CT scan, lower panel: PET + CT fusion image)

Kaemmerer et al., Oncotarget 2015

Institut für Pathologie am St. Bisabeth Krankenhaus Köln-Hohenlind PD Dr. med S. Eldt und Dr. med R. Hake Sparkasse KölnBonn, Konto 9662727, BLZ 370 501 98

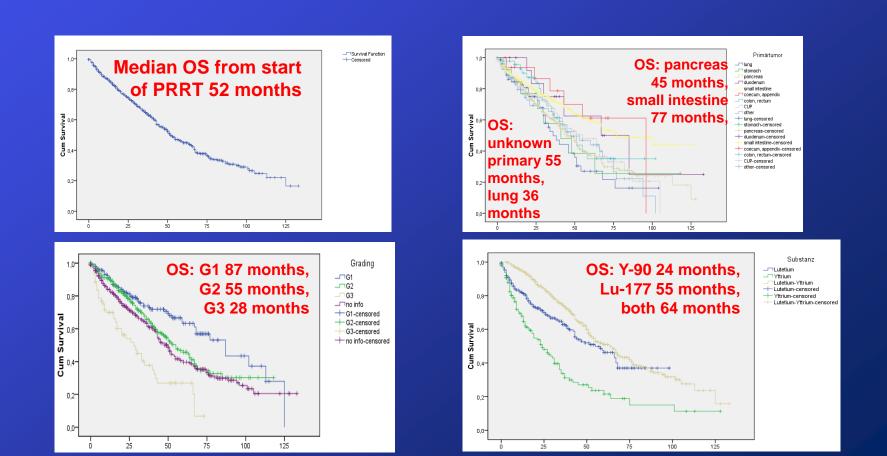

RT-qPCR of CXCR4 to predict SUV of ⁶⁸Ga CPCR4-2 PET/CT ...

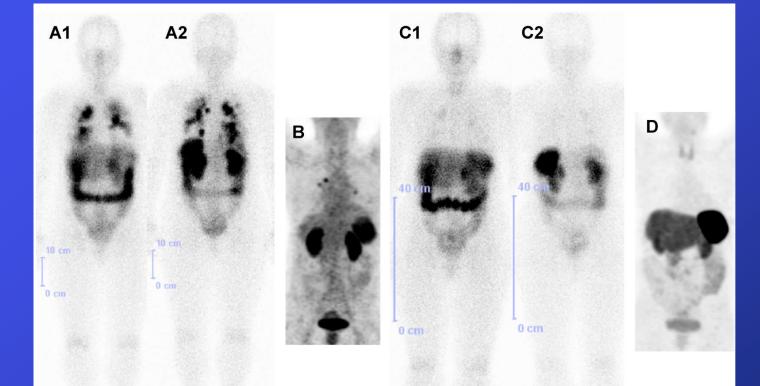

www.patho-koeln.de

Dr. Ralph M. Wirtz

www.STRATIFYER.com

From bench to bedside: a long story...



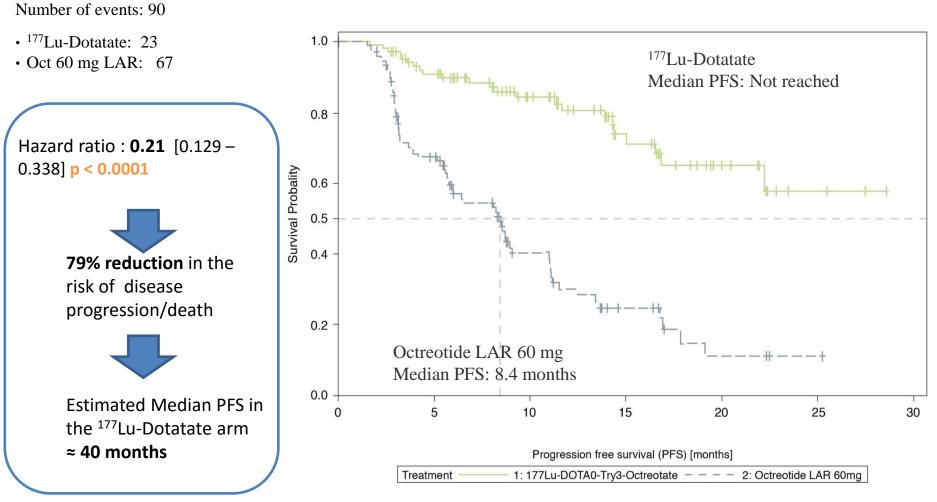


RADIOPEPTIDE THERAPY (ZKL BAD BERKA)

Retrospective analysis using a prospective database in 1000 patients with metastatic, progressive NENs, undergoing 1–9 cycles of PRRT using Lu-177 (n=331), Y-90 (n=170) or both (n=499)
 Median total administered activity was 17.5 GBq
 Patients were followed up for up to 132 months after the 1st cycle of PRRT
 Well-differentiated NETs (G1-2) accounted for >80%
 Most patients (95.6 %) had undergone at least one previous therapy (surgery 86.8 %, medical therapy 55 %, ablative therapy 14.2 % and radiotherapy 3.4 %)

A 68-year-old female with well-diffferentiated, nonfunctional NET (DD primary in the liver) with widespread metastasis in the right hepatic lobe (tumor size to 12 x 10 x 10.5 cm) and s.p. right hemihepatectomy, partial omentectomy and cold octreotide therapy presented with <u>bilateral pulmonary metastases</u>. She underwent 2 cycles of PRRT with a cumulative administered activity of 12.3 GBq Lu-177 DOTATATE. The post-therapy whole-body scan after the first PRRT cycle (A1, anterior view; A2, posterior view) showed extremely high uptake in the intrapulmonary metastases bilaterally. A response to PRRT was already noted after the 1st PRRT cycle (B, Ga-68 DOTATOC PET MIP) and a striking difference was noted in the post-therapy whole body scan after 2nd PRRT cycle (C1, anterior view; C2, posterior view). A complete remission was noted after the 2nd PRRT cycle (as shown in the Ga-68 DOTATOC PET MIP image, D)

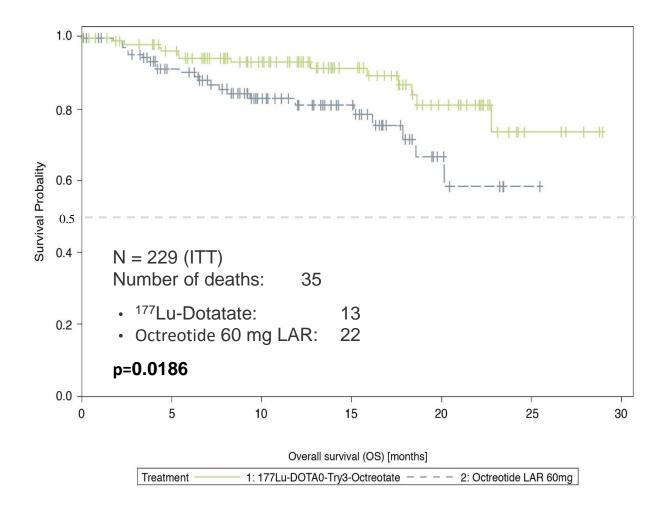
PRRT lends a significant benefit in overall survival in metastasized and / or progressive G1-2 NETs as compared to other treatment modalities and regardless of previous therapy. The combination of Lu-177 and Y-90 (DUO- PRRT) may be more effective than either radionuclide alone.


¹⁷⁷Lu-Dotatate Significantly Improves Progression-Free Survival in Patients with Midgut Neuroendocrine Tumours: Results of the Phase III NETTER-1 Trial

Jonathan Strosberg¹, Edward Wolin², Beth Chasen³, Matthew Kulke⁴, David Bushnell⁵, Martyn Caplin⁶, <u>Richard P. Baum</u>⁷, Erik Mittra⁸, Timothy Hobday⁹, Andrew Hendifar¹⁰, Kjell Oberg¹¹, Maribel Lopera Sierra¹², Philippe Ruszniewski¹³, Dik Kwekkeboom¹⁴

on behalf of the NETTER-1 study group

¹ Moffitt Cancer Center, Tampa, FL 33612, USA;² Markey Cancer Center, University of Kentucky, Lexington, KY 40536-0093, USA;³ University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;⁴ Dana-Farber Cancer Institute, Boston, MA 02215, USA;⁵ University of Iowa, Iowa City, IA 52242, USA;⁶ Royal Free Hospital, London, United Kingdom;⁷ Zentralklinik, Bad Berka, Germany;⁸ Stanford University Medical Center, Stanford, CA 94305, USA;⁹ Mayo Clinic College of Medicine, Rochester, MN 55905, USA;¹⁰ Cedars Sinai Medical Center, Los Angeles, CA 90048, USA;¹¹ University Hospital, Uppsala University, Uppsala, Sweden;¹² Advanced Accelerator Applications, New York, NY 10118, USA;¹³ Hopital Beaujon, Clichy, France;¹⁴ Erasmus Medical Center, Center, Rotterdam, Netherlands


Progression-Free Survival

All progressions centrally confirmed and independently reviewed for eligibility (SAP)

N = 229 (ITT)

Overall Survival (interim analysis)

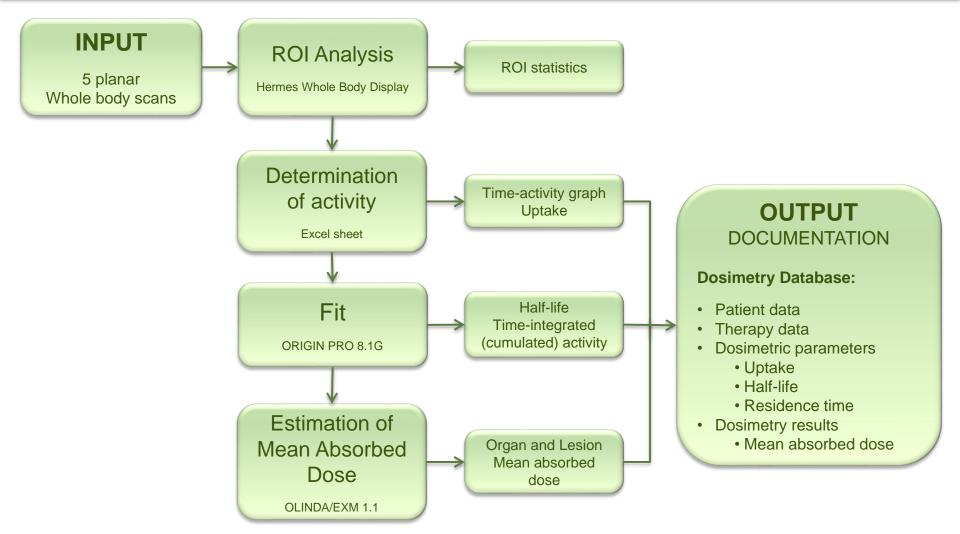
Summary and Conclusions

- Final analysis: In this first prospective randomized study in patients with progressive metastatic midgut NETs, ¹⁷⁷Lu-Dotatate was superior to Octreotide 60 mg in terms of:
 - PFS (Not Reached vs 8.4 months, p<0.0001)
 - ORR (19% vs 3%, p<0.0004)</p>
- Treatment with ¹⁷⁷Lu-Dotatate induce a 79% reduction in the risk of disease progression/death (Hazard ratio : 0.21)
- Interim analysis suggests increased OS (13 vs 22 deaths), to be confirmed by final analysis
- Currently available safety data confirm the results of Phase I-II study, with favorable safety profile
- While few treatment options are available for patients progressing under SSAs, ¹⁷⁷Lu-Dotatate appears as a major advance for this patient population

Presentation Presidential Session II of the 18th ECCO – 40th ESMO – European Cancer Congress 2015, 27 September 2015, abstract 6LBA, Vienna

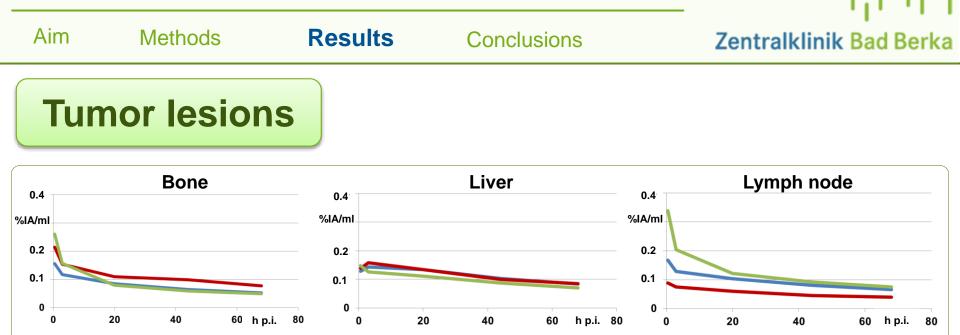
Dosimetry in Targeted Radionuclide Therapy: The Bad Berka Dose Protocol Experience after more than 1,000 Evaluations

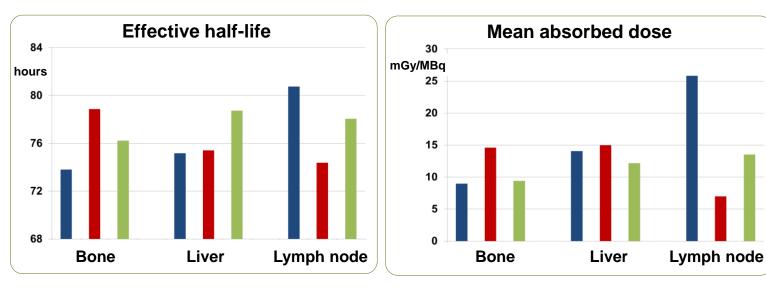
Christiane Schuchardt


THERANOSTICS Center for Molecular Radiotherapy and Molecular Imaging ENETS Center of Excellence Zentralklinik Bad Berka, Bad Berka, Germany

THERANOSTICS Center for Molecular Radiotherapy and Molecular Imaging

Dosimetry


Zentralklinik Bad Berka

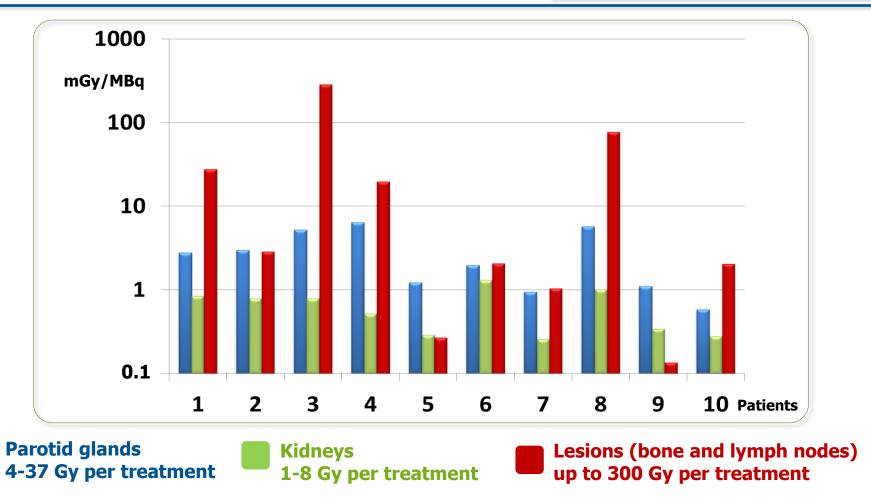

Bad Berka Dose Protocol

Theranostics Center for Molecular Radiotherapy and Molecular Imaging

Dosimetry in PRRT using ¹⁷⁷Lu DOTATATE, ¹⁷⁷Lu HA-DOTATATE and ¹⁷⁷Lu DOTATOC

-DOTATATE 183 bone lesions 333 liver lesions 152 lymph node lesions

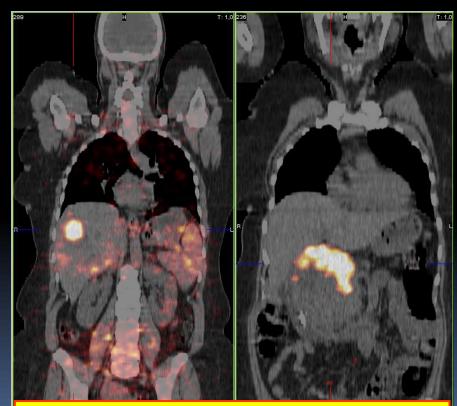
-HA-DOTATATE 8 bone lesions 19 liver lesions 15 lymph node lesions


—DOTATOC 151 bone lesions 198 liver lesions 94 lymph node lesions

C. Schuchardt

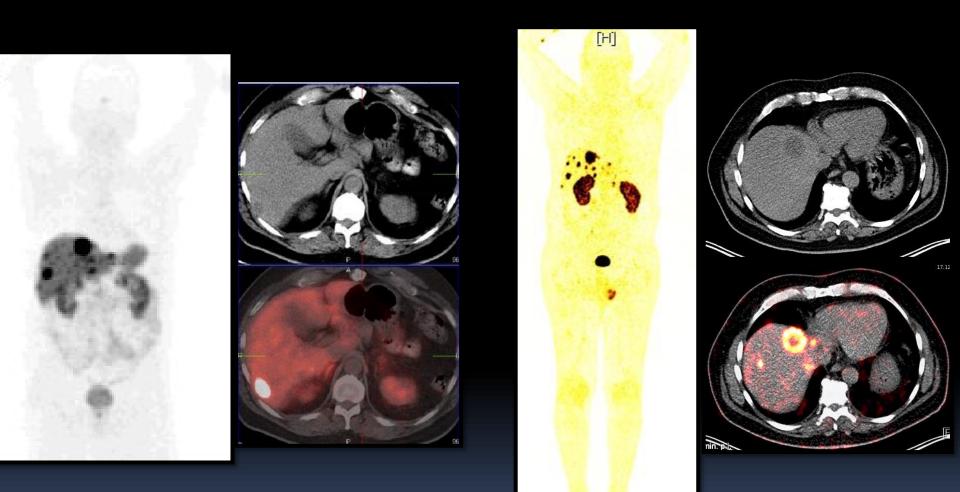
¹⁷⁷Lu PSMA: Prostate cancer

39 Dosimetric Evaluations


Mean absorbed dose to parotid glands higher than renal absorbed dose

Theranostics Center for Molecular Radiotherapy and Molecular Imaging

New Isotopes


Pre-therapeutic organ and tumor dosimetry using receptor PET/CT and longer lived positron emitters, e.g. Sc-44, Zr-89, Y-86 or Cu-64 and comparison with Ga-68 results.

Selection of the optimal peptide and radionuclide for individual therapy of each patient ("personalized dosimetry") by pretherapeutic measurement of organ and tumor doses.

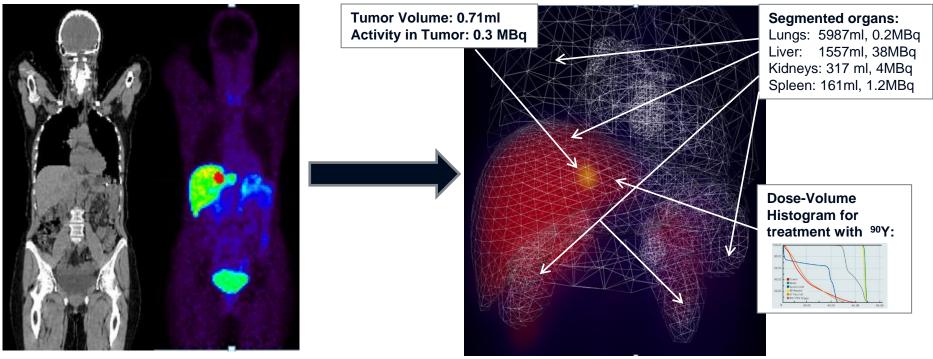
Y-86 DOTA-NOC Receptor PET/CT

Ga-68 DOTATOC

240 min. p.L.

A

PET/CT


Sc-44 DOTATOC

Personalized dosimetry

Visions on Dosimetry

- Fast, reproducible dosimetry for a fully segmented data set!
- Segmentation by deformation of deformable phantoms (SubD)

PET/SPECT/CT Image

Deformed SubD phantom, matching the patient

New Avenues to Improve PRRT in Future

- **DUO-PRRT** (already routine at our center since 8 years)
- TANDEM-PRRT (concurrent Lu-177/Y-90 PRRT Kunikowska et al.)
- Intra-arterial PRRT (> 100 i.a. treatments up to now)
- Combined PRRT (in combination with other treatment modalities)
 - TACE, SIRT, RFA (Hörsch et a. ASCO 2010)
 - chemotherapy (e.g. Capecitabine, Doxorubicin)
 - kinase inhibitors (e.g. Sunitinib, Sorafenib)
- Intra-operative use of probes after PRRT with Lu-177
- Improved dosimetry and radioprotection

Improved peptides (e.g. antagonists)

Jean-Claude Reubi, Bern, Switzerland

Antagonist labels more sst₂ sites than agonist in human cancer tissues

Agonist Antagonist Lu DOTA-TATE Lu DOTA-BASS Total Total ns ns Renal Cell Ca Br4 Expo 40h P-329 II Expo 40h NHL 26171-90 Expo 40h Ha 7 Breast-Tu Expo 17h

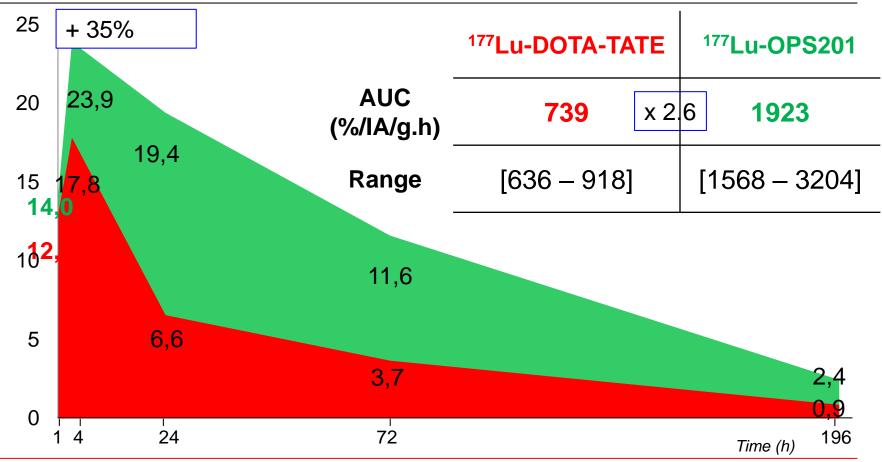
Patho logic

Extensive NET of pancreas with liver metastasis

SMS-Agonist Ga-68 DOTA-TOC SMS-Antagonist Ga-68 NODAGA JR11

Antagonist labels more sst₂ sites than agonist in cancer patients leading to higher diagnostic sensitivity (first in human study)

20 years after ¹¹¹In-Octreotide Prospects in Molecular Imaging of gastro-entero-pancreatic NET: ⁶⁸Ga-OPS202



Tumor Dose (*Tumor Time Activity Curve*)

Tumor Uptake

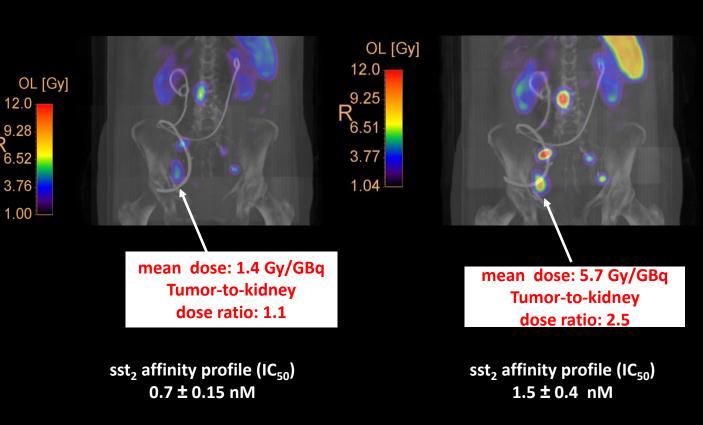
%IA/g



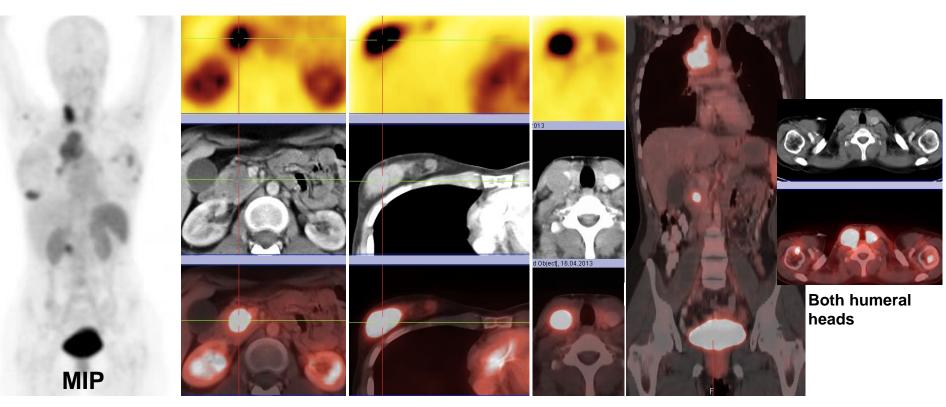
University Hospital Basel

Comparison of ¹⁷⁷Lu-DOTATATE and ¹⁷⁷Lu-DOTA-JR11 dosimetry

Patient with NEC (G3) of the bladder with lymphnode and uterus metastases, shows progression after surgery and treatment with Somatostatin analogues

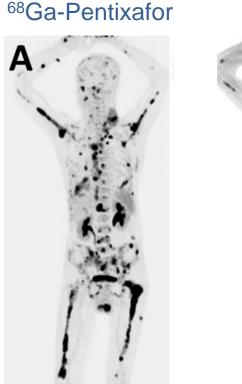

⁶⁸Ga-DOTA-TATE PET

Limited kidney function Creatinine clearence: 54 ml/min (norm 90 – 179 ml/min)


UNIVERSITÄTS FREIBURG KLINIKUM ¹⁷⁷Lu-DOTA-TATE (Agonist)
 Isodose curves based on
 3D voxel dosimetry analysis

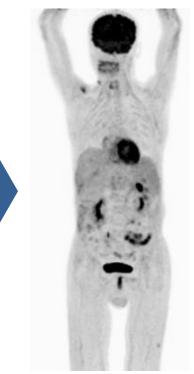
¹⁷⁷Lu-DOTA-JR11 (Antagonist) Isodose curves based on 3D voxel dosimetry analysis

Courtesy of Damian Wild


68Ga CPCR4-2 PET/CT for Imaging of NEC (G3)

Pancreatic head Right breast tumor LN 29 year-old female patient with poorly differentiated neuroendocrine carcinoma of unknown primary (CUP-NEC, first appearance in the left breast) with extensive lymph node metastases. Ga-68 CXCR-4 PET/CT shows intense CXCR-4 expression in the previously SMS-R positive metastases, most pronounced in the cervical and mediastinal lymph nodes as well as in the right breast (relatively mild to moderate in the other breast lesions). In the pancreatic head, a CXCR-4 positive, SMS-R negative lesion is detected (most probably corresponding to the primary tumor). Uptake is also noted in metastases in both humeral heads.

Center for Molecular Imaging and Molecular Radiotherapy, Zentralklinik Bad Berka, Germany in collaboration with H.J. Wester (labeling performed using SCINTOMICS module)


Myeoma treatment with ¹⁷⁷Lu-CPCR4-2 (Pentixather)

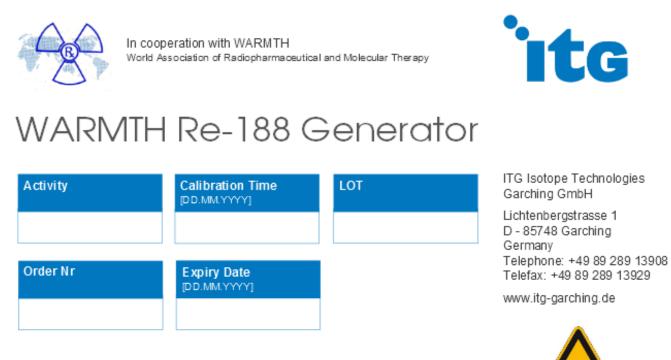
¹⁸F-FDG

¹⁸F-FDG

Prior to Pentixather 14 d after Pentixather World Association of Radionuclide & Molecular Therapy (WARMTH)

¹⁸⁸ReNAISSANCE

TREAT HCC


Targeted Rhenium-188 Arterial Therapy

EANM Goetheborg Oct. 2014 – Prof. Baum obtained agreement of ITM for offering the

WARMTH W-188/Re-188 Generator

In cooperation with ITG

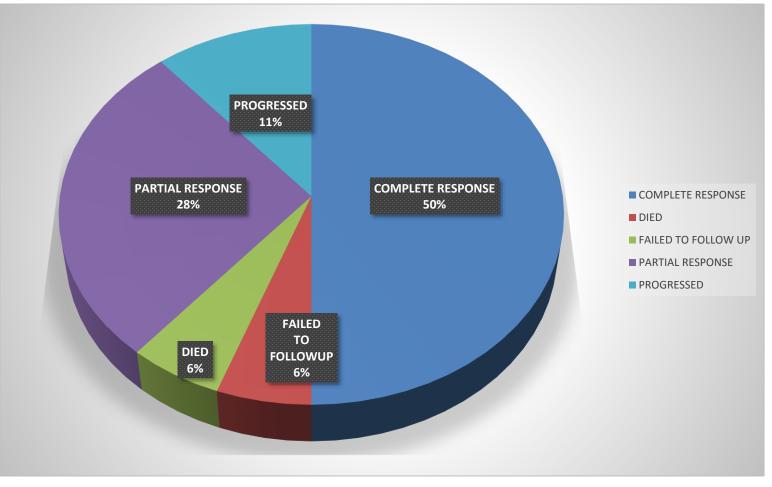
This product is intended for production of therapeutic beta emitting Rhenium-188 either for direct use as a high dose liquid radioactive source or for radiolabeling. This generator contains radioactive material and has to be stored in a controlled area intended for this purpose. Keep out of the reach of children. Disposal of the generator is subject to radioprotection regulations.

WARMTH Rhenium project

The project was re-initiated after the last ICRT in Cancun (2014)

<u>Dr Ajit Shinto</u> was nominated to prepare a vision of the propogation of Re-188 use, mainly for liver cancer therapy.

NM dept at KMCH Coimbatore would be the lead center for this project and provide training.

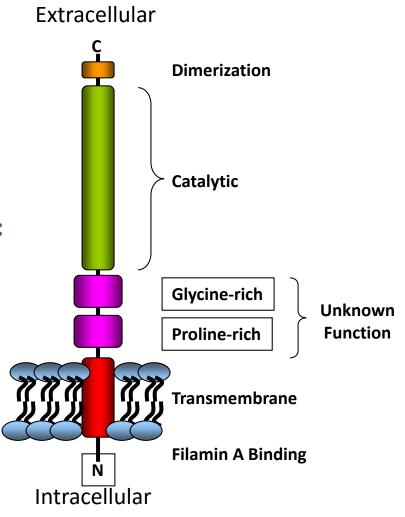

Issues that have been addressed:

Generator: availability and cost WARMTH Rhenium generator (initiated by R.P. Baum) Kits for conjugation: SNU

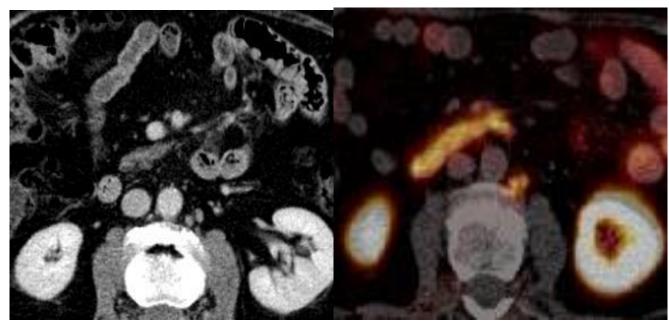
Other issues to be addressed: Dosimetry Clinical trials Other generators Other kits Future directions WARMTH support in training and setting up a new facility. WARMTH Research Fund (initiated by R.P. Baum) NM dept at KMCH Coimbatore

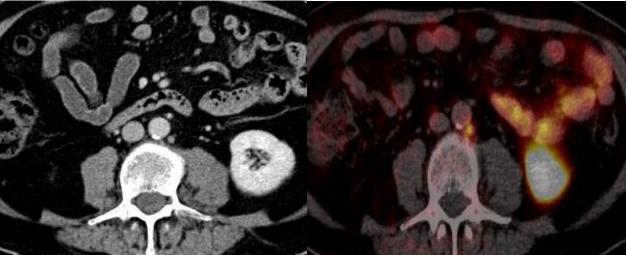
Follow up CT till now 46 patients in 24 months, all HCC

except 5 patients: 3 cholangio Ca and 2 mets



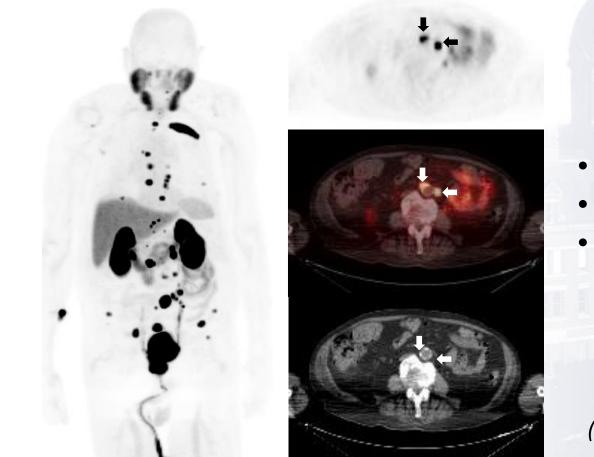
THERANOSTICS OF PROSTATE CANCER


PSMA for Targeting Prostate Cancer


Henry N. Wagner: FDG – the molecule of the (last) century Richard P. Baum: PSMA – <u>the</u> target of the next decade

- A cell surface <u>enzyme</u> that's continually internalized.
- Glutamate carboxypeptidase II (GCP-II) activity
- Folate hydrolase (FOLH1) activity
- Hydrolyses y-peptide bonds between Nacetylaspartate and glutamate
- PSMA expression increases progressively in:
 - Higher grade tumors
 - Metastastic disease
 - Hormone-refractory prostate cancer
 - Present also in tumor neovasculature
- PSMA thought to play a role in tumor invasiveness
- Target validated with anti-PSMA antibodies (J591)

... none of these lesions is enlarged on contrast-enhanced CT study (lymph node size 2-3 mm)


Cylotron Installations in GER, CH and A

status summer 2014, without warranty of completeness

<u>Next</u> generation: F-18 DCFPyL metastatic castration-resistant prostate cancer

Courtesy: Martin Pomper, Steve Cho and Zsolt Szabo

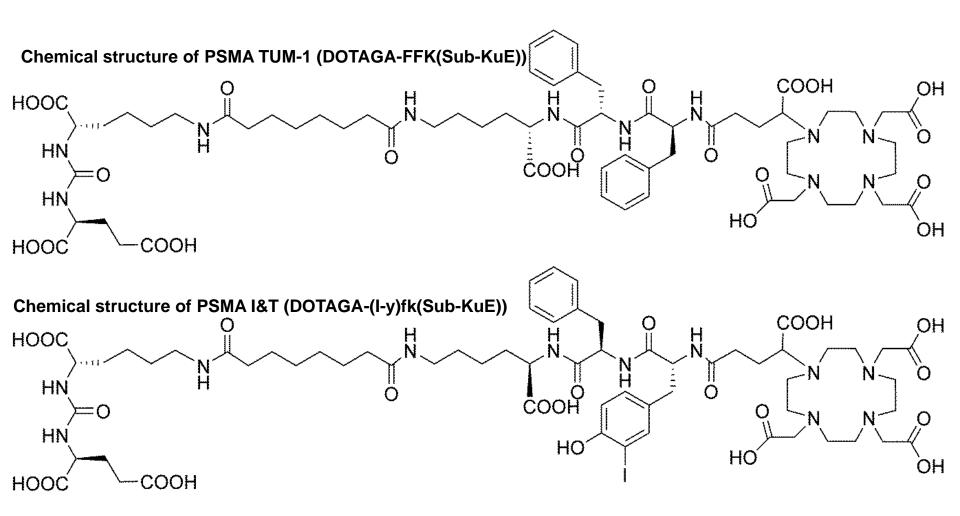
Highest SUV_{max}

- Bone = 102
- Lymph node = 100
- Primary = 72

Overall 4 x higher "unequivocal" lesion detection than CIM

(N = 9, avg. PSA = 8)

THERANOSTICS OF PROSTATE CANCER USING LU-177 LABELED PSMA SMALL MOLECULES FIRST CLINICAL RESULTS


Richard P. Baum

Harshad R. Kulkarni, Christiane Schuchardt, Hans-J. Wester

¹THERANOSTICS Center for Molecular Radiotherapy & Molecular Imaging (PET/CT) ENETS Center of Excellence, Zentralklinik Bad Berka, Germany

Pharmaceutical Radiochemistry, Technical University, Munich, Germany

www.PRRTinfo.org richard.baum@zentralklinik.de

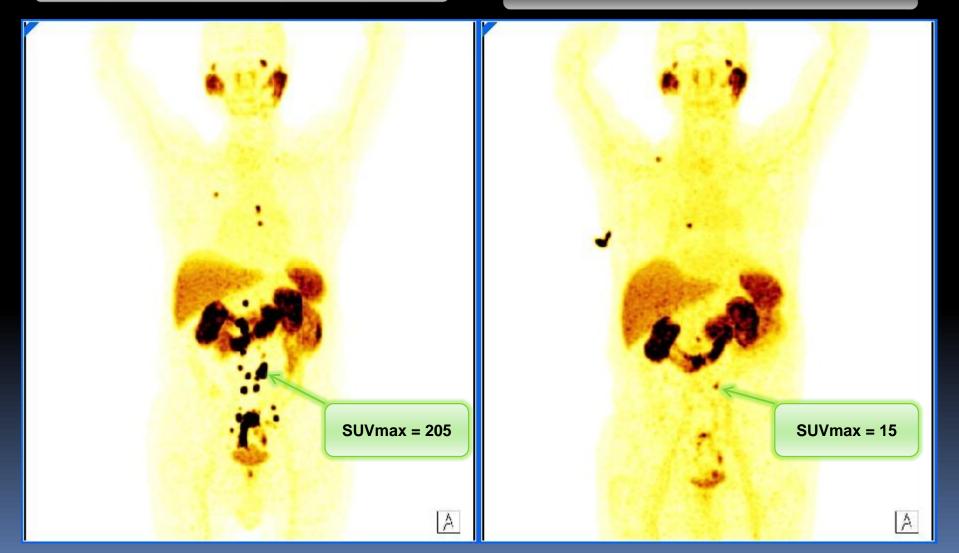
The DOTAGA PSMA small molecules (PSMA TUM-1 and PSMA I&T) were labeled with Lu-177 at the Radiopharmacy of Zentralklinik Bad Berka and utilized after appropriate quality control (purity > 99 %)

mCRPC Patients' Characteristics

Mean Age = 71 +/- 7.4 years Mean Gleason Score = 8 +/- 1 Previous Therapies

Total no. of patients	95
Antiandrogen therapy	90
Surgery	72
- Primary tumor not operated -	23
Radiotherapy (EBRT)	68
Chemotherapy	42
Other	9 (hyperthermia, immunotherapy)

Disease status before PRLT: progressive disease in all patients


THERANOSTICS Center for Molecular Radiotherapy and Molecular Radiotherapy, Zentralklinik Bad Berka

Ga-68 PSMA PET

Nearly complete regression of lymph node metastases post PRLT

Pre-PRLT - 02 - 22.09.2014

Pre-PRLT - 04 - 03.03.2015

PSA trends with RLT Continuous drop of PSA after PRLT (biochemical response)

Date	PSA	
30.05.2014	35.89	
13.07.2014	50.91	
21.09.2014	30.39	
08.12.2014	4.73	
01.03.2015	0.95	

Date	PRLT No.	
16.07.2014	1	
23.09.2014	2	
09.12.2014	3	
04.03.2015	4	

THERANOSTICS Center for Molecular Radiotherapy and Molecular Radiotherapy, Zentralklinik Bad Berka

Best PSA response in 57 patients (represented as percentage change of pre-therapy value)

THERANOSTICS Center for Molecular Radiotherapy and Molecular Radiotherapy, Zentralklinik Bad Berka

Metastatic, Moderately Differentiated Prostate Adenocarcinoma

Low PSA with extensive bone and lymph node metastases

Excellent Response to Therapy

Moderately differentiated prostate adenocarcinoma with extensive lymph node and multiple bone metastases

Date of diagnosis: Dec-2010 Initial tumor classification cT2c cN0 cM0, Gleason 7b (4 + 3), G2b iPSA value 11.4 ng / mL, prostate volume 52 ml

12/2010 - 02/2011	commencement of androgen blockade (Trenantone + Casodex)
02-04/2011	image-guided radiotherapy of prostate, GD 76 Gy (5 x 2 Gy/week)
	PSA after IGRT = 0.05 ng/ml
07/2014	Progressive Disease: multiple bone and lymph node metastases on
	Ga-68 PSMA PET/CT; PSA 10.8 ng/ml
Since 07/2014	GnRH therapy (3 months Eligard depot) and Bicalutamide 50 mg
07-11/2014	pain and consolidation irradiation C3 - T3 (GHD 35Gy 5 x 2.5 Gy/week)
	and left shoulder (GHD 36Gy, 5 x 3 Gy/week)

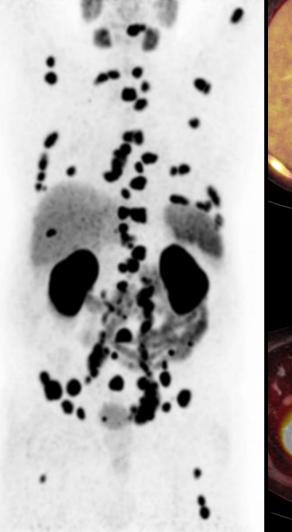
Secondary diagnoses

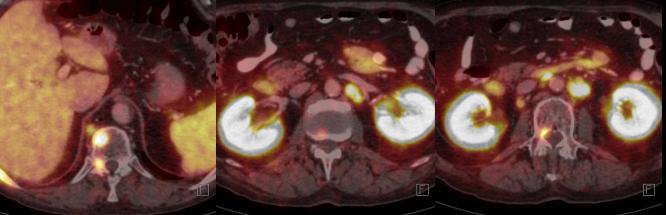
Arterial hypertension, 3-vessel coronary artery disease, obesity, hypercholesterolemia, right THR (12/2013), avascular necrosis right (MRI 01/2012), dorsiflexion right, DD Peroneusläsion; demyelinating axonal polyneuropathy of unknown origin, pathological fracture BWK 12 after fall (11/2011), central renal cyst right (Ø 3.4 x 3.2 cm), hypoacusis, osteoporosis, glaucoma

Peptide Receptor Radio-Ligand Therapy

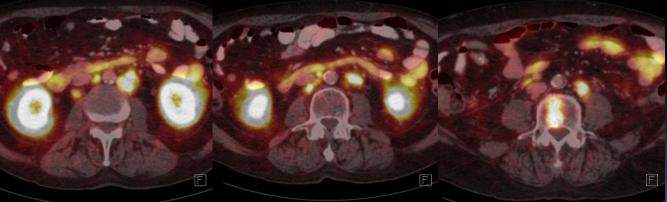
Cycle	Date	Therapy agent	Activity (MBq)	Route
1	08-Oct-2014	Lu-177 PSMA	5400	IV
2	05-Jan-2015	Lu-177 PSMA	6000	IV
3	20-Mar-2015	Lu-177 PSMA	4900	IV

Cumulative administered activity: 16.3 GBq (441 mCi) of Lu-177


IV: intravenous

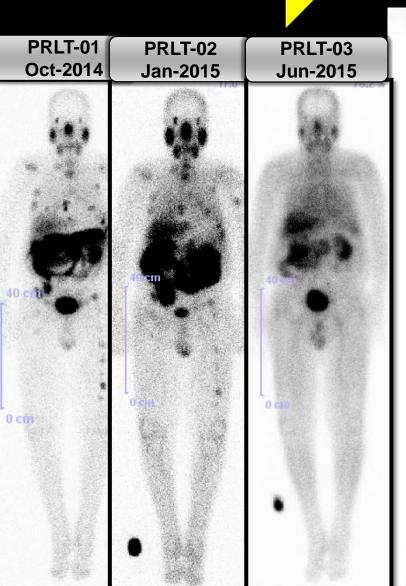

Current Tumor Status

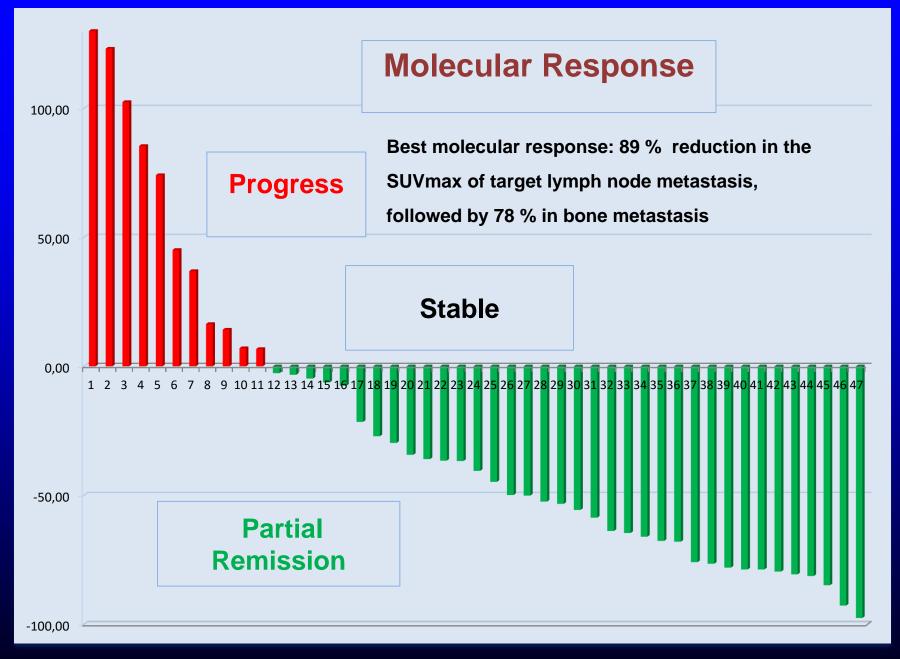
Partial Remission (RECIST and PERCIST) *Near complete resolution of PSMA expression in known lesions*


Treatment Plan Continuation of therapy

Ga-68 PSMA PET/CT Jul-2014

EXTENSIVE METASTASES <u>!!! PSA = 0.05 ng/ml</u> !!!

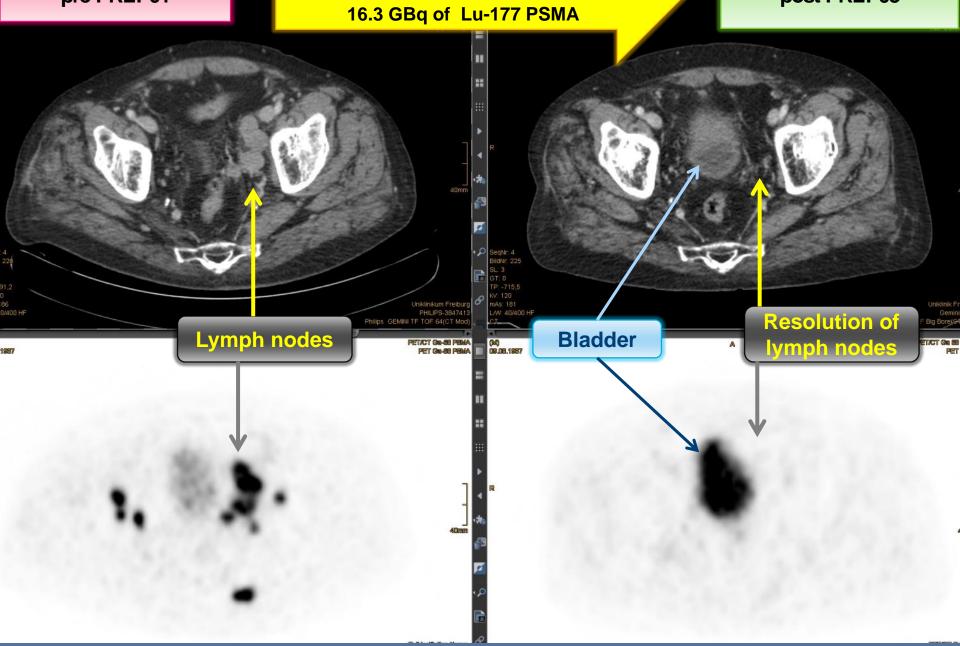

Ga-68 PSMA PET/CT (Jul-2014) pre-PRLT-01


3 x PRLT cycles

16.3 GBq of Lu-177 PSMA

Ga-68 PSMA PET/CT (Jun-2015) post-PRLT-03

Best molecular response : percentage change in the SUV_{max} on ⁶⁸Ga-PSMA PET/CT

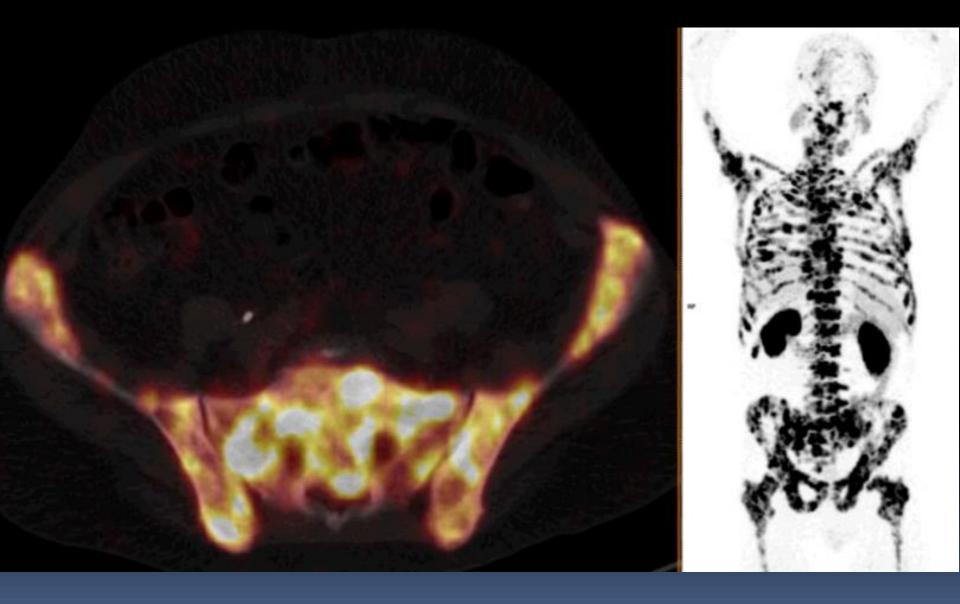


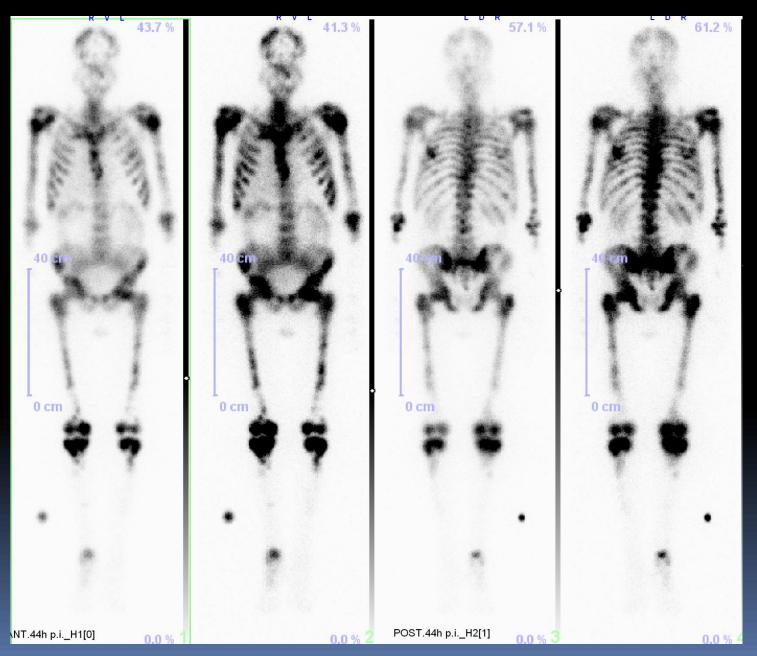
THERANOSTICS Center for Molecular Radiotherapy and Molecular Radiotherapy, Zentralklinik Bad Berka

Ga-68 PSMA PET/CT (Jul-2014) pre-PRLT-01

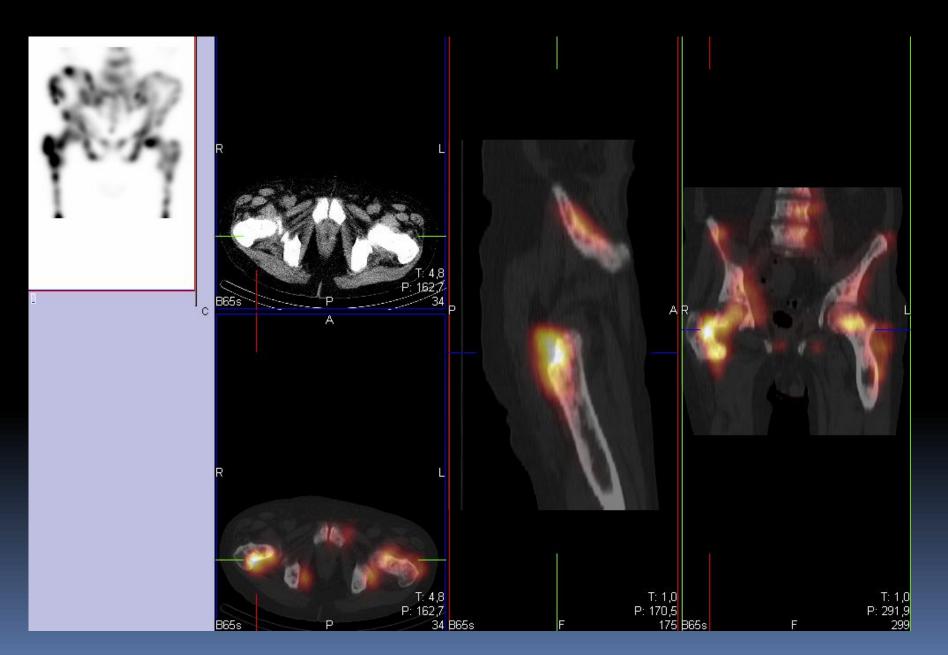
3 x PRLT applications

Ga-68 PSMA PET/CT (Jun-2015) post-PRLT-03




mCRPCa

Extensive skeletal metastases No significant myelosuppression


Ga68 PSMA PET/CT Pre-PRLT-01

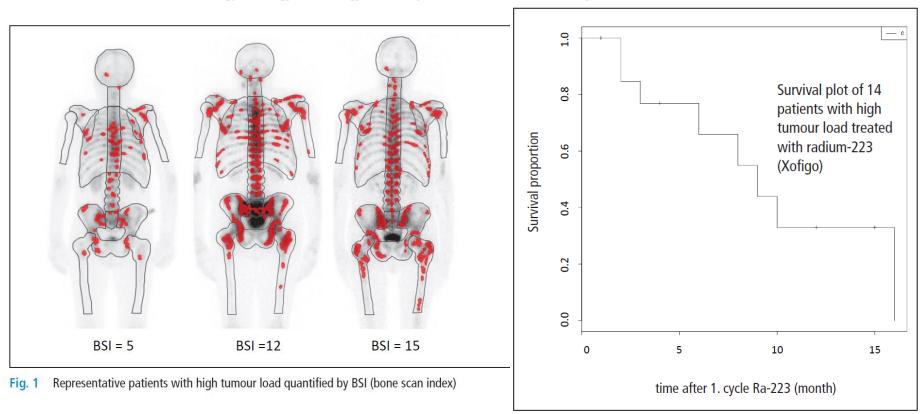
PRLT-02 Lu-177 PSMA WB Planar images 44 h p.i.

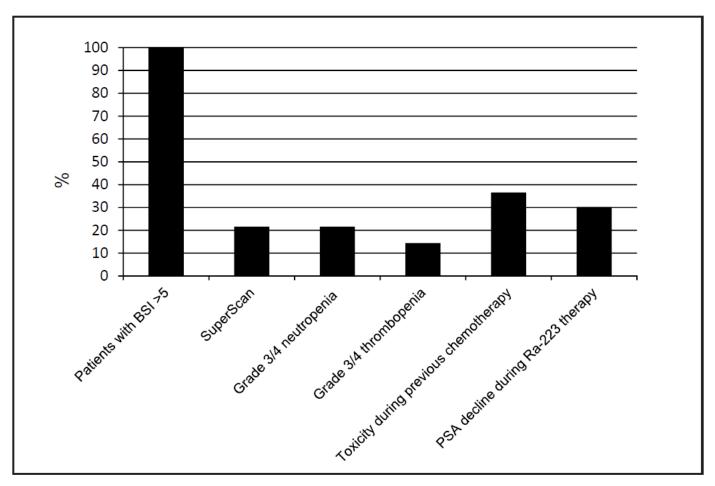
PRLT-02 SPECT/CT 44 h p.i.

Blood Results

Dat-Zeit:	09.04.2015 0	15 17:5	:54 11.01.2015 16:44					
Fall-Nr:	7407630892		7407630	892		7407619781		
Auftrag-Nr:	3119514		3118563			3041665		
Einsender:			D3NUK			D3NUK		
	Blutbild							
Hämoglobin	6.60		7.10	-		7.50	-	
Hämatokrit	0.34	-	0.35	-		0.39	-	
MCHC	19.7		20.2			19.4		
MCH	1.7		1.8			1.7		
MCV	87		87			85		
Erythrozyten	3.86	-	4.02	-		4.53		
Leukozyten	7.3		5.9			7.5		
Thrombozyten	214		219			197		
Reti-abs			53.9			82.4	+	
Reti-rel			1.34			1.82		
Reti-Häm-Äquiv			1.96			2.28	+	
Reti-Prod-Index			0.7			1.2		
IRF			17.5	+		12.1		
LFR			82.5	-		87.9		
Baso-AD						0		
Eo-AD						2		
Neutro-AD						61		
Lymph-AD						24		
Mono-AD						14	+	
Diff-manuell			s.u.					
Eo-MD			1					
Seg-MD			87	++				
Lymph-MD			10	-				
Mono-MD			2					
Neutrophile abs			5.1			4.6		

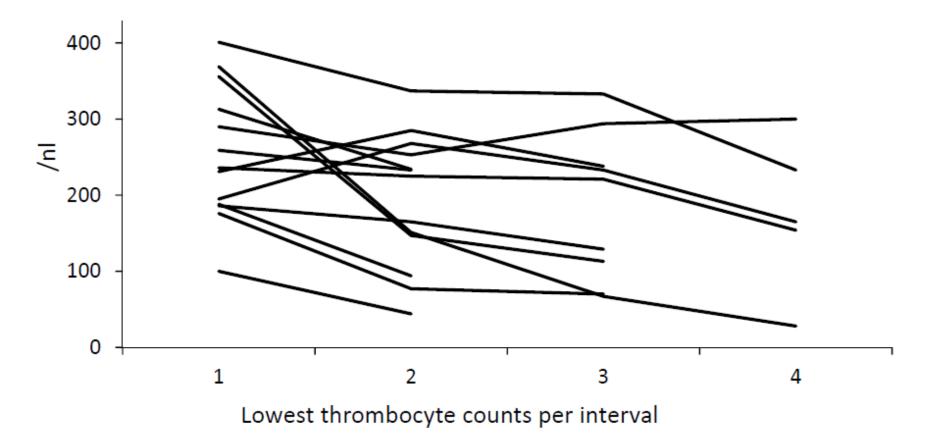
RBC WBC Plate


No evidence of PRLT induced hematotoxicity


Haematopoietic toxicity of radium-223 in patients with high skeletal tumour burden

M. Miederer¹; C. Thomas^{2,3}; J. Beck⁴; C. Hampel²; C. Krieger¹; P. E. Baqué¹; A. Helisch¹; M. Schreckenberger¹

¹Department of Nuclear Medicine, University Medical Center Mainz, Germany; ²Department of Urology, University Medical Center Mainz, Germany; ³Department of Urology, University Medical Center Frankfurt, Germany; ⁴Department of Internal Medicine III (Haematology, Oncology, Pneumology), University Medical Center Mainz, Germany Nuklearmedizin 2015; 54: 197–203 http://dx.doi.org/10.3413/Nukmed-0751-15-06 received: June 16, 2015 accepted in revised form: August 18, 2015


For ²²³Ra treatment in patients with late stages and high tumour burden haematologic toxicity must be expected and close follow-up of blood counts is mandatory.

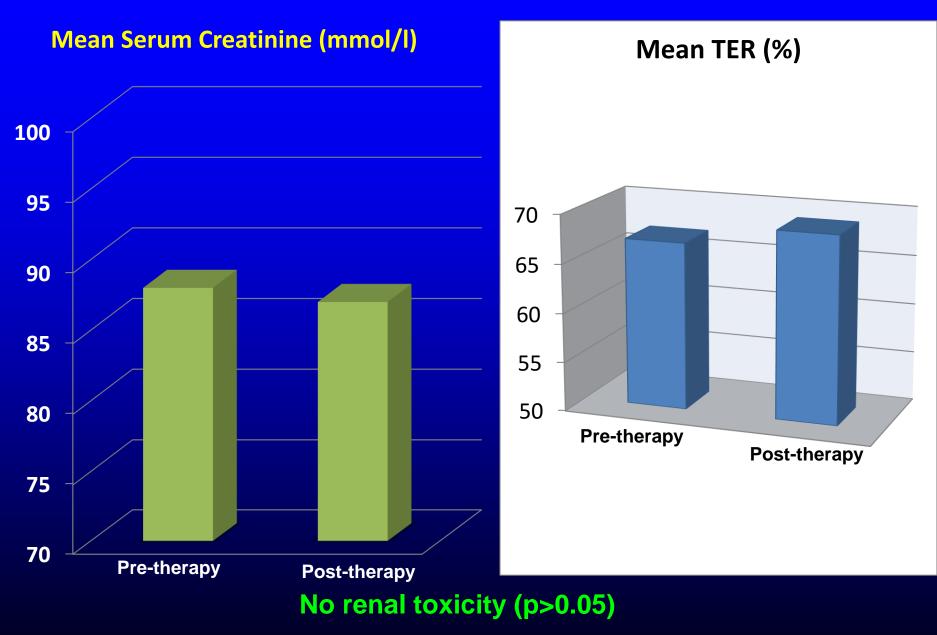
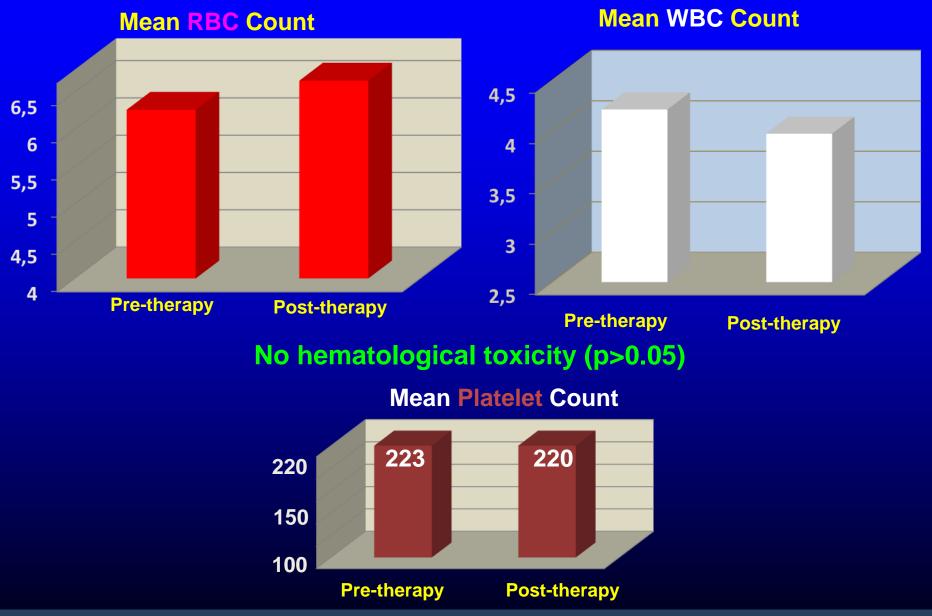


Fig. 5 Percentage of patients with certain imaging parameters, grade 3 or 4 toxicity, signs of previous toxicity and biochemical response during therapy

Fig. 6 Radium-223 therapy, development of blood cell counts (X-axis: 1: baseline; 2: 1–4 weeks after 1st cycle; 3: 1–4 weeks after 2nd cycle; 4: 1–16 weeks after 3rd cycle)
a) neutrophils; b) thrombocytes



Lu-177 PSMA - Effect on Renal Function

THERANOSTICS Center for Molecular Radiotherapy and Molecular Radiotherapy, Zentralklinik Bad Berka

Lu-177 PSMA Effect on Hematological Function

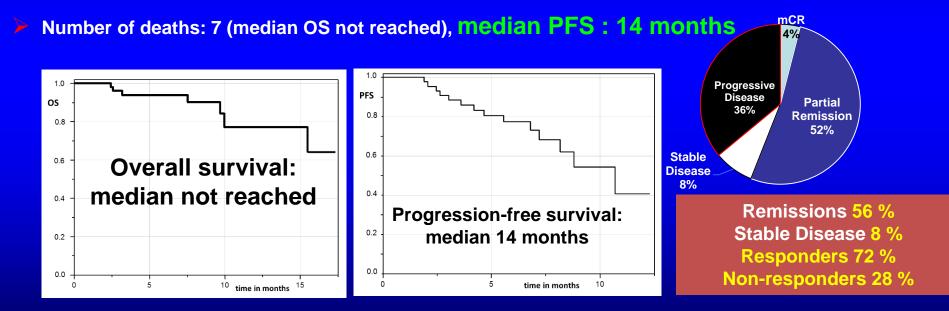
THERANOSTICS Center for Molecular Radiotherapy and Molecular Radiotherapy, Zentralklinik Bad Berka

Nucl Med jnumed.115.168443published ahead of print January 21, 2016 J Nucl Med jnumed.115.168443published ahead of print January 21, 2016 J Nucl Med jnumed.115.168443published ahead of print January 21, 2016 J Nucl Med jnumed.115.168443published ahead of print January 21, 2016

Title: Lutetium-177 PSMA Radioligand Therapy of Metastatic Castration-Resistant Prostate Cancer: Safety and Efficacy

Short-running title / foot line: ¹⁷⁷Lu-PSMA: Safety and Efficacy

Authors: Richard P. Baum^{1*}, Harshad R. Kulkarni^{1*}, Christiane Schuchardt¹, Aviral Singh¹, Martina Weineisen², Stefan Wiessalla¹, Margret Schottelius², Dirk Mueller¹, Ingo Klette¹, Hans-Jürgen Wester²

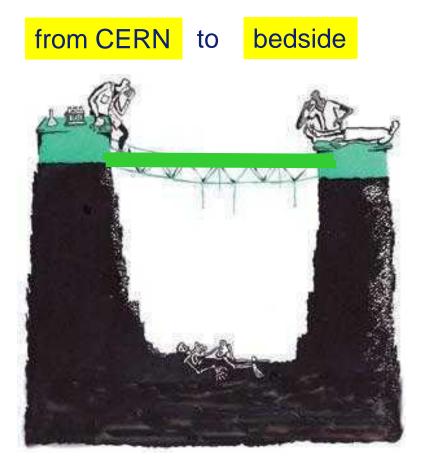

J Nucl Med – published ahead of print January 21, 2016

Chemotherapy/hormonal therapy survival benefit

- Docetaxel: 2.5 Mo
- Cabazitaxel: 2.4 Mo
- Abiraterone: 3.9 Mo
- Enzalutamide: 4.8 Mo
- Radium 223: 3.6 Mo

Efficacy of PRLT (n=96 patients) with FU after 2-7 cycles)

- Number of therapy cycles of Lu-177 PSMA radioligand therapy (PRLT): 241
- Mean follow-up: 12 months (3 25)
- Mean administered radioactivity per cycle 5.8 GBq (range 2 9.7), number of cycles 2 7
- NO hematological, renal or salivary toxicity; improvement in QoL and pain score in all patients.
- Response after 2 7 PRLT cycles: 3 mCR (molecular complete remission), 15 PR, 3 SD, 7 PD
- Dosimetry: Significantly higher tumor dose (14 36.2 mGy/MBq) than kidneys (0.2 2.4)


The next 10 years – what we need and where to go A vision

- PET/CT: technical improvements (higher sensitivity, better resolution..)
- New isotopes for imaging (Sc-44, Cu-64)
- New isotopes for therapy (Re-188, Tb-161, Bi-213, Ac-225)
- New peptides (JR 11, CXCR4, and many more to come)
- New indications (lung, breast, colon...)
- Improved dosimetry
- Interface novel imaging/therapy and biomarker strategies
 - immunohistochemistry
 - quantitative mRNA analysis (RT-qPCR)
 - [liquid biopsy]

Translational Research: Crossing the Valley of Death

National Institutes of Health (NIH):

- "Clinical and basic scientists don't really communicate"
- Excellent basic research, but lack of translation
- Where do we go from here?

Nature 453, 840-842, 2008

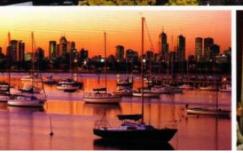
Acknowledgements National and International Collaborators

- Hans-Jürgen Wester, Munich
- Frank Rösch, Mainz
- Helmut Mäcke, (Freiburg/Basel)
- Thea Maina-Nock, Athens
- Jae Min Jeong, Seoul
- Michael Schultz, Iowa
- Marion de Jong, Rotterdam
- Eric Krenning, Rotterdam
- Jean-Claude Reubi, Bern
- Stefan Schulz, Jena
- Amelie Lupp, Jena
- Andrew Schally, Miami
- Gerd Binnig, Munich
- Maria Athelogou, Munich

- Ralph Wirtz, Cologne
- Matthias Blaickner, Seibersdorf
- Anna Celler, Vancouver
- Martin Pomper, Baltimore
- Sangeeta Ray, Baltimore

The Bad Berka Core Team

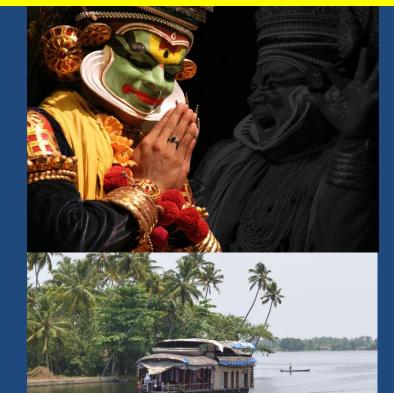
- Harshard R. Kulkarni
- Aviral Singh
- Christiane Schuchardt
- Ingo Klette
- Karin Niepsch
- Funds
 - Dinse-Stiftung, Hamburg


WELCOME TO MELBOURNE

THERANOSTICS World Congress Ga-68 & PRRT

NOV 6-8 2016 AUSTRALIA


Invitation to WARMTH ICRT in Kerala, India, Nov. 13-16, 2016

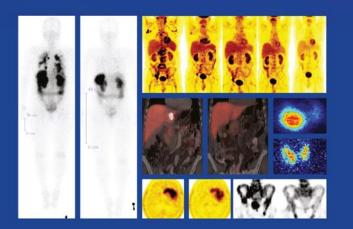


World Association of Radiopharmaceutical & Molecular Therapy (WARMTH) ICRT-2016, November 13th -16th, 2016 If "International Conference on Radiopharmaceutical Therapy, Cochin, Kerala, India In Co-operation with International Atomic Energy Agency(IAEA), Vienna

Host Rajiv Gandhi Cancer Institute & Research Centre, Department of Nuclear Medicine, Delhi, India Web: http://www.warmth.org/icrt-2016

Congress President

Dr Partha Choudhury


Medical Radiology

Radiation Oncology L.W. Brady H-P. Heilmann M. Molls C. Nieder Richard P. Baum Editor

Become a WARMTH Member!

WWW.warmth.org

Therapeutic Nuclear Medicine

The First Car - 1886

2015 – F 015 – The self driving luxury

Year... - Concept

Start by doing what's necessary, Then do what's possible, Suddenly you are doing the impossible.

- St. Francis of Assisi

What we need is more people who specialize in the impossible

- Theodore Roethke

Thank you!