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New things in wavelet analysis
and clustering
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What are continuous wavelets?
In contrast to the most known mean of signal analysis as Fourier transform, one-dimensional 

wavelet transform (WT) of the signal f(x) has 2D form

where the function  is the wavelet, b is a displacement (time shift), and a is a scale (or 
frequency).  Condition Cψ < ∞ guarantees the existence of  and the wavelet  inverse 
transform. Due to the freedom in  choice, many different wavelets were invented.

The family of continuous wavelets with vanishing momenta is presented here by Gaussian 
wavelets, which are generated by derivatives of Gaussian function

Most known
wavelet G2

is named “the Mexican hat”

The biparametric nature of wavelets renders it possible to analyze simultaneously 
both time and frequency characteristics of signals. So wavelet analysis is used 
as a mean for smoothing signals, filtering them from noise and, in particular, 

looking for some tiny artefacts of signals hidden in a heavy background.
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Wavelets can be applied for extracting very special 

features of mixed and contaminated signal

G2 wavelet spectrum of this signal

Filtering results. Noise is removed and high frequency 
part perfectly localized. 

NOTE: that is impossible by Fourier transform

An example of the signal with a 
localized high frequency part and 
considerable contamination

then wavelet filtering is applied

Filtering works in the wavelet domain by
thresholding of scales, to be eliminated
or extracted, and then by making 
the inverse transform



Нечувствительность вейвлет-спектров 
к дисторсиям сигналов

Различие в грануляции и зашумленности                        пропуски данных

Вверху – сигналы, внизу - соответствующие им вейвлет-спектры
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Continuous wavelets: pro and contra
PRO: - Using wavelets we overcome background estimation

- Wavelets are resistant to noise (robust)

CONTRA: - redundancy → slow speed of calculations    

- nonorthogonality (signal distotres after inverse transform!)

Besides, real signals to be analysed by computer are discrete,

So orthogonal discrete wavelets should be preferable.

However there are some special feature of continuos
wavelets which allows us to avoid inverse transfom, but 
make our analysis directly in the wavelet domain



6 12/9/2015

Back to continuous wavelets
Peak parameter estimating by gaussian wavelets
When a signal is bell-shaped one, it

can be approximated by a gaussian

Thus, we can work directly in the wavelet domain instead of time/space domain and use this 
analytical formula for WG2(a,b;x0,σ)g surface in order to fit it to the surface, obtained for a real 
invariant mass spectrum. 

The most remarkable point is: since the fitting parameters x0 and σ, can be estimated directly 

in the G2 domain, we do not need the inverse transform!

Then it can be derived analytically that its wavelet transformation looks
as the corresponding wavelet. For instance, for G2(x)

one has

Considering WG2 as a function of the dilation b we obtain its maximum 

and then solving

the equation                            we obtain                            . 
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Estimating peak parameters  in G2 wavelet domain

How it works?
Let us have a noisy invariant mass spectrum

1. transform it by G2  into wavelet domain 

2. 2. look for the wavelet surface maximum 

2

3

22

2

5
)ˆˆ(

ˆˆ

maxˆ 



 a

a

W
A

bmax ,amax .              3. From the formula for 
WG2(a,b;x0,σ)g one can derive analytical
expressions for its maximum x0 and                                         
.                      which should correspond to  
the found bmax ,amax . Thus we can use coordinates 
of the maximum as
estimations of wanted peak parameters

ax ˆ,ˆ
0

4. From them we can  obtain  halfwidth                   , 

amplitude                                             

and even the integral  2AI 

peak has bell-shape form

5

ˆ
ˆ

a


5max a



8 12/9/2015

Application results to CBM spectra
Low-mass dileptons (muon channel) ω. Gauss fit 

of reco signal
M=0.7785
σ =0.0125
A=1.8166
Ig=0.0569

ω. Wavelets
M=0.7700
σ =0.0143
A=1.8430
Iw=0.0598

- ω– wavelet spectrum

ω.

ω-meson

φ-meson

Even φ- and       mesons have been visible
in the wavelet space, so we could extract 
their parameters.

 

Thanks to Anna Kiseleva



Wavelet preprocessing for 2D images 

A fast algorithm was developed for 2D-wavelet.
Applying Daubechies wavelets to the image on 
the left we obtain the following wavelet expansion

Summarizing three 2D-wavelet components 
– vertical, horizontal and diagonal 
we obtain the wavelet transform independent 
on the image variability of lightening, background 
and size.

Lower row shows results of applying  2-d order 
2D-wavelets to face images of the upper row



Image compression
Ingrid Dobeshi picture restored after wavelet 
compression up to 3% of original

Fingerprint compression renders it 
possible to store in DB 2% of originals only

Oriinal restored
after 26:1 compression



Description of the algorithm

 decompose event into a set of wavelet layers (2-dimensional DWT)
 calculate for each layer RMS. 

apply “hard” rule with threshold value equal λ*RMSlayer for each layer of 
decomposition individually, where λ is a global control parameter for all layers;
 make the inverse transformation (IDWT);
 accept all residuary peaks as possible jet directions

Application to the hadronic jets reconstruction

For de-noising orthogonal wavelets are used (“coiflets”).
Works better compare to another ones.
The most symmetric from the orthogonal ones.
We use coiflet with minimal filter length and one vanishing moment.

Wavelet basis 



An example with two simulated jets 
with different width (cone size)
: Two simulated jets before adding 
background;
: Uniform noise added. 
: Two peaks with different width after 
wavelet filtering.

Reconstruction of two jets with  different width 



clustering



How big data could be clustered

In many fields of today’s science – biology, physics, geology, etc researchers deal with 
so-called big data when the amount of input data is especially large causing such 
difficulties as:

• the number of measurements to be processed is extremely large – 106 and more;

• the feature space has many dimensions;

• no preliminary information about the number and locations of the sought-for regions.

Disadvantages of k-means clustering in this case 

– fixed number of clusters in the feature space 

– changing number of clusters results in completely different clustering -
no sign of succession

On the other hand, there are algorithms that have no disadvantages like these, 
although they have a much higher complexity and, therefore, unsuitable for processing 
large amounts of input data.
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New strategy of clustering – two steps

In the first step the data undergoes intermediate clustering producing clusters 
which number is much smaller than the number of original objects. 
For clustering on the first step we choose Voronoi partition. It  divides the vector 
space in sets of points so that for each subset Sj of the partition one can choose 
such reference vector Cj that all  objects               of the subset are nearer to it than 
to any other reference vector Cj (i≠j).

One should keep in mind that that the Voronoi cells depend significantly on the 
metric used.

iSx

10 shops in a flat city and 
their Voronoi cells 

(Euclidean distance).

The same 10 shops, now 
under Manhattan distance.

One example
Estimation of the number of customers
of a given shop by the nearest distance
considerations. When customers go to  the shop 
on foot by shortest way, Euclidean distance is 
used, but if they go by a vehicle and the traffic 
paths are parallel, then a more realistic distance 
function will be the Manhattan distance
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http://en.wikipedia.org/wiki/Euclidean_distance
http://en.wikipedia.org/wiki/Taxicab_geometry
http://en.wikipedia.org/wiki/Taxicab_geometry


Delaunay triangulation and Voronoi diagram 
correspondence

The Delaunay triangulation corresponds to the Voronoi diagram 
in a one-to-one manner: the triangulation links the reference 

vectors whose Voronoi regions have common boundaries
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Formation of a Voronoi diagram on a plane: (i) nods on the plane, (ii) Delaunay triangulation, 
(iii) Voronoi diagram, (iv) superposition of the Delaunay triangulation and the resulting 
Voronoi diagram.



How it works by Growing Neural Gas

Two examples of objects to be partitioned into Voronoi mosaic

source data                   Delaney triangulation          Voronoi mosaic
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S.V. Mitsyn, G.A. Ososkov, The Growing Neural Gas and Clustering of Large Amounts of Data, 
Optical Memory and Neural Networks (Information Optics), 2011, Vol. 20, No. 4, pp. 260–270. 



The second step of clustering 
Final clustering by watershed
watershed as geodesic reconstruction

Result of watershed clustering
Thanks to Serge Mitsyn

Initial distribution
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