

- ☐ We (High Energy Physics) have been doing Big Data/Data Science for decades without knowing it
- then...

Information Management: A Proposal

- ...then Google, Amazon, Facebook, Yandex... → big data, big money → big incentive to develop new algorithms
- → we need to catch up!

Foreword

- http://cern.ch/DataScienceLHC2015, transparencies and video (and twitter #DSLHC15)
- Different types of talks
 - HEP talk geared at informing ML people
 - ML talk by ML people
 - ML talk by HEP people
 - Sometimes "answer" from the other community
 - Tutorials
 - Entertaining talks (with no practical direct application to HEP)
- Overall quite dense : this summary by Dirk and I is more an invitation to further reading

David Rousseau, DS@LHC2015 summary part 1, Dubna, 8 Dec 2015

Tutorials

Idio
Afternoon was tutorials. Some really hands-on (not enough IMHO)
Monday: TMVA (including new iPython interface)
Tuesday : ME (Madweight, MemTK)
Wednesday : deep learning
Thursday: Scikit-learn (including interface to TMVA through R
Friday: Caffee (Convolutional Neural Net on GPU)

Monday

- ☐ Data and Science in HEP: Vincenzo Innocente
 - #HEP2ML Excellent introduction talk for non HEP people
- ☐ Data Science in industry : Ellie Dobson
 - Ellie was CERN fellow in ATLAS. Data Science as a job opportunity for HEP PhD. #entertaining
- ML at ATLAS&CMS : setting the stage : Mauro Donega, Preparing for the future: opportunities for ML in ATLAS & CMS : Tobias Golling
 - #HEP2ML and #MLbyHEP Two talks setting the stages
- Deep Learning RNNaissance : Juergen Schmidhuber
 - #entertaining Historical perspective
- Feature extraction : Sergei Geyzer
 - #MLbyHEP How to select the relevant variables(==features)

David Rousseau, DS@LHC2015 summary, Stat Forum, 24 Nov 2015

Data and Science in HEP: V. Innocente

Excellent introduction to HEP (non distributed) data processing for Machine Learning people

Data Science in industry: E. Dobson

Mark Watson

£4.99

☆☆☆☆☆ (50)

Why recommended?

'start with the system and work towards the data'

130

150

m., [GeV]

-100

100

'start with the data and work towards the system'

Markus Zusak

£2.49

★★★★ (3,035)

Why recommended

Donna Tartt

£5.98

☆☆☆☆☆ (442)

Why recommended?

ATLAS&CMS: setting the stage: M. Donega

- ☐ What we've used ML so far in ATLAS/CMS:
 - Pattern recognition: clustering pixels
 - Tracks classification: duplicate removal, quality selection,...
 - o Energy / momentum regressions: photons, electrons, (b-)jets,...
 - Objects identification: select electron, b/c-jet,... form (typically jets) background
 - Entire event classification: separate signal from background(s) events
 - Fisher discriminant, Likelihoods, Neural Networks, BDT, 1D/2D fit MVA outputs
 - Data placement: predict which samples will become hot
 - The vast majority of these application moved from "cut-based" solutions to supervised learning techniques (unsupervised learning at present not used)

Donega (2)

BDT output

Number of classes (5) and boundaries chosen to optimize the S/B. (discard events in the lowest score bin)

Transformed such that the sum of the signal components is flat

FTH Mauro Donegà: Data Science @ LHC 2015

20

Donega (3)

Systematic uncertainties on inputs

Systematics uncertainties typically lead to non-optimal classification/regression.

We know how to set a systematic on the input variables but don't have a standard recipe to assign systematics to BDT outputs.

Example: photon identification

BDT classifier to separate photons from fake photons i.e. jets $(\pi^0 \rightarrow \gamma \gamma)$ o(12) input variables, some of which are correlated, mostly describing the shape of the calorimeter cluster

Use physics driven features not full information

ETH Mauro Donegà: Data Science @ LHC 2015

Ref. https://twiki.cern.ch/twiki/bin/view/CMSPublic/EGMPhotonsSpring2013 8

Preparing for the future: opportunities for ML in ATLAS & CMS : T. Golling

ATL-PHYS-PUB-2015-001

Example: charm-jet Identification

 Define 2 discriminants based on 3 NN outputs:

anti-
$$b \equiv \frac{P_c}{P_b}$$

anti-light
$$\equiv \frac{P_c}{P_{\text{light}}}$$

Golling (2)

Loose ends: HEP Particularities

- · Mismodeling: data vs. simulation
 - Systematic uncertainties based on mismodeling uncertainty
 - The better the classification the larger the deviation (showstopper, e.g. photon ID)
 - (Limited) possibility to validate and calibrate MC to data
- In MC we use data with a large variation in relative weights / neg weights problems for training
- Variable-length / non-continuous input feature phase space
- We usually have a model based on our physics knowledge this leads to two extreme approaches:
 - Matrix Element Method (MEM): rely on "calculable" part of model
 - ML: let machine learn (still model dependence)
 - MEM pros & cons:
 - Pros: no need to train, no need for large statistics, make us of maximum available information
 - Cons: slow for complex final states, many approximations/simplifications of the model needed
- · Can we combine ML and physics input in a smart way?
- Features may vary significantly e.g. with p_T or eta (analogy: facial expressions in face recognition)

Higgs ML challenge 2014

- ☐ (started DR meeting Balazs Kegl data scientist at LAL-Orsay cafeteria summer 2012)
- Why not put some ATLAS simulated data on the web and ask data scientists to find the best machine learning algorithm (=MVA) to find the Higgs?
 - Instead of HEP people browsing machine learning papers, coding or downloading possibly interesting algorithm, trying and seeing whether it can work for our problems
- ☐ Challenge for us: make a full ATLAS Higgs analysis simple for non physicists, but not too simple so that it remains useful
- □ Also try to foster long term collaborations between HEP and ML
- http://jmlr.org/proceedings/papers/v42/

David Rousseau, DS@LHC2015 summary part 1, Dubna, 8 Dec 2015

From domain to challenge and back

David Rousseau, HiggsML what now, 16th November 2015

LHCb: Flavour of physics challenge

- - Wrt HiggsML similar optimisation of significance of a rare signal
 - New ingredient : handle data/MC mismodeling

☐ Turned out to be even more tricky than anticipated

David Rousseau, DS@LHC2015 summary part 1, Dubna, 8 Dec 2015

Tracking challenge?

challenge?

- Trickier to organise than HiggsML or the like:
 - less "on-the-shelf" algorithms than for classification
 - Figure of merit combination of efficiency/fake rate/CPU time
 - CPU time to be measured in a well defined way
- Goal is to go online in summer 2016

Deep Learning RNNaissance: Juergen Schmidhuber

Schmidhuber (2)

Robot Cars

http://www.idsia.ch/~juergen/robotcars.html

1995: Munich to Denmark and back on public Autobahns, up to 180 km/h, no GPS, passing other cars

2014: 20 year anniversary of self-driving cars in highway traffic

Ernst Dickmanns, the robot car pioneer, Munich, 80s

Feature extraction: S. Gleyzer

- ☐ While performing data analysis one of the most crucial decisions is which features to use
 - o Garbage In = Garbage Out
 - o Ingredients:
 - Relevance to the problem
 - · Level of understanding of the feature
 - Power of the feature and its relationship with others
- ☐ How to:

Select

Assess

Improve

Feature set

used to solve the problem

David Rousseau, DS@LHC2015 summary part 1, Dubna, 8 Dec 2015

Gleyzer (2)

- ...reviewed various tools
- □ Often in HEP one searches for new phenomena and applies classifiers trained on MC for at least one of the classes (signal) or sometimes both to real data
 - Flexibility is KEY to any search
 - It is more beneficial to choose a reduced parameter space that consistently produces strong performing classifiers at actual analysis time
- Feature selection tool
 - R (CRAN): Boruta, RFE, CFS, Fselector, caret
 - TMVA: FAST algo (stochastic wrapper), Global Loss function
 - Scikit-Learn
 - Bioconductor

TMVA tutorial

- ☐ TMVA is the workhorse ML used in HEP
- ☐ As been somewhat left behind
- Rejuvenated effort since last summer, for example, interface to R (hence to outside ML world)
- ☐ iPython interface

Tuesday

- ☐ Matrix Element technique plus experience ttH : Lorenzo Bianchini
 - #HEP2ML ME is not Machine Learning. Why ME in this workshop? Why don't we through all 4-vector to a BDT/NN and let it figure out the physics? Won't work. However possibility for a mixed approach: use ME output as a feature
- Approximate Bayesian Computation : Richard Wilkinson
 - #ML2HEP ABC widely used outside HEP, little in HEP, probably because we have quite good simulation suite (generators+geant4). Still possible niches, see Josh Bendavid answer
- Approximate likelihood : Kyle Cranmer
 - #MLbyHEP
- Stochastic optimization : beyond mathematical programming : Marc Schoenauer
 - #ML2HEP Review of optimisation method for chaotic landscape, of high dimensionality (where Minuit fails)
- Software R&D for Next Generation of HEP Experiments, Inspired by Theano: Amir Farbin
 - #MLbyHEP Theano: python based symbolic representation and operations, optimized calculation on CPU's and GPU's. Tried out for MEM calculation. New non LHC HEP experiment (e.g. Dune): tried out DNN reco
- ☐ Better cities through imaging : Gregory Dobler
 - #entertaining: "One picture every 10s of Manhattan skyline for two years". "Video of a busy road crossing". What can you do with this? A lot!

Matrix Element technique plus experience ttH: L. Bianchini

Tuesday, November 10, 15

Bianchini (2)

Bianchini (3)

Summary & outlook

A field where ML can have some complementarity

- higher-order predictions difficult to integrate into the MEM
 - LO vs NLO, parton shower, transfer function
- ▶ ML can help where MEM falls short
 - several examples already exist
- > squeezing every bit of information out of LHC data is our mandate!

Tuesday, November 10, 15

Approximate Bayesian Computation : R. Wilkinson

- ☐ Introductory course on ABC
- \square We have a theory/model with parameters θ , we perform experiments yielding data D
 - The inverse-problem: observe data D, estimate parameter values θ which explain the data.

The Bayesian approach is to find the posterior distribution

$$\pi(\theta|D) \propto \pi(\theta)\pi(D|\theta)$$
posterior \propto
prior \times likelihood

How to evaluate $\pi(\theta|D)$?

Wilkinson (2)

Rejection Algorithm

- Draw θ from prior $\pi(\cdot)$
- Accept θ with probability $\pi(D \mid \theta)$

Accepted θ are independent draws from the posterior distribution, $\pi(\theta \mid D)$.

If the likelihood, $\pi(D|\theta)$, is unknown:

'Mechanical' Rejection Algorithm

- Draw θ from $\pi(\cdot)$
- Simulate $X \sim f(\theta)$ from the computer model
- Accept θ if D = X, i.e., if computer output equals observation

there is an approximate version:

Uniform Rejection Algorithm

- Draw θ from $\pi(\theta)$
- Simulate $X \sim f(\theta)$
- Accept θ if $\rho(D, X) \leq \epsilon$

David Rousseau, DS@LHC201 ...many more flavours and tricks

Wilkinson ...actually best summarized by J. Bendavid

Some Important Points to Keep In Mind

- Tempting to map "computer model" $f(\theta)$ from Richard's talk to ATLAS/CMS full generation + simulation + reconstruction chain
- Worst case scenario: Evaluating metric distance for each set of parameter values requires generating $O(10^6)$ full-sim MC events (tens of thousands of CPU hours)
- A few possible ways this kind of technique can still be useful:
 - Unfold data to generator level (or similarly produce generator

 → reconstructed level response matrices which can be applied
 quickly to generator level MC)→
 - Extract reduced set of parameters from data using one or a few full Monte Carlo samples, then perform ABC-type method with a much simpler model (e.g. Bayesian integration over Higgs couplings in Higgs combination)
 - Realize model parameter variations as reweighting of one or a few full Monte Carlo samples

Approximate likelihood with parameterised classifier : K. Cranmer

EMBEDDING THE CLASSIFIER IN THE LIKELIHOOD

Postpone evaluation of the classifier to the time when the likelihood is evaluated and a specific value of the parameter θ is being tested

$$T(D; \theta_0, \theta_1) = \prod_{e} \frac{p(x_e | \theta_0)}{p(x_e | \theta_1)} = \prod_{e} \frac{p(s(x_e; \theta_0, \theta_1) | \theta_0)}{p(s(x_e; \theta_0, \theta_1) | \theta_1)}$$

26

Cranmer (2)

PARAMETRIZED CLASSIFIERS WITH DNN

Example: $Z' \rightarrow t\overline{t}$

together with:

Peter Sadowski, Daniel Whiteson, Pierre Baldi, Taylor Faucett

The networks were trained on 28 features: 22 low-level, 5 high-level, and the mass

Train at $m_{Z'}$ =500,750,1250,1500 GeV

Almost identical performance to dedicated training at $m_{Z'}$ =1000 GeV

Stochastic optimization: M. Schoenauer

Comments • Find one close local optimum defined by neighborhood structure • Iterate, leaving current optimum lterated Local Search

Schoenauer: summarised by A. David

Ingia -

Stochastic methods

- □ Guaranteed to converge to best answer...
 - ...in infinite time.
- Quickly get a "good enough" answer.
 - Useful in time-constrained systems (L1 or HLT?).
- Robust minimum vs. absolute best.
 - Useful in optimization of analyses with many systematic uncertainties.
- □ ATLAS+CMS Higgs 4000 parameter likelihood.
 - Is there something as accurate as MINUIT but faster?
- DR: pattern recognition ? data placement ?

Software R&D for Next Generation of HEP Experiments, Inspired by Theano : Amir Farbin

LArTPC Reconstruction

- Neutrino Physics has a long history of hand scans.
 - · QScan: ICARUS user assisted reconstruction.
- Full automatic reconstruction has yet to be demonstrated.
 - LArSoft project: art framework + LArTPC reconstruction algorithm, started in ArgoNeuT and contributed to/used by many experiments.
- Ideally suited for DNN-based reconstruction
 - Just need to know what type of event (classification) and the energy of the neutrino (regression).

Farbin (2)

DNN Classification of "Raw" LArTPC Data

1-4 Tracks With or without noise, DNN correctly classifies ~90-99%

Farbin (3)

Theano

· Might be trivial to implement some algorithms with Theano.

- Anything you can write as a formula can be easily expressed in Theano and automatically optimized.
- · Many things are already implemented.
- For example, Kalman Filter (from: http://matthewrocklin.com/blog/work/2013/04/05/ SymPy-Theano-part-3/)

```
from sympy import MatrixSymbol, latex
n = 1000  # Number of variables in our system/current state
e
k = 500
mu = MatrixSymbol('mu', n, 1)  # Mean of current state
Sigma = MatrixSymbol('Sigma', n, n)  # Covariance of current state
H = MatrixSymbol('H', k, n)  # A measurement operator on current state
R = MatrixSymbol('H', k, k)  # Covariance of measurement noise
data = MatrixSymbol('data', k, 1)  # Observed measurement data
newmu = mu + Sigma*H.T * (R + H*Sigma*H.T).I * (H*mu - data)  # Updated mean
newSigma= Sigma - Sigma*H.T * (R + H*Sigma*H.T).I * H * Sigma  # Updated covariance
inputs = [mu, Sigma, H, R, data]
outputs = [newmu, newSigma]
dtypes = {inp: 'float64' for inp in inputs}

from sympy.printing.theanocode import theano_function
f = theano_function(inputs, outputs, dtypes=dtypes)
import numpy
ninputs = [numpy.random.rand(*i.shape).astype('float64') for i in inputs]
nmu, nSigma = f(*ninputs)
```

Better cities through imaging: Dobler

Symposium

David Rousseau, DS(a)LHC2015 summary part

Friday: open data round table

Open data / replicability is a hot topic in science at large
Different LHC experiments have different approaches:
 Release a fraction of reconstructed data, possibly with Monte Carlo
 Release a software
 Release of analysis ntuple
Not clear what will happen in practice (I mean, beyond PR)
Key question IMHO: how to collaborate on new analysis techniques with people outside ATLAS (data scientists) and even in other LHC collaborations?
 Open datasets proposed should be enough to try new ideas. But what about discussions/topical publications

David Rousseau, DS@LHC2015 summary part 1, Dubna, 8 Dec 2015

tracking

Time frame for data scientist is ½ year (next ICML, next NIPS...)
Time frame for ATLAS/CMS publication more like two years

o But should not be an issue for non-analysis stuff, like Data Placement or