
INTRODUCTION TO MACHINE
LEARNING

 
Alex Rogozhnikov, 2015



WHAT IS ML ABOUT?
Inference of statistical dependencies which give us ability to

predict

Data is cheap, knowledge is precious



WHERE ML IS CURRENTLY USED?
Search engines, spam detection
Security: virus detection, DDOS defense
Speech recognition
Video recognition: faces detection / identification,
pedestrian detection
Credit scoring, fraud detection
Market basket analysis, Customer relationship management
(CRM)
Brain-computer interface
Churn prediction
... and hundreds more



PROBLEMS ADDRESSED BY ML
1. Classification (binary classification, multiclassification)
2. Regression

AND ALSO
1. Outlier detection
2. Density estimation
3. Representation learning
4. Clustering
5. Dimensionality reduction
6. etc.



SUPERVISED LEARNING: NOTION
training data is represented as set of pairs

,xi yi

 is index of event
 is vector of features available for event
 is target — the value we need to predict

i
xi
yi

Examples:

defining type of particle (or decay channel)
 — binary classification, 1 is signal, 0 is bck∈ {0, 1}yi



MEASURING QUALITY
Output of classification algorithm is probability

ROC curve demonstration

https://arogozhnikov.github.io/2015/10/05/roc-curve.html


 where  are predictions of
random background and signal events.

ROC AUC 
(AREA UNDER THE ROC CURVE)

ROC AUC = P(x < y) x, y



ROC: NOTION DIFFERENCE

 

HEP notion

→    

ML notion



DECISION TREES
Example: predict outside play based on weather conditions.



DECISION TREE

Decision trees in ML check only simple conditions: > cxj



DECISION TREE
fast & intuitive prediction
building optimal decision tree is 
building tree from root using greedy optimization 

each time we split one leaf, finding optimal feature and
threshold
need criterion to select best splitting (feature, threshold)

NP complete

https://people.csail.mit.edu/rivest/HyafilRivest-ConstructingOptimalBinaryDecisionTreesIsNPComplete.pdf


NAIVE APPROACH TO BUILD TREE
Take split, which provides minimal misclassification

Why this is bad approach:



DECISION TREE: SPLITTING CRITERION
 

Impurity functions (  - portion of signal events in leaf):

TotalImpurity = impurity(leaf ) × # samples in leaf∑leaf

p

Misclass.
Gini

Entropy

=
=
=

min(p, 1 − p)
p(1 − p)
− p log p − (1 − p) log(1 − p)



DEMONSTRATION HOW TREE GROWS



OVERFITTING
There are two definitions of overfitting, which often
coincide:

Difference-overfitting

There is significant difference in quality of predictions
between train and test.

Complexity-overfitting

Formula has too high complexity (e.g. too many
parameters), increasing the number of parameters drives to
lower quality.



INSTABILITY OF DECISION TREE

minor modifications in training dataset drive to completely
different trees



DECISION TREE SUMMARY
fast, intuitive and numerically stable
works with features of different nature
instable to modifications in train sample
ovefits (can be prevented by pre-stopping or post-pruning)
never used in applications

but ensembling of trees is popular approach



RANDOM FOREST
Simple ensembling algorithm over trees

Train independently many trees:

using random part of data
using only random subset of features

And simply averaging predictions of trees.



data optimal boundary

50 trees 2000 trees



50 trees 2000 trees



OVERFITTING

difference-overfitted (predictions for train and test are
different), but it doesn't matter
doesn't overfit: increasing complexity (adding more trees)
doesn't spoil classifier



Difference-overfitting is inessential, provided that we
measure quality on holdout (though easy to check).

Complexity-overfitting is problem — we need to test
different parameters for optimality.

Don't use distribution comparison to detect overfitting



 

RANDOM FOREST SUMMARY
Works with features of different nature
Stable to noise/modifications in data
Doesn't need much tuning
Doesn't correct mistakes done by previous trees
May generate huge formulas
From 'Testing 179 Classifiers on 121 Datasets'

The classifiers most likely to be the bests
are the random forest (RF) [...] achieves
94.1% of the maximum accuracy
overcoming 90% in the 84.3% of the data
sets.

http://machinelearningmastery.com/use-random-forest-testing-179-classifiers-121-datasets/


OTHER POPULAR ALGORITHMS:
Logistic regression
SVM (support vector machines)
ANN (artificial neural networks)
GBDT (gradient boosting over decision trees)

Libraries: start with scikit-learn.



BREAK



APPLYING ML TO TRACKING IN COMET
(with Ewen Gillies)



COMET EXPERIMENT
COMET = COherent Muon to Electron Transition

Searches for CLFV process:

+ Al → + Alμ− e−

Expected sensitivity of COMET run I:

B( + Al → + Al) < 7.2 ×μ− e− 10−15

Previous result by SINDRUM II:

B( + Al → + Al) < 7 ×μ− e− 10−13



COMET (PHASE I)

 muons are hitting aluminium target every second109



TRAJECTORY OF EMITTED ELECTRON



COMET: STRUCTURE OF TRACK
signal hits are red
bkg hits are blue
target: cleaning
background (for easier
fitting of signal track)
data structure: event
consists of many hits, for
each hit we need to
predict its type



For each hit we have

energy deposited at wire
readout time

energy deposit relative timing distance



Energy deposit, time and distance can be efficiently
combined by ML algorithms, this already clears large
amount of background hits

Better approach: use information from nearest wires:

number of hits on neighbouring wires
total energy deposited on neighboring wires
average relative time
etc



RESULTS OF GBDT
blue - energy deposition
red - three local features
green - local features + collected from
neighbors



Feature importances sorted by importance

sig_like is output of classifier based only on local wire
features.

This output is used as input to second stage model.



HOUGH TRASFORM
How to find center of a track on a plane if you know the
track radius:



 

SOFT HOUGH TRANSFORM

we have good estimation of radius, so using Hough
transform to find track centers



 

SOFT HOUGH TRANSFORM

an area with most probable track centers can be clearly
seen



 

Cleaning with GBDT + soft Hough transform



 

exponentiating (sharpening the peak) + soft inverse Hough
transform



HOUGH TRANSFORM
Direct: =∑j TijWj Ci

Inverse: =∑j SjiCi Wj

 are Hough transform (and inv. transform) matrices
 are outputs of local GBDT
 correspond to track centers, value is higher for more

probable centers

T, S
Wj
Ci



ALGORITHM OVERVIEW
1. Cleaning with GBDT on neighbour features
2. Generating one more feature:

1. Soft Hough transform
2. Exponentiation
3. Inverse Soft Hough

3. GBDT on neighbour features + inverse Hough



RESULTS
adding inverse hough as a feature to
GBDT
it's the most important feature
ROC AUC: 
0.95 (energy) → 0.9993 (combined with
inv. Hough) 
(only preliminary MC)
Still room for improvement


