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Bridging High-Energy Physics and Machine Learning communitiés
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We (High Energy Physics) have been doing Big Data/Data
Science for decades without knowing it

then...

V:'.tyaé- Zuik C\Co'l-\vu: 2

| CERN DD/OC

Tim Bemmers-Lee,
Information Management: A Proposal

Information Management: A Proposal

) ...then Google, Amazon, Facebook, Yandex...=»big data, big
money=2big incentive to develop new algorithms

J =»we need to catch up!

David Rousseau, DS@LHC2015 summary part 1, Dubna, 8§ Dec 2015



http://cern.ch/DataScienceLHC2015, transparencies and
video (and twitter #DSLHC15)

Different types of talks
HEP talk geared at informing ML people
ML talk by ML people
ML talk by HEP people
Sometimes “answer” from the other community

Tutorials
Entertaining talks (with no practical direct application to HEP)

Overall quite dense : this summary by Dirk and | is more an
invitation to further reading

David Rousseau, DS@LHC2015 summary part 1, Dubna, 8§ Dec 2015

Tutorlals
Afternoon was tutorlals Some reaIIy hands -on
(not enough IMHO)
Monday : TMVA (including new iPython
interface)

Tuesday : ME (Madweight, MemTK)

Wednesday : deep learning

Thursday : Scikit-learn (including interface to
TMVA through R

Friday : Caffee (Convolutional Neural Net on
GPU)

David Rousseau, DS@LHC2015 summary part 1, Dubna, 8§ Dec 2015



S/

Data and Science in HEP: Vincenzo Innocente
#HEP2ML Excellent introduction talk for non HEP people

Data Science in industry : Ellie Dobson

Ellie was CERN fellow in ATLAS. Data Science as a job opportunity for
HEP PhD. #entertaining

ML at ATLAS&CMS : setting the stage : Mauro Donega,
Preparing for the future: opportunities for ML in ATLAS &
CMS : Tobias Golling
H#HEP2ML and #MLbyHEP Two talks setting the stages
Deep Learning RNNaissance : Juergen Schmidhuber
#entertaining Historical perspective

Feature extraction : Sergei Geyzer
#MLbyHEP How to select the relevant variables(==features)

Data and Science in HEP: V. Innocente

T il - {8 S W [ =S
Excellent mtroductlon to HEP (non distributed) data
processing for Machine Learning people
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Data Science in industry : E. Dobson

N
A

] e S e

Experience of an ex Cern feIIow on Atlas in Data Science industry. Data
Science now a good opportunity for HEP PhD leaving academics.

Theory-driven approach

Data-driven approach
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ATLAS&CMS : settmg the stage M. Donega

What we’ve used ML so far in ATLAS/CMS:
Pattern recognition: clustering pixels
Tracks classification: duplicate removal, quality selection,...
Energy / momentum regressions: photons, electrons, (b-)jets,...

Objects identification: select electron, b/c-jet,...

jets) background

form (typically

Entire event classification: separate signal from background(s)

events

Fisher discriminant, Likelihoods, Neural Networks, BDT, 1D/2D

fit MVA outputs

Data placement: predict which samples will become hot

The vast majority of these application moved from “cut-based”
solutions to supervised learning techniques (unsupervised

learning at present not used)
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Systematic uncertainties on inputs

Systematics uncertainties typically lead to non-optimal classification/regression.
We know how to set a systematic on the input variables but don’t have a standard recipe
to assign systematics to BDT outputs.

Example: photon identification

BDT classifier to separate photons from fake photons i.e. jets (1m0—vyy)

o(12) input variables, some of which are correlated, mostly describing the shape of
the calorimeter cluster

. . . . = = -1
Use physics driven features not full information w poprelimineryis=STeV, L=198M
S 900 =
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Fraction of Jets
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Preparing for the future: opportunities for ML in
ATLAS &CMS:T. Gollmg
et i

Vil

ATL-PHYS-PUB- 2015 001

Example: charm-jet Idelflcatlon
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Define 2 discriminants .
tt Simulation
/5= 8TeV
- zﬁr‘ > 20 GeV
based on 3 NN outputs: e
JetFitterCharm
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Loose ends: HEP Particularities

Mismodeling: data vs. simulation
— Systematic uncertainties based on mismodeling uncertainty
The better the classification the larger the deviation (showstopper, e.g. photon ID)

— (Limited) possibility to validate and calibrate MC to data
In MC we use data with a large variation in relative weights / neg weights — problems for training

Variable-length / non-continuous input feature phase space
We usually have a model based on our physics knowledge — this leads to two extreme
approaches:
— Matrix Element Method (MEM): rely on “calculable” part of model
— ML: let machine learn (still model dependence)
— MEM pros & cons:
< Pros: no need to train, no need for large statistics, make us of maximum available
information
< Cons: slow for complex final states, many approximations/simplifications of the model
needed
Can we combine ML and physics input in a smart way?
Features may vary significantly e.g. with p; or eta (analogy: facial expressions in face

recognition)
41



nggs ML challenge 201

7

Q (started DR meeting Balazs Kegl data scientist
at LAL-Orsay cafeteria summer 2012)

L1 Why not put some ATLAS simulated data on

HigosH] the HiggsML challenge the web and ask data scientists to find the best

thggyphyMy,;shp‘"l“m: machine learning algorithm (=MVA) to find the
Higgs ?

o Instead of HEP people browsing machine
learning papers, coding or downloading possibly
interesting algorithm, trying and seeing whether
it can work for our problems

(L Challenge for us : make a full ATLAS Higgs
analysis simple for non physicists, but not too

simple so that it remains useful

L Also try to foster long term collaborations
between HEP and ML

U http://imlr.org/proceedings/papers/v42/

David Rousseau, DS@LHC2015 summary part 1, Dubna, 8 Dec 2015

From domam to challenge and back

Challenge J Challen
. ge
Domain e.g. HEP organisation
18 months [\

| Problem | simplify P
Domain -
experts Cr(I)Wd
solve he
the domain #months e
bl challenge

problem
/\ >n months/ygars ?
[ Soluion | SR | souen |

David Rousseau, HiggsML what now, 16th November 2015



LHCb : Flavour of physms challenge

= B = S aa [ O,
Wrt nggsML 5|m|Iar optlmlsatlon of
significance of a rare signal

New ingredient : handle data/MC
mismodeling

Turned out to be even more tricky than
anticipated

David Rousseau, DS@LHC2015 summary part 1, Dubna, 8§ Dec 2015

Trackmg challenge

Fast and efficient tracking more
and more essential as LHC

luminosity increases=>»tracking v
©
challenge? 1 ) x
Trickier to organise than HiggsML i
or the like: o
T ’ XN
less “on-the-shelf” algorithms than y ’\,/‘
i e | J / .’
for classification //,s A
. . L V74
Figure of merit combination of i 4
efficiency/fake rate/CPU time e
CPU time to be measured in a well i "'\‘5
defined way / —
Goal is to go online in summer / / /
2016

David Rousseau, HiggsML what now, 16th November 2015



Deep Learning RNNaissance : Juergen Schmidhuber

My diploma thesis (1987):
first concrete design of
recursively self-improving Al

Learn & improve learning
algorithm itself, and also the
meta-learning algorithm, etc...

J. Schmidhuber, 1987

Schmldhuber (2)

Robot Cars

http://www.idsia.ch/~juergen/robotcars.html

1995: Munich to
Denmark and
back on public
Autobahns, up to
180 km/h, no ¥
GPS, passing
other cars

Ernst
Dickmanns,

2014 20 year anniversary of the robot

car pioneer,

self-driving cars in highway traffic Munich, 80s




Feature extractlon S. Gleyzer

While performing data analysis one of the most
crucial decisions is which features to use
Garbage In = Garbage Out

Ingredients:
Relevance to the problem
Level of understanding of the feature
Power of the feature and its relationship with others

How to:
Select
Assess
Improve

Feature set
used to solve the problem

David Rousseau, DS@LHC2015 summary part 1, Dubna, 8 Dec 2015

Gleyzer (2)

T

reV|ewed various tools

Often in HEP one searches for new phenomena and
applies classifiers trained on MC for at least one of
the classes (signal) or sometimes both to real data

Flexibility is KEY to any search

It is more beneficial to choose a reduced parameter
space that consistently produces strong performing
classifiers at actual analysis time

Feature selection tool
R (CRAN): Boruta, RFE, CFS, Fselector, caret

TMVA: FAST algo (stochastic wrapper), Global Loss
function

Scikit-Learn
Bioconductor

David Rousseau, DS@LHC2015 summary part 1, Dubna, 8§ Dec 2015



TMVA tutorlal

TMVA is the workhorse ML used in HEP
As been somewhat left behind

Rejuvenated effort since last summer, for example,
interface to R (hence to outside ML world)

iPython interface

TMVA and ROOTR plugins Data Flow

R TMVA Plugins
—— N T —
’ ‘ A fDfTrain
fDfTest —a 3
|
7 fDfSpectators — |

— _ e - TRonarene

LTuesday

Matrix Element technique plus experience ttH : Lorenzo Bianchini

#HEP2ML ME is not Machine Learning. Why ME in this workshop ? Why don’t we through all 4-
vector to a BDT/NN and let it figure out the physics ? Won’t work. However possibility for a mixed
approach: use ME output as a feature

Approximate Bayesian Computation : Richard Wilkinson

#ML2HEP ABC widely used outside HEP, little in HEP, probably because we have quite good
simulation suite (generators+geant4). Still possible niches, see Josh Bendavid answer

Approximate likelihood : Kyle Cranmer
#MLbyHEP

Stochastic optimization : beyond mathematical programming : Marc Schoenauer
#ML2HEP Review of optimisation method for chaotic landscape, of high dimensionality (where
Minuit fails)

Software R&D for Next Generation of HEP Experiments, Inspired by Theano : Amir Farbin

#MLbyHEP Theano : python based symbolic representation and operations, optimized calculation on CPU’s and
GPU’s. Tried out for MEM calculation. New non LHC HEP experiment (e.g. Dune) : tried out DNN reco

Better cities through imaging : Gregory Dobler

#tentertaining : “One picture every 10s of Manhattan skyline for two years”. “Video of a busy road crossing”. What can
you do with this ? A lot!

David Rousseau, DS@LHC2015 summary, Stat Forum, 24 Nov 2015



Matrix Element technique plus experience ttH : L.

Blanchlm
i — SN e

ME : compute event probablllty from first principle (zero “learning”!, but very
human/computer time intensive)

Canonical example: top mass

il

Y = 4-vectors of jets and leptons

= top quark mass
X = 4-vectors of the 2 — 6 scattering (ancillary variables)
W(Y|X) = detector response

Matrix Element Method

p 5 (MEM)
Tut o
o dPx (M1, o foln) (@) 1M 1) PYX
T v .
o w+ dPy|x = W(Y|X)dY

dPx y dPy|X x dpx(_\/.)

APy (11,) = [/dPx( V) x W(Y|X)] ay

P b

Tuesday, November 10, 15

ATLAS, PRD 91 (2015) 012006

I.f? 0.25 T LI L L L L L L L L T ]
© ATLAS Simulation -
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Bianchini (3)

FSummry & oulok

A field where ML can have some complementarity

P higher-order predictions difficult to integrate into the MEM
= LO vs NLO, parton shower, transfer function

» ML can help where MEM falls short
- several examples already exist

P squeezing every bit of information out of LHC data is our mandate!

Tuesday, November 10, 15

Approximate Bayesian Computation : R.
Wilkinson
= /3] g eSS \z?/—

. ! A0

i Introductory course on ABC

We have a theory/model with parameters 6, we perform
experiments yielding data D

@ The inverse-problem: observe data D, estimate parameter values 6
which explain the data.

Strepsirrhini Haplorhini
r 1

Bushbabie New World Old World
rsiers Monkeys Monkeys

The Bayesian approach temus " and Lonses T hoes

s to fnd the poster B »

is to find the posterior Mo DB .
BT D

distribution , T

© PLIOCENE
5

MIOCENE

7w(0|D) o< w(0)w(D|6)

posterior o

OLIGOCENE

¢ — - — -
|3 %Omomylfnrms
5 EOCENE 4

. - el
prior x likelihood : . ndapioms 2 o Oldetknown o primtes

PALAEOCENE

K/T-Bound

&

LATE CRETACEOUS o
~— Inferred age of last common ancestor of living primates

How to evaluate m(6|D)?



Rejection Algorithm

o Draw 6 from prior 7(+)
o Accept 6 with probability 7(D | )

Accepted 6 are independent draws from the posterior distribution,
(0 | D).
If the likelihood, m(D|#), is unknown:
‘Mechanical’ Rejection Algorithm
o Draw 6 from 7(+)
@ Simulate X ~ f(6) from the computer model

@ Accept 0 if D = X, i.e., if computer output equals observation

there 1s an approximate version:

Uniform Rejection Algorithm
e Draw 6 from 7(6)
e Simulate X ~ f(6)
@ Accept 6 if p(D,X) <e

David Rousseau, DS@LHC201

Wilkinson

‘f_-—,;'

...many more flavours and tricks

b J. Bendav

Some Important Points to Keep In Mind

e Tempting to map “computer model” f(6) from Richard's talk
to ATLAS/CMS full generation + simulation + reconstruction

chain

@ Worst case scenario: Evaluating metric distance for each set
of parameter values requires generating O(10°) full-sim MC

events (tens of thousands of CPU hours)

o A few possible ways this kind of technique can still be useful:

o Unfold data to generator level (or similarly produce generator
— reconstructed level response matrices which can be applied

quickly to generator level MC)—

o Extract reduced set of parameters from data using one or a
few full Monte Carlo samples, then perform ABC-type method
with a much simpler model (e.g. Bayesian integration over

Higgs couplings in Higgs combination)

o Realize model parameter variations as reweighting of one or a

few full Monte Carlo samples

Josh Bendavid (Caltech) ABC Response 2



Approximate likelihood with parameterised classifier : K.
Cranmer
B o M= f ViF2 :
EMBEDDING THE CLASSIFIER IN THE LIKELIHOOD

s = i %

Postpone evaluation of the classifier (p(s(ixieine) P
to the time when the likelihood is // \ )
evaluated and a specific value of the ) oD (R
parameter O is being tested

pleelbo) _ 7 (s(wei 00, 00)100)

p(xel01) L p(s(xe; 0o, 01)]01)

T(D;60,61) = [ [

e

clee b b e Lo L v
1000 2000 3000 4000 5000 6000 7000

X

Cranmer (2)
B TS = S

PARAMETRIZED CLASSIFIERS WITH DNN

L

Example: Z'— tt

together with:

Peter Sadowski , Daniel Whiteson, Pierre Baldi, Taylor Faucett

~

The networks were trained on 28 features: 22 low-level, 5 high-level, and the mass
0.50 r T r T T

0.451-
0.40}
0.351

Train at mz»=500,750,1250,1500 GeV

0.30F

Error rate

0.25-

0.20

Almost identical performance to
dedicated training at mz=1000 GeV

0.151

0.10|

0.05 . : ‘ ‘
200 l 600 t 800 1000 1200{ 1400 % 1600
Mass




Stochastic optimization: M. Schoenauer
o ! Thorough review of different algorithms ¥

.tochastic Optimization

Hypotheses

@ Search Space 2 with some topological structure

o Objective function F  assume some weak regularity

Stochastic (Local) Search

o Randomly draw xy € © and compute F (o) Initialisation
o Until(happy)
°oy= neighbor(x:) neighbor structure on
o Compute F(y)
o If F(y) = F(x¢) then ¢i11 =y accept if improvement

else 141 =

v

@ Find one close local optimum defined by neighborhood structure

o lterate, leaving current optimum terated | ocal Search

A —
-/Mﬂll/l —

. David

Stochastic methods
o]

00 Guaranteed to converge to best answer...
O ...in infinite time.

0 Quickly get a “good enough” answer.
o Useful in time-constrained systems (L1 or HLT?).
00 Robust minimum vs. absolute best.

o Useful in optimization of analyses with many systematic
uncertainties.

0o ATLAS+CMS Higgs 4000 parameter likelihood.

o Is there something as accurate as MINUIT but faster?

DR: pattern recognition ? data placement ?

a.david@cern.ch  DataScience@LHC 2015



Software R&D for Next Generation of HEP Experiments,

In}spi o:A

LArTPC Reconstruction

* Neutrino Physics has a long history of hand scans.

Decompression > 3D Track Finding

* QScan: ICARUS user assisted reconstruction. ] ! !
Event Splitting 3D Vertex Finding
* Full automatic reconstruction has yet to be ) ]

Shower ID

* LArSoft project: art framework + LArTPC

demonstrated. Filtering and
Deconvolution

Calorimetry

I

reconstruction algorithm, started in ArgoNeuT Hit-Finding Flash-Finding
and contributed to/used by many experiments. 1 T
| Particle ID
. . Disambiguation \ l :
* |deally suited for DNN-based reconstruction
l Event Selection
2D Clustering and Classification
* Just need to know what type of event \.‘ ;':::C;:J‘:t:' S l
(classification) and the energy of the neutrino Energy
. Reconstruction
(regression).

| Vertex 2D Setup

Vertex Properties | Position and Links

[Ciseve Abc on wires ]

[ ox cancet

=

rbi

5l il

(_;

DNN Classification of “Raw”
LArTPC Data

GooglelL,eNet 256x256

- Stopped

1-4 Tracks With or without noise, DNN correctly classifies ~90-99%



Farbin (3)

_!Theano: optlmlsed sybollc computatlon | python

Theano

* Might be trivial to implement some algorithms with Theano.

* Anything you can write as a formula can be easily expressed in Theano and
automatically optimized.

* Many things are already implemented.

e For example, Kalman Filter (from:
SymPy-Theano-part-3/)

from sympy import MatrixSymbol, latex

n = 1000 # Number of variables in our system/current stat
e

k = 500 # Number of variables in the observation

mu = MatrixSymbol('mu', n, 1) # Mean of current state

Sigma = MatrixSymbol('Sigma', n, n) # Covariance of current state

H = MatrixSymbol('H', k, n) # A measurement operator on current state

R = MatrixSymbol('R"', k, k) # Covariance of measurement noise

data = MatrixSymbol('data', k, 1) # Observed measurement data

newmu = mu + SigmaxH.T * (R + HxSigma*H.T).I * (Hxmu — data) # Updated mean
newSigma= Sigma — Sigma*H.T * (R + H%Sigma*H.T).I * H % Sigma # Updated covariance
inputs = [mu, Sigma, H, R, datal

outputs = [newmu, newSigmal

dtypes = {inp: 'float64' for inp in inputs}

from sympy.printing.theanocode import theano_function

f = theano_function(inputs, outputs, dtypes=dtypes)

import numpy

ninputs = [numpy.random.rand(x*i.shape).astype('float64') for i in inputs]
nmu, nSigma = f(xninputs)

Better cities through |magmg Dobler

e 24,

=)

Symposium




Friday: open data round table
_BEBS_L S S N

Open data / repllcablllty is a hot topic in science at large
Different LHC experiments have different approaches:
Release a fraction of reconstructed data, possibly with Monte Carlo
Release a software
Release of analysis ntuple
Not clear what will happen in practice (I mean, beyond PR)
Key question IMHO: how to collaborate on new analysis techniques
with people outside ATLAS (data scientists) and even in other LHC

collaborations ?

Open datasets proposed should be enough to try new ideas. But what
about discussions/topical publications

Time frame for data scientist is %2 year (next ICML, next NIPS...)

Time frame for ATLAS/CMS publication more like two years

But should not be an issue for non-analysis stuff, like Data Placement or
tracking

David Rousseau, DS@LHC2015 summary part 1, Dubna, 8§ Dec 2015



