

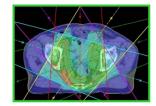
Medical perspectives of particle therapy:

Needs of the medical community – impulse statement

Michael Baumann

Department of Radiation Oncology, Medical Faculty and Univ. Hospital, TU Dresden OncoRay – Natl. Center for Radiation Research in Oncology, Dresden Institute of Radiation Oncology, HZDR Dresden German Cancer Consortium (DKTK), Partnersite Dresden National Center for Tumor Disease (NCT), Partnersite Dresden

Universitätsklinikum Carl Gustav Carus



Radiation Oncology

- 50% of all cancer patients
- Highly individualized treatment
- 50% of cures radiotherapy sole treatment or major component
- Organ- and function sparing, well tolerable
- More than 4m long term survivors in Europe
- Favorable cost/benefit

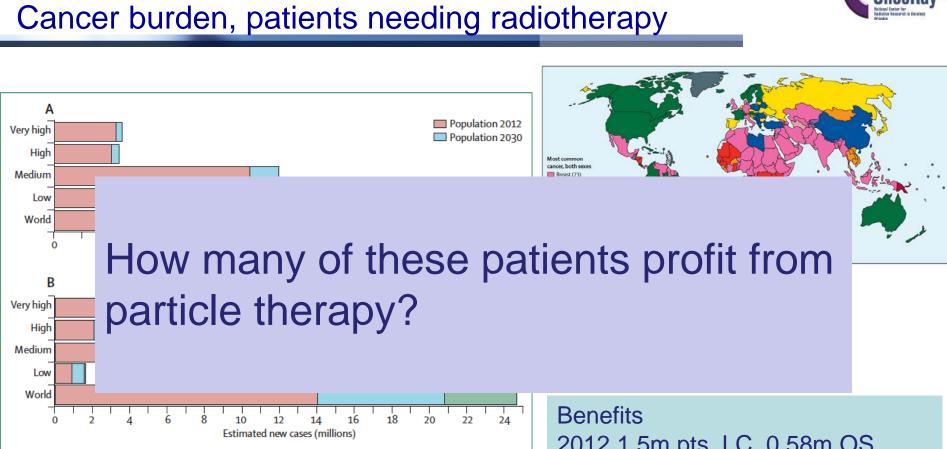


Figure 5: Population increases (A) and predicted increases in cancer burden based on demographic and risk changes (B) by HDI level, 2012-30

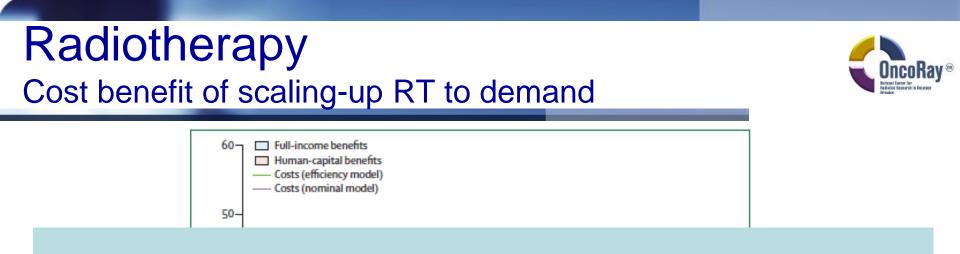
Radiotherapy needs

2012 1.5m pts. LC, 0.58m OS 2035 2.5m pts. LC, 0.95m OS

Plus palliation

Atun et al., Lancet Oncol 16:1153-86, 2015

Radiotherapy


Coverage of services, population benefits of scale-up

Only 40-60% of patients with cancer have access to radiotherapy

		>		_		1			
		High-income countries	Upper-middle- income countries	Lower- middle- income countries	Low-income counties				
<u> </u>	Fractions	76424000	77 014 000	40 974 000	13268000				
34	Radiotherapy departments	4600	3700	2000	600				
	Megavoltage machines	9200	7400	3900	1300				
	CT scanners	4600	3700	2000	600	×.			
	Radiation oncologists to be trained	15 500	16800	9900	3300				
	Medical physicists to be trained	17 200	12 500	7200	2400				
	Radiation technologists to be trained	51900	45300	24900	8100				
· .	Data are n. The appendix contains more information about the CT scanner shared-use model. Table 5: Projected fractions and related resources needed in 2035								
	12 II (70) 0 1 20 16 h (%) 0 1 27			140 100 100 187 213 240]			

Figure 9: Coverage of radiotherapy services according to country as determined by global equipment databases, an activity-based operations model, cancer incidence, and evidence-based estimates of radiotherapy need

Estimates depend on the nature of equipment use. The colour bar shows the operational model: 12 h operation was used as the feasible case, but 8 h and 16 h were also modelled to capture typical and potential capacity, respectively.

Are investment in particle therapy cost effective?

For which patients, in which health system?

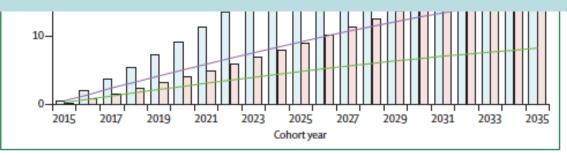


Figure 11: Cost and benefits of investments to scale up radiotherapy services in low-income and middle-income countries, 2015–35 The costing models are described in the text and include both operational and capital costs.

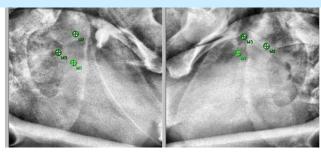
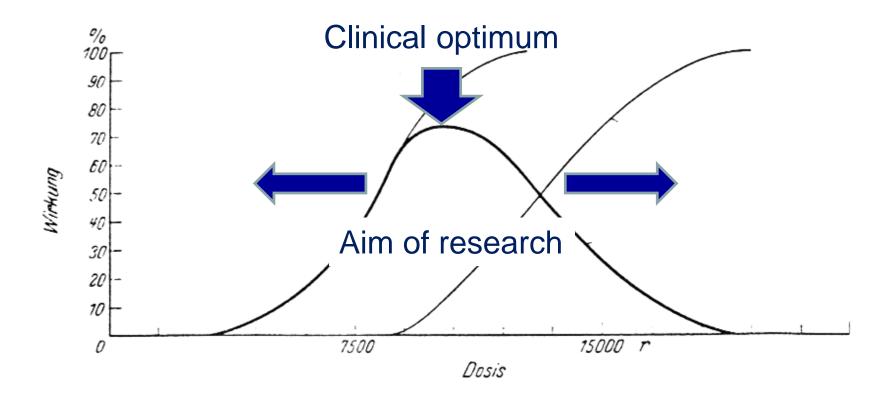
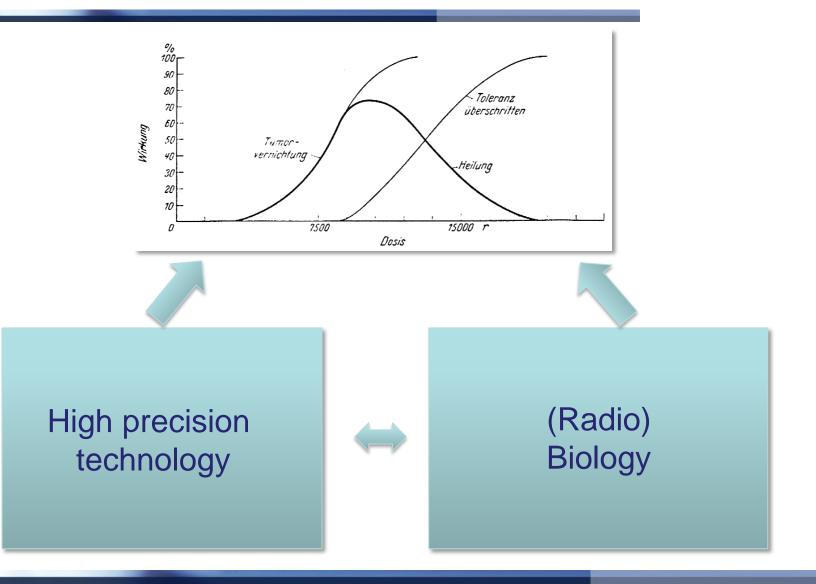

State of the art

Image guided, conformal (IMRT), photon therapy (Linacs)

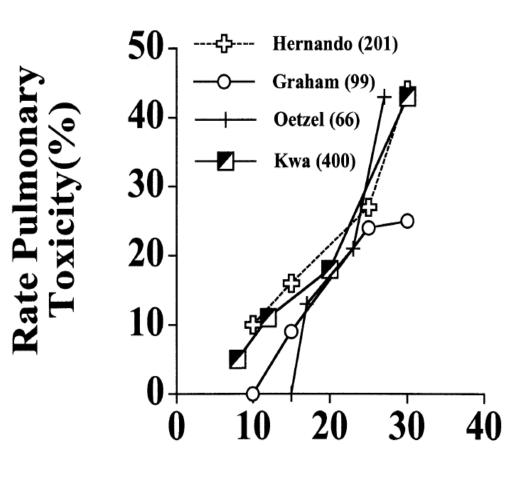

- 35% local recurrence
- Preventable distant metastases
- Large volumes irradiated
- Early, late and very late normal tissue damage

Aim of radiotherapy

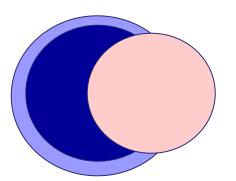


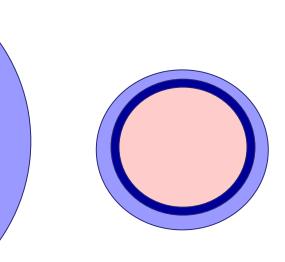
*) Vortrag vor der Deutschen Röntgengesellschaft am 24. April 1936

Holthusen, Strahlentherapie 57: 254-268,1936


Aim of radiotherapy

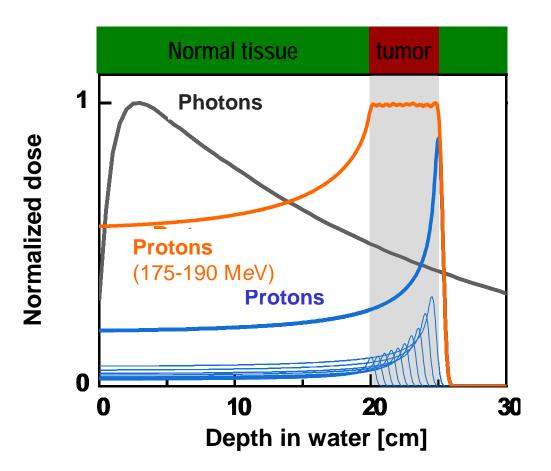
Dose-volume-effects of normal tissue toxicity

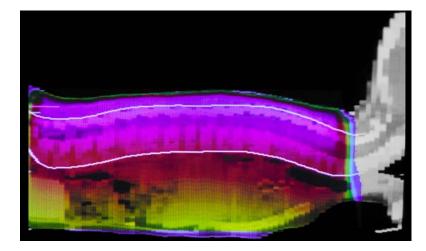


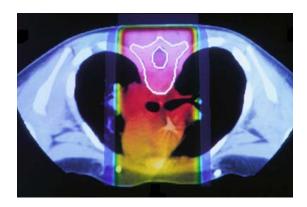

Mean Lung Dose (Gy)

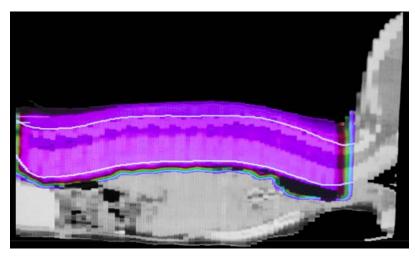
Concept of precision radiotherapy

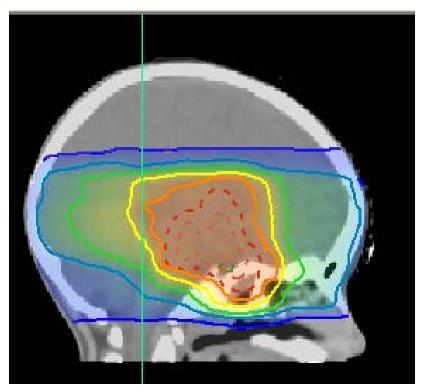
Missing the tumor– local recurrence Wide margins– Increased normal tissue toxicity

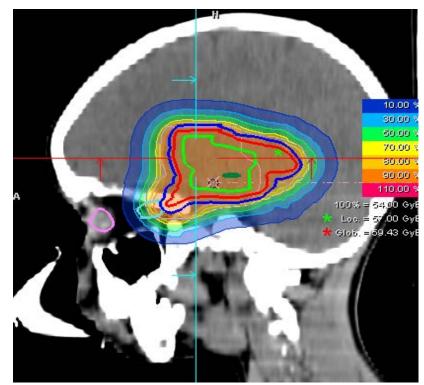



Optimal

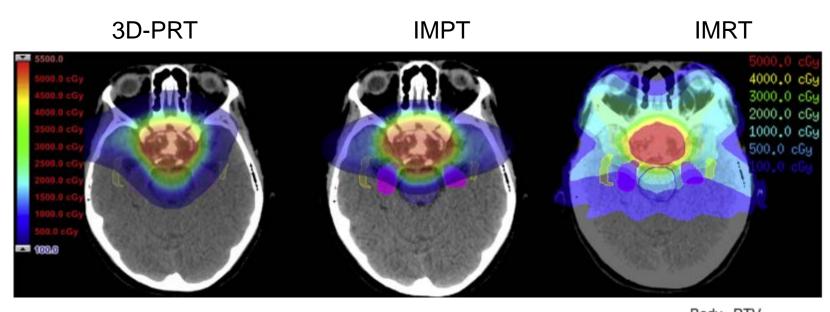

Physical basis



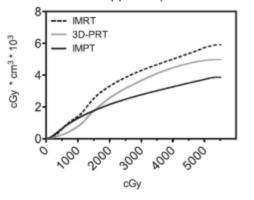




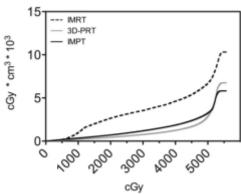
Photon-IMRT

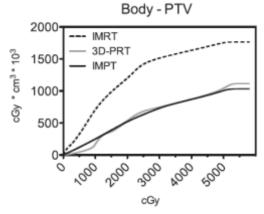

Universitätsklinikum Dresden

Protons



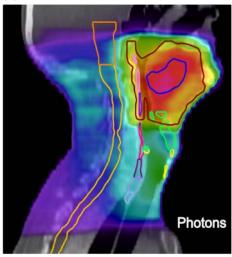
HIT, Heidelberg

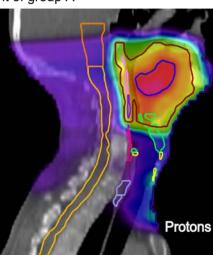


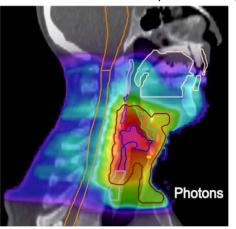


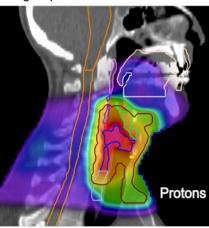
Hippocampus

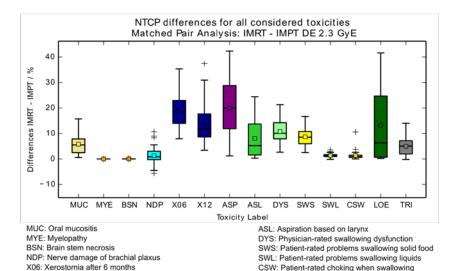
Carotid Arteries





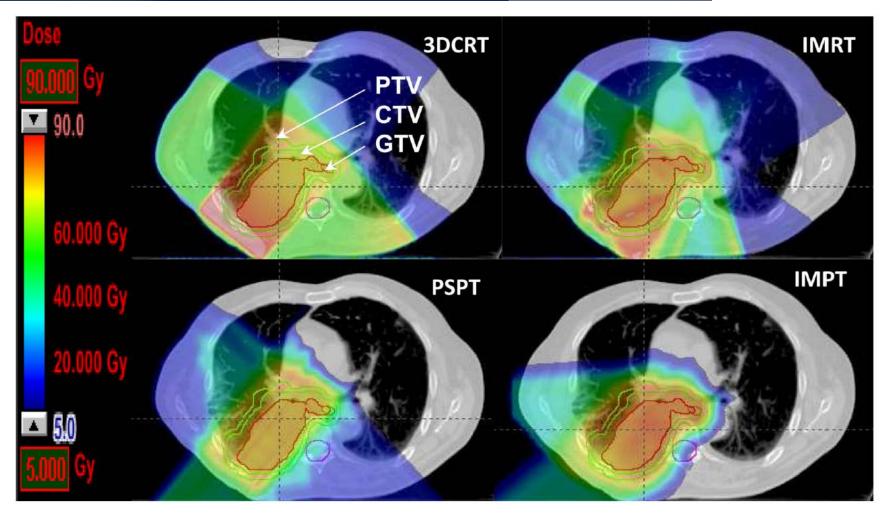

(c)


Representative patient of group A



Representative patient of group B

X12: Xerostomia after 12 months


ASP: Aspiration based on pharyngeal constrictor muscles

Jakobi et al., IJROBP 2015

LOE: Laryngeal oedema

TRI: Trismus

Chang et al., Semin Radiat Oncol 20(3): 171-177, 2010

Potential of particle therapy to explore

We do not know much about the impact of low and intermediate doses and dose volume relationship on normal tissue reactions

We also do not know a lot about the clinical benefit of partial organ/structure sparing

We therefore can also not make good predictions about the option of dose-escalation

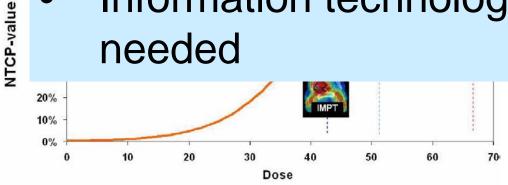
Klinik für Strahlentherapie OncoRay

Radiotherapy and Oncology 107 (2013) 267-273

Sŧ

of

Jo M


^aDe

Contents lists available at SciVerse ScienceDirect Radiotherapy and Oncology

High quality

- Comparative treatment planning
- Outcome data (NTC)
- National international networks (numbers)
- Information technology and modelling needed

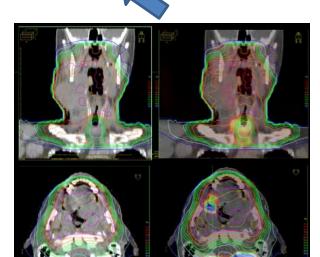
Particle centers in Europe

Advanced planning / under construction

European Particle Centers Network

WP	Title	Coordinators
1	Scoring of normal tissue reactions and tumor response particle/photon RT; endpoint definitions, outcome database	Hans Langendijk, Mechthild Krause, Roberto Orrechia
2	Dose assessment, quality assurance, dummy runs, technology inventory	Dietmar Georg, Oliver Jäckel, Sairos Safai
3	Trials inventory (website); "Towards joint clinical trials"	Karin Hausterman, Cai Grau, Daniel Zips, Jacques Balosso
4	Image Guidance in particle therapy	Aswin Hoffmann, Alessandra Bolsi
5	TPS in particle therapy	Hakan Nystrom, Tony Lomax
6	Radiobiology, RBE	Bleddyn Jones, Jörg Pawelke, Jan Alsner, Martin Prutschy, Manjit Dosanjh
7	Health Economy	Yolande Lievens, Klaus Nagels

DOSE PLAN DATA BANKS RADPLANBIO (DKTK ROG)


1. Clinical data 2. Dataexport eCRF - Data sets Title: Clinical data - Statistics -DICOM data port (offline) - No (DD-MAR Date of diagnosis: 06-Apr-2010 -DICOM data port (online = WADO) Histology: 0 = SCC 🔹 💌 Grading: 3 = G3 💌 * 🍽 p16 status (HC cut off @ 0 = negative * N - 70%): 1 = positive 2 = not performed HPV array: 0 = none 1 = any * Availability of 🛞 0 = No 💮 1 = Yes* 🏁 Tumor site: 1 = oral cavit 2 = oropharynx A 3 = hypopharyny 4 = larynx 5 = nasopharynx 6 = cancer of unknown primary (CUP) **DICOM Data** Matheological Republic positioni Maturation Nationalisti Contents lists available at ScienceDirect Radiotherapy and Oncology journal homepage: www.thegreenjournal.com ating a data exchange strategy for radiotherapy research: Towards federated databases and anonymised public datasets **Bio-Data** Tomas Skripcak^{a,*}, Claus Belka^b, Walter Bosch^c, Carsten Brink^{d,ae}, Thomas Brunner^e, Volker Budach^f, Daniel Büttner^a, Jürgen Debus[#], Andre Dekker^h, Cai Grauⁱ, Sarah Gulliford^j, Coen Hurkmans^{k,l,n} Uwe Just n, Mechthild Krause and Philippe Lambin h, Johannes A, Langendijk , Rolf Lewensohn r, Armin Lühr 40, Philippe Maingon 17, Michele Masucci 5, Maximilian Niyazi b, Philip Poortmans 1, Monique Simon^a, Heinz Schmidberger^u, Emiliano Spezi^v, Martin Stuschke^w, Vincenzo Valentini^x Marcel Verheij^y, Gillian Whitfield^z, Björn Zackrisson^{aa}, Daniel Zips^{ab,ac,ad}, Michael Baumann^{a,n,o,p} ¹German Gacer Consortium (DKR) Desiden and German Gacer Research Center (IKR2) Heidelberg: ¹German Cancer Consortium (DKR) Munich and German Cancer Research Canter (DKR2) Heidelberg: ¹German²; ¹Dept of Rubatium Davidog, Washington University 5: Lauis, MO, USA⁴ Hadwatary of Rubatian Postico, Obertu Eniversity Hospital, Odesa: Domain⁴: ¹German Ganer Consortium (URR), Postug and German Gacer Research Center (DKR2) Heidelberg: ¹German Cancer Consortium (URR) Berlin, German Ganer Research Center (DKR2) Heidelberg: ⁴German Cancer Gassertiam (DKR2) Heidelberg and German Gacer Research Center (DKR2) Heidelberg: Germany, ¹Dept of Backsion Desidge (MASTRD) (GKRV Schule) for Destignment Biology, Maurisch University Heidelberg Centerup, ¹Dept of Backsion Desidge (MASTRD) (GKRV Schule) for Destignment Biology, Maurisch University Heidelberg, Termany, ¹Dept of Backsion Desidge (MASTRD) (GKRV Schule) for Destignment Biology, Maurisch University Heidelberg, Termany, ¹Dept of Backsion Desidge (MASTRD), GKRV Schule Jernehment, Biology, Maurisch University Heidelberg, Termany, ¹Dept of Backsion Desidge (MASTRD), GKRV Schule Jernehment, Biology, Maurisch University Heidelberg, Termany, ¹Dept of Backsion Desidge (MASTRD), GKRV Schule Jernehment, Biology, Maurisch University Heidelberg, Termany, ¹Dept of Backsion Desidge (MASTRD), ¹GKRV Schule Jernehment, Biology, ¹GKRV, ¹

Onclog, achtur University Hospital, Anhan, Demarchi. 'Joan Department of Physics, The Institute of Courser Research and Physical Montan PMS Foundation Trust, London, UK: 'Department of Physics, The Institute of Courser Research and Physical Montan PMS Foundation Trust, London, UK: 'Department's Department's Department of Physics, The Institute of Courser Research and Physica, Chefron Hospital, Chefrand, Chefren, Physica, Physical Physica, Physical Physica, Physical Physica, Physica Physica, Physica Physical Physica, Physica Physica, Physic

3. Data analysis

- Advanced (Re) TPS
- Spatially resoluted dose corrected outcome
- Radiomics
- TCP/NTCP
- Complex models
- trial hypotheses
- secondary analysis
- machine learning

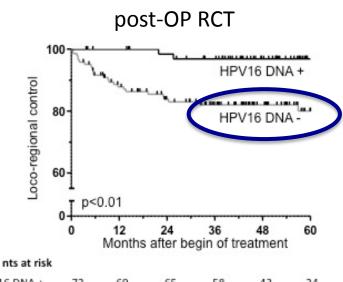
and the Party of the lot	Percetty Salasimo				Sec. of	100000	ALPON DI T. N. DATE IN			NULSE COROLDS
2 215,000,000,000,00		÷	-	- 63	Secula	E in a later		100	-	w-Mathematic
8 18 STAPPS 20			- 10	- 49	Annual) je or total		46	40	No.0554255-
A 111 104-978-20			-	- 62	Main	1 a or Mai		184	945	tes MERICE
			45	- 98	Mate	1 (F-0* 1.00)		90.0	90.	10.005031
8 10 10 494 20			84	26	15,00	5 9 10 10 10	34/58/2014	84	- Pei	No. 1000.004
			-	- 16	Mare	1.00 or total		10.0		No. OCALES
8 114 125.455+ 21				- 14	Mare	2 8100			Yes	Web (115A)(105
# 10 US 475 31		4	-	- 45	10100) je or totali	HACTORE #		-	No.1036514
28 217 179-159-21			Sec.	- 91	Renda	1)c = 164	10,751215.4		70	No. 9015025
11 110 12h HTtp 21			-	- 14	Mare	L pi w tatal	(674704	100	10	No. 0025/173
12 10 104 103 10				- 44	1620	3 (4 19 1444)	36033034	164	West.	No. 9415,524
11 ML 100.487+20			-	10	Red-are	2 plan beaut	98543134	10.0	in a	No. NEELILL
14 10 10 APC to 20	1.3 [birviik] available		84	- 04	Marco	1.je or taspi	/0022014	10.0	40	Web (4452,554
45 (14 10% MPR+ 20			-	- 14	Autore .	Jaire Mari	00003014	-	No.	ma (613054
48 105 1PA MY2 21	13 MIGDINE available		45		Mate	1 (For 188)	0102014	93	. 40	No (672/014
11 10 10445-20			-	- 64	Main	0.0-0-144	0.019964	10.0	10	No. 104015
28 144 104 40 20 - 20				- 19.	Autoria	A prior tempi	00192034	10.0	90	We 127011
38 2 075,497+ 20	13 diliculti avalatta			- 18.	Mart	1 prove holders	(atis)00		. 10	No. 0627-123
20 10 10 AVE - 20	13 4027-044 available		-	- 10	Retrate .	1000000		10.0	912	West, 2134/014
20. 302 (FA.MTs. 2)	Cl. pricking available			14	Main	à pire telati	LOUBLA.	. 164	No.	No. 215(004
\$1. Jul 100.463+-01			-	- 10	Pare	640000	1,043123	10.0	64	No. 16.14518
20.21 (199,453) 21	1.3. dependent available	4	ine .	- 28	Mate	1 per un taligati	2/18/413		No.	No. AND ADD
AR 23 124 1975-20	a destrict and any			- 17	Aprilate	1.01-01.0000		-	Yes	Ba (6,54,053
22 24 279,4534 20	L3 GLAROW pusiess			100	Marie	3 jaior tatast	16,02395-4	10.4	West 1	101 1215/114
20 200 100.0574 20	1.3 JORDEV available			14	Rende	1 Base	10000000000	194	No.	No. 121.0,004
30 SF 1154-1978-20	1.) Anyweight postance		94	18	Mate	10000	Interprise.	10.0	80.	Wes NOTIFIER
IR IT STATES IN	() Brithin evidence		44	- 48	Mara	0 jainer bahasi	10.00/0114	44	10	No. 101-4-104
28 28 105-151-20	13 MEPTHE evelage				Autor			10.0	- 10	No. 1024/014
an in states in	C			- 43	Retries	0 p 1.0 m	indujut.4	10.0	10	No. HOLDER
B B UNPERSON	13 APACAN Average			- 16	444.44	1 plan bilati		. 94	Yes.	B- 1014/101

German Cancer Consortium Partner site Dresden

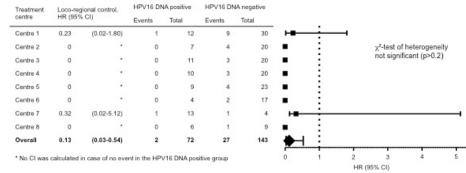
German Cancer Consortium (DKTK)

MOLECULAR STRATIFICATION BY HPV (Retrospective, post-OP RCT)

CrossMark



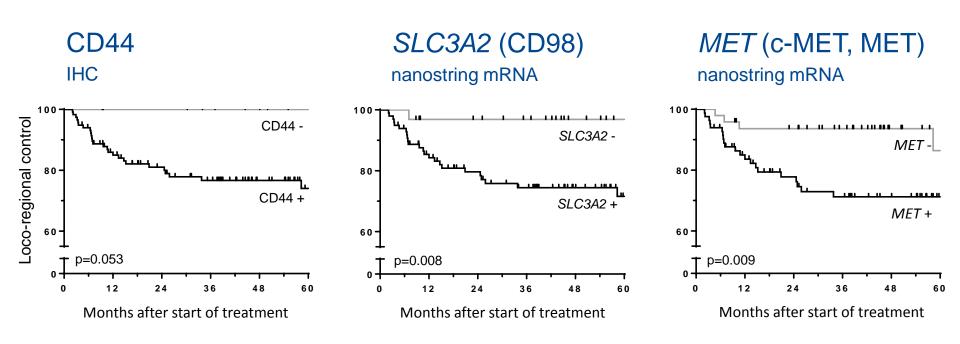
HPV in postoperative RT of oropharynx


HPV16 DNA status is a strong prognosticator of loco-regional control after postoperative radiochemotherapy of locally advanced oropharyngeal carcinoma: Results from a multicentre explorative study of the German Cancer Consortium Radiation Oncology Group (DKTK-ROG)

Fabian Lohaus ^{a,i,j,1}, Annett Linge ^{a,i,j,1}, Inge Tinhofer^{b,k}, Volker Budach^{b,k}, Eleni Gkika^{c,1}, Martin Stuschke^{c,1}, Panagiotis Balermpas^m, Claus Rödel^{d,m}, Melanie Avlar^{e,n}, Anca-Ligia Grosu^{e,o}, Amir Abdollahi^{f,p,q,r}, Jürgen Debus^{f,p,q,s}, Christine Bayer^g, Claus Belka^{g,t}, Steffi Pigorsch^{g,u}, Stephanie E. Combs^{g,u}, David Mönnich^{h,v}, Daniel Zips^{h,v}, Cläre von Neubeck^{a,j}, Gustavo B. Baretton^{a,w,x}, Steffen Löck^j, Howard D. Thames^z, Mechthild Krause^{a,i,j,y}, Michael Baumann^{a,i,j,y,*}, for the DKTK-ROG

Radiotherapy & Oncology 113:317-23, December 2014

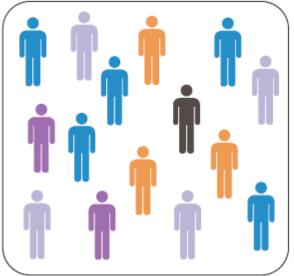
HPV16 DNA +	72	69	65	58	43	24	
HPV16 DNA -	143	116	102	86	60	36	

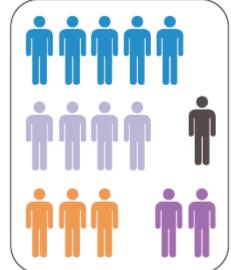


German Cancer Consortium (DKTK)

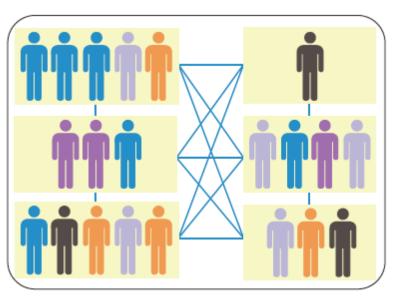
PROGNOSTIC BIOMARKERS CSC marker in HPV-negative tumors

Locally advanced HNSCC, post-OP RCT, n= 143


Linge et al., Clin Cancer Res, epub 2016


German Cancer Consortium (DKTK)

Radiation oncology in the era of precision medicine



- Patients with same tumour disease and stage have typically received similar treatments
- Large clinical trials possible

- Biomarkers allow stratification into small subgroups
- Trials for treatment individualisation

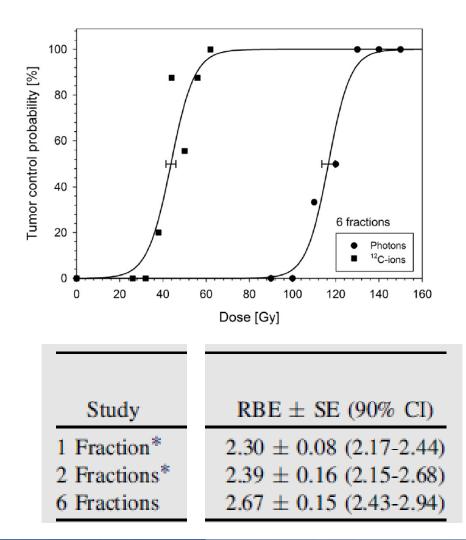
- Small numbers of patients per subgroup per centre
- Networks necessary
- Novel trial designs needed

Nature Reviews | Cancer

But this is not all...

Motion, anatomic changes during treatment, biological changes during treatment

Taking full advantage of particle therapy in terms of physics requires:


- Full image guidance (real time)
- Reduced range uncertainties (real time beam imaging)
- In vivo dosimetry
- Highest level treatment planning
- Adaptive algorithms incluing all items above
- Very rapid and exact dose delivery (repaiting, tracking)

But this is not all...

Lung, Mice, 200 MV P+

		DL5	\frown	
Time after irradiation			Protons	RBE*
180 days	1	12.0	11.5	1.04
-		(10.8 - 13.1)	(10.3 - 12.7)	/ \
	3	17.9	16.4	1.09
		(15.2 - 20.0)	(13.8-18.5)	
	10	27.7	32.2	0.86
		(19.8-31.1)	(28.0-46.3)	
210 days	1	10.9	9.1	1.20
		(9.3 - 12.2)	(7.3-10.4)	
	3	16.3	15.2	1.07
		(13.2-18.4)	(12.4-17.3)	
	10	26.1	27.2	0.96
		(21.0-19.1)	(24.2-31.0)	
240 days	1	9.6	7.3	1.33
		(7.7-11.1)	(4.8-8.9)	
	3	14.2	13.8	1.02
		(9.2-16.7)	(9.7-16.2)	
	10	23.7	22.5	1.05
		(11.7-27.7)	(14.2-26.3)	
270 days	1	8.6	5.5	1.55
		(6.4–10.1)	(2.5–7.4)	\ /
	3	12.4	11.7	1.06
		(3.7–15.7)	(3.8–14.8)	
	10	21.1	20.6	1.02
		(7.8–25.4)	(11.4–24.1)	$\mathbf{\nabla}$

But this is not all...

- ¹⁰ Biology based treatment stratification and treatment planning requires:
 - RBE assessment for a large range of beam qualities, energies and positions on the depth curve and beyond
 - RBE assessment for a large range of clinical relevant cell systems and organ systems
 - In the context of combinations used in patients
 - Under knowledge of emerging molecular biomarkers
 and functional imaging
 - Mechanistic understanding
 - Systems biology approaches for development of comprehensive models for patient use

Needs of medical community

- High quality clinical data for high level evidence
- Health economic assessments; global epidemiological assessments
- Improved clinical research structures, including IT
- Radiobiological core data (e.g. RBE)
- Integration into precision medicine era (e.g. biomarkers, combined modality effects)
- Full image guided, range uncertainty reduced, adaptive RT equipment
- Lower cost