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Goal of this talk

This talk will answer the following questions:

What does the global fit on b → s`` tell us about Wilson coefficients?
Description of anomalies and theoretical framework of B → K ∗µµ.
Which Wilson coefficients/scenarios receive a dominant NP contribution?
What does other approaches using different observables and methodology obtain?

Anatomy of hadronic uncertainties. Are the alternative “explanations”
(factorizable power corrections and charm) raised to explain (some) of the
anomalies really robust?

I will desconstruct those ””explanations”” pointing what we learn and where they fail in front of a global
New Physics explanation.

A Z ′ as a possible explanation?
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Motivation

Since a long time ago...
⇒ b → sγ and b → s`` Flavour Changing Neutral Currents have been used as Our Portal

to explore the fundamental theory beyond SM.

....... with not much success till 2013.

Analysis of FCNC in a model-independent approach, effective Hamiltonian:

b → sγ(∗) : HSM
∆F=1 ∝

10∑
i=1

V ∗tsVtbCiOi + . . .

O7 = e
16π2 mb (s̄σµνPRb)Fµν

O9 = e2

16π2 (s̄γµPLb) (¯̀γµ`)

O10 = e2

16π2 (s̄γµPLb) (¯̀γµγ5`), ...

• SM Wilson coefficients up to NNLO + e.m. corrections at µref = 4.8 GeV [Misiak et al.]:

CSM
7 = −0.29, CSM

9 = 4.1, CSM
10 = −4.3

• NP changes short distance Ci − CSM
i = CNP

i and induce new operators, like O′7,9,10 = O7,9,10 (PL ↔ PR)

... also scalars, pseudoescalar, tensor operators...
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Brief flash on the anomalies

Why so much excitement in Flavour Physics? What changed in and after 2013?

First measurement by LHCb of the basis of optimized observables with 1 fb−1:
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⇒ P2 exhibited a 2.9σ deviation in the bin [2,4.3] and P ′5 exhibits a 3.7σ in the [4.3,8.7] bin.
In 2015 the so called anomaly in P ′5 is confirmed with 3fb−1 in 2 bins with 2.9σ each:
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⇒ P2 will require a bit of patience to become more interesting (... a bit more of data)
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Brief flash on the anomalies

]4c/2 [GeV2q
0 5 10 15 20

K
R

0

0.5

1

1.5

2

SM

LHCbLHCb

LHCb BaBar Belle

RK =
Br (B+ → K +µ+µ−)

Br (B+ → K +e+e−)
= 0.745+0.090

−0.074±0.036 (2.6σ from SM).

• It deviates 2.6σ from SM.
• Data on BR(B+ → K +µ+µ−) is below SM
in all bins at large and low-recoil.

Also BR of neutral mode:

107 × BR(B0 → K 0µ+µ−) Standard Model Experiment Pull
[0.1,2] 0.62± 0.19 0.23± 0.11 +1.8
[2,4] 0.65± 0.21 0.37± 0.11 +1.2
[4,6] 0.64± 0.22 0.35± 0.10 +1.2
[6,8] 0.63± 0.23 0.54± 0.12 +0.4

[15,19] 0.91± 0.12 0.67± 0.12 +1.4
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Brief flash on the anomalies

107 × BR(B0 → K ∗0µ+µ−) Standard Model Experiment Pull
[0.1,2] 1.30± 1.00 1.14± 0.18 +0.2
[2,4.3] 0.85± 0.59 0.69± 0.12 +0.3

[4.3,8.68] 2.62± 4.92 2.15± 0.31 +0.1
[16,19] 1.66± 0.15 1.23± 0.20 +1.7

107 × BR(B+ → K ∗+µ+µ−) Standard Model Experiment Pull
[0.1,2] 1.35± 1.05 1.12± 0.27 +0.2
[2,4] 0.80± 0.55 1.12± 0.32 −0.5
[4,6] 0.95± 0.70 0.50± 0.20 +0.6
[6,8] 1.17± 0.92 0.66± 0.22 +0.5

[15,19] 2.59± 0.24 1.60± 0.32 +2.5

107 × BR(Bs → φµ+µ−) Standard Model Experiment Pull
[0.1,2.] 1.81± 0.36 1.11± 0.16 +1.8
[2.,5.] 1.88± 0.32 0.77± 0.14 +3.2
[5.,8.] 2.25± 0.41 0.96± 0.15 +2.9

[15,18.8] 2.20± 0.17 1.62± 0.20 +2.2

Also BR(B → Vµµ) exhibit a systematic deficit with respect to SM, particularly Bs → φµµ.
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Here there are two POINTS of VIEW:

Option A: Global View

(2015) P ′5[4,6] and P ′5[6,8] from B → K ∗µµ are at 2.9σ

(2015) RK from B → K `` is at 2.6σ

(2015) B[2,5]
Bs→φµµ at 3.2σ and B[5,8]

Bs→φµµ at 2.9σ

(2015) B[15,19]
B+→K∗+µµ at 2.5σ

(2013) 〈P2〉[2,4.3] of 1fb−1 data at 3σ∗

⇒ Look for an underlying global pattern:

RK
〈
P ′5
〉

[4,6],[6,8]
BBs→φµµ

CNP
9

+
− X X[100%] X X

CNP
10

+ X X[36%] X
− X[32%]

C9′
+ X[21%] X
− X X[36%]

C10′
+ X X[75%]

− X[75%] X

⇒ A negative contribution to Cµ
9 alleviates all anomalies and tensions.
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Here there are two POINTS of VIEW:

Option B: Short Range View

Focus EXCLUSIVELY on one SINGLE anomaly:

led easily to errors in the evaluation of uncertainties:

S.Jaeger, J. Camalich with power corrections.
M. Valli, L. Silvestrini et al. with ad-hoc charm.

(To be discussed in detail later)

⇒What is more natural a solution
consistent with all anomalies and tensions
or an ad-hoc (and theoretically weak)
partial answer different for each anomaly?:
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GLOBAL FIT:

THE OBSERVABLES
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Rare b → s processes

Inclusive

B → Xsγ (BR) .......................................................... C(′)
7

B → Xs`
+`− (dBR/dq2) ............................................ C(′)

7 , C(′)
9 , C(′)

10

Exclusive leptonic

Bs → `+`− (BR) ........................................................ C(′)
10

Exclusive radiative/semileptonic

B → K ∗γ (BR, S, AI) ................................................ C(′)
7

B → K `+`− (dBR/dq2) .............................................. C(′)
7 , C(′)

9 , C(′)
10

B→ K∗`+`− (dBR/dq2, Optimized Angular Obs.) .. C(′)
7 , C(′)

9 , C(′)
10

Bs → φ`+`− (dBR/dq2, Angular Observables) .............. C(′)
7 , C(′)

9 , C(′)
10

Λb → Λ`+`− (None so far)

etc.
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Optimized Basis of Angular Observables for B → K ∗µµ
The optimized observables P(′)

i come from the angular distribution B̄d → K̄∗0(→ K−π+)l+l− with the K ∗0 on the
mass shell. It is described by s = q2 and three angles θ`, θK and φ

d4Γ(B̄d )

dq2 d cos θ` d cos θK dφ
=

9
32π

J(q2, θ`, θK , φ) =
∑

i

Ji (q2)fi (θ`, θK , φ}

 −
φ

lθ θKB0

π

K

+

 −

µ+

µ

θ`: Angle of emission between K̄ ∗0

and µ− in di-lepton rest frame.
θK: Angle of emission between K̄ ∗0

and K− in di-meson rest frame.
φ: Angle between the two planes.

q2: dilepton invariant mass square.

Ji (q2) function of transversity (helicity) amplitudes of K∗: AL,R
⊥,‖,0 and they depend on FF and Wilson coefficients.

⇒ A‖ = 1√
2

(H+1 + H−1) and A⊥ = 1√
2

(H+1 − H−1)

Notice LHCb uses θLHCb
` = π − θus

` .
Ongoing discussion on φLHCb versus φtheory irrelevant for the fit (checked explicitly) (sign of S7,8 or P ′6,8). (Zwicky)
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Four regions in q2

Four regions in q2:

very large K ∗-recoil (4m2
` < q2 < 1 GeV2): γ almost real.

large K ∗-recoil/low-q2: EK∗ � ΛQCD or 4m2
` ≤ q2 < 9 GeV2: LCSR-FF

charmonium region (q2 = m2
J/Ψ, ...) betwen 9 < q2 < 14 GeV2.

low K ∗-recoil/large-q2: EK∗ ∼ ΛQCD or 14 < q2 ≤ (mB −mK∗)
2: LQCD-FF
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The distribution (massless case) including the S-wave and normalized to Γ′full :

1
Γ′full

d4Γ

dq2 dcos θK dcos θl dφ
=

9
32π

[
3
4

FT sin2 θK + FL cos2 θK + (
1
4

FT sin2 θK − FL cos2 θK ) cos 2θl

+
√

FTFL

(
1
2

P′4 sin 2θK sin 2θl cosφ+ P′5 sin 2θK sin θl cosφ
)

+ 2P2FT sin2 θK cos θl +
1
2

P1FT sin2 θK sin2 θl cos 2φ

−
√

FTFL

(
P′6 sin 2θK sin θl sinφ− 1

2
P′8 sin 2θK sin 2θl sinφ

)
− P3FT sin2 θK sin2 θl sin 2φ

]
(1− FS) +

1
Γ′full

WS

in blue the set of relevant observables P1,2, P′4,5.
the S-wave terms are (see discussion [M’12] & [HM’15]) not all free observables:

WS

Γ′full
=

3
16π

[
FS sin2 θ` + AS sin2 θ` cos θK + A4

S sin θK sin 2θ` cosφ

+A5
S sin θK sin θ` cosφ+ A7

S sin θK sin θ` sinφ+ A8
S sin θK sin 2θ` sinφ

]
Symmetries tells you that a complete basis (lepton masses to zero) is, for instance:

{Γ′K∗ , FL, P1, P2, P3, P ′4, P ′5, P ′6} and only 4 of {FS, AS, A4
S, A5

S, A7
S, A8

S} are independent.
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Theoretical description of B → K ∗`+`− @ low-q2: Two approaches

1. Improved-QCDF approach: QCDF+exploit symmetry relations at large-recoil (limit) among FF:

mB
mB+mK∗

V(q2) = mB+mK∗
2E A1(q2) = T1(q2) = mB

2E T2(q2) = ξ⊥(E)

mK∗
E A0(q2) = mB+mK∗

2E A1(q2)− mB−mK∗
mB

A2(q2) = mB
2E T2(q2)− T3(q2) = ξ‖(E)

- Our approach is completed with 4 types of corrections. From a FF decomposition (example):

V(q2) = mB+mK∗
mB

ξ⊥(q2) + ∆Vαs (q2) + ∆V Λ(q2)

∆Vαs (q2): Known Factorizable αs breaking corrections at NLO from QCDF.
∆V Λ(q2): Factorizable power corrections (using a systematic procedure for each FF, see later)

⇒ IQCDF is Transparent, valid for ANY FF parametrization (BZ, BSZ, KMPW,...).
Dominant correlations automatically implemented in a transparent way via SYMMETRIES.

⇒ Construction of FFI observables P(′)
i : at LO in 1/mb, αs and large-recoil limit (E∗K large):

AL,R
⊥ ∝ ξ⊥ AL,R

‖ ∝ ξ⊥ AL,R
0 ∝ ξ‖
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Theoretical description of B → K ∗`+`− @ low-q2: Two approaches

QCDF provides a systematic framework to include αs (factorizable and non-factorizable) corrections.
Amplitude is represented by:

〈`+`−K̄ ∗a |Heff|B̄〉 = Ca ξa + ΦB ⊗ Ta ⊗ ΦK∗ with a =⊥, ‖

Non-factorizable αs corrections:

⇒ First class: spectator quark in the B meson
participates in the hard scattering: (Ta)

⇒ Second class: Matrix elements of four-quark
operators and the chromomagnetic dipole op.: (Ca)

BUT also we include a second type of power corrections:

Non-factorizable power corrections including charm-quark loops.

All four (non-)factorizable αs and power corrections are included in our predictions.
Joaquim Matias Universitat Autònoma de Barcelona Global analysis of b → s`` anomalies



Theoretical description of B → K ∗`+`− @ low-q2

2. Full FF approach: (Bharucha, Straub, Zwicky):
Less general, attached to details of a particular LCSR computation.
⇒ ∆Fαs and ∆F Λ are included.

⇒ BUT BE CAREFUL one should add also to be complete:

Non-factorizable αs corrections from QCDF.
Non-factorizable power corrections and charm-quark loop effects

Usually applied to Si = (Ji + J̄i)/(dΓ + d̄Γ)
→ observables highly dependent on FF-error estimate

and internal assumptions of FF computation. A small error in FF induces a small error in Si

Why we prefer to work within IQCDF:

NATURAL FRAMEWORK for optimized observables Pi

CORRELATIONS ARE TRANSPARENT and easy to REPRODUCE

It allows us to predict observables from different set of FORM FACTORS (BZ,BSZ,KMPW) and to
compare results.

Amplitude analysis (Petridis, Egede, ...). Not a FF treatment but a different approach to data based
on exploiting the symmetries of the distribution.
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Different Form Factor determinations

B-meson distribution amplitudes.

FF-KMPW F i
BK (∗)(0) bi

1

f +
BK 0.34+0.05

−0.02 −2.1+0.9
−1.6

f 0
BK 0.34+0.05

−0.02 −4.3+0.8
−0.9

f T
BK 0.39+0.05

−0.03 −2.2+1.0
−2.00

V BK∗ 0.36+0.23
−0.12 −4.8+0.8

−0.4

ABK∗
1 0.25+0.16

−0.10 0.34+0.86
−0.80

ABK∗
2 0.23+0.19

−0.10 −0.85+2.88
−1.35

ABK∗
0 0.29+0.10

−0.07 −18.2+1.3
−3.0

T BK∗
1 0.31+0.18

−0.10 −4.6+0.81
−0.41

T BK∗
2 0.31+0.18

−0.10 −3.2+2.1
−2.2

T BK∗
3 0.22+0.17

−0.10 −10.3+2.5
−3.1

Table: The B → K (∗) form factors from
LCSR and their z-parameterization.

Light-meson distribution amplitudes+EOM.

Interestingly in BSZ (update from BZ) most relevant FF
from BZ moved towards KMPW. For example:

V BZ (0) = 0.41→ 0.37 T BZ
1 (0) = 0.33→ 0.31

The size of uncertainty in BSZ = size of error of p.c.

FF-BSZ B → K ∗ Bs → φ Bs → K ∗

A0(0) 0.391± 0.035 0.433± 0.035 0.336± 0.032

A1(0) 0.289± 0.027 0.315± 0.027 0.246± 0.023

A12(0) 0.281± 0.025 0.274± 0.022 0.246± 0.023

V (0) 0.366± 0.035 0.407± 0.033 0.311± 0.030

T1(0) 0.308± 0.031 0.331± 0.030 0.254± 0.027

T2(0) 0.308± 0.031 0.331± 0.030 0.254± 0.027

T23(0) 0.793± 0.064 0.763± 0.061 0.643± 0.058

Table: Values of the form factors at q2 = 0 and their uncertainties.

Joaquim Matias Universitat Autònoma de Barcelona Global analysis of b → s`` anomalies



Helicity Form Factors

All FF determinations are computed in the transversity basis (A⊥,‖,0) and correspond to V ,A0,1,2,T1,2,3.

But some people prefer (at their own risk) to use an helicity basis:
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Theoretical description of B → K ∗`+`− @ large-q2

It corresponds to large
√

q2 ∼ O(mb) above Ψ′ mass, i.e., EK is around GeV or below.

OPE in EK/
√

q2 or ΛQCD/
√

q2 (Buchalla et al). NLO QCD correct. to the OPE coeffs (Greub et al)

Lattice QCD form factors with correlations (Horgan et al proceeding update)

Estimates on BR from GP (5%) and BBF (2%) using Shifman’s model.
⇒ ±10% on angular observables to account for possible Duality Violations.

Existence of cc̄ resonances in this region (clearly seen ψ(4160) in B− → K−µ+µ−),
⇒ require to take a long bin.
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... but this region is neither the most sensitive to New Physics nor where interesting things happen!
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Brief Discussion on: P ′5 and P ′4

0 5 10 15

-1.0

-0.5

0.0

0.5

q2 HGeV2L

P
5

P ′5 was proposed for the first time in DMRV, JHEP 1301(2013)048

P ′5 =
√

2
Re(AL

0AL∗
⊥ −AR

0 AR∗
⊥ )√

|A0|2(|A⊥|2 + |A‖|2)
=
√

2
Re[n0n†⊥]√

|n0|2(|n⊥|2 + |n‖|2)
.

with n0 = (AL
0,A

R∗
0 ), n⊥ = (AL

⊥,−AR∗
⊥ ) and n‖ = (AL

‖,A
R∗
‖ )

If no-RHC |n⊥| ' |n‖| (H+1 ' 0)⇒ P ′5 ∝ cos θ0,⊥(q2)

In the large-recoil limit with no RHC

AL
⊥,‖ ∝ (1,−1)

[
Ceff

9 − C10 +
2m̂b

ŝ
Ceff

7

]
ξ⊥(EK∗) AR

⊥,‖ ∝ (1,−1)

[
Ceff

9 + C10 +
2m̂b

ŝ
Ceff

7

]
ξ⊥(EK∗)

AL
0 ∝ −

[
Ceff

9 − C10 + 2m̂bCeff
7

]
ξ‖(EK∗) AR

0 ∝ −
[
Ceff

9 + C10 + 2m̂bCeff
7

]
ξ‖(EK∗)

In SM CSM
9 + CSM

10 ' 0→ |AR
⊥,‖| � |AL

⊥,‖|
In P ′5: If CNP

9 < 0 then AR
0,‖ ↑, |AR

⊥| ↑ and |AL
0,‖| ↓, AL

⊥ ↓ and due to −, |P ′5| gets strongly reduced.
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Re[n0n†⊥]√

|n0|2(|n⊥|2 + |n‖|2)
.

with n0 = (AL
0,A

R∗
0 ), n⊥ = (AL

⊥,−AR∗
⊥ ) and n‖ = (AL

‖,A
R∗
‖ )

If no-RHC |n⊥| ' |n‖| (H+1 ' 0)⇒ P ′5 ∝ cos θ0,⊥(q2)

In the large-recoil limit with no RHC

AL
⊥,‖ ∝ (1,−1)

[
Ceff

9 − C10 +
2m̂b

ŝ
Ceff

7

]
ξ⊥(EK∗) AR

⊥,‖ ∝ (1,−1)

[
Ceff

9 + C10 +
2m̂b

ŝ
Ceff

7

]
ξ⊥(EK∗)

AL
0 ∝ −

[
Ceff

9 − C10 + 2m̂bCeff
7

]
ξ‖(EK∗) AR

0 ∝ −
[
Ceff

9 + C10 + 2m̂bCeff
7

]
ξ‖(EK∗)

In SM CSM
9 + CSM

10 ' 0→ |AR
⊥,‖| � |AL

⊥,‖|
In P ′5: If CNP

9 < 0 then AR
0,‖ ↑, |AR

⊥| ↑ and |AL
0,‖| ↓, AL

⊥ ↓ and due to −, |P ′5| gets strongly reduced.
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Brief Discussion on: P ′5 and P ′4
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P ′5 was proposed for the first time in DMRV, JHEP 1301(2013)048

P ′5 =
√

2
Re(AL

0AL∗
⊥ −AR

0 AR∗
⊥ )√

|A0|2(|A⊥|2 + |A‖|2)
=
√

2
Re[n0n†⊥]√

|n0|2(|n⊥|2 + |n‖|2)
.

with n0 = (AL
0,A

R∗
0 ), n⊥ = (AL

⊥,−AR∗
⊥ ) and n‖ = (AL

‖,A
R∗
‖ )

If no-RHC |n⊥| ' |n‖| (H+1 ' 0)⇒ P ′5 ∝ cos θ0,⊥(q2)

In the large-recoil limit with no RHC

AL
⊥,‖ ∝ (1,−1)

[
Ceff

9 − C10 +
2m̂b

ŝ
Ceff

7

]
ξ⊥(EK∗) AR

⊥,‖ ∝ (1,−1)

[
Ceff

9 + C10 +
2m̂b

ŝ
Ceff

7

]
ξ⊥(EK∗)

AL
0 ∝ −

[
Ceff

9 − C10 + 2m̂bCeff
7

]
ξ‖(EK∗) AR

0 ∝ −
[
Ceff

9 + C10 + 2m̂bCeff
7

]
ξ‖(EK∗)

In SM CSM
9 + CSM

10 ' 0→ |AR
⊥,‖| � |AL

⊥,‖|
In P ′5: If CNP

9 < 0 then AR
0,‖ ↑, |AR

⊥| ↑ and |AL
0,‖| ↓, AL

⊥ ↓ and due to −, |P ′5| gets strongly reduced.
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Brief Discussion on: P ′5 and P ′4
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P
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P ′4 was proposed for the first time in DMRV, JHEP 1301(2013)048

P ′4 =
√

2
Re(AL

0AL∗
‖ +AR

0 AR∗
‖ )√

|A0|2(|A⊥|2 + |A‖|2)
=
√

2
Re[n0n†‖]√

|n0|2(|n⊥|2 + |n‖|2)
.

with n0 = (AL
0,A

R∗
0 ), n⊥ = (AL

⊥,−AR∗
⊥ ) and n‖ = (AL

‖,A
R∗
‖ )

If no-RHC |n⊥| ' |n‖| (H+1 ' 0)⇒ P ′4 ∝ cos θ0,‖(q2)

In the large-recoil limit with no RHC

AL
⊥,‖ ∝ (1,−1)

[
Ceff

9 − C10 +
2m̂b

ŝ
Ceff

7

]
ξ⊥(EK∗) AR

⊥,‖ ∝ (1,−1)

[
Ceff

9 + C10 +
2m̂b

ŝ
Ceff

7

]
ξ⊥(EK∗)

AL
0 ∝ −

[
Ceff

9 − C10 + 2m̂bCeff
7

]
ξ‖(EK∗) AR

0 ∝ −
[
Ceff

9 + C10 + 2m̂bCeff
7

]
ξ‖(EK∗)

In SM CSM
9 + CSM

10 ' 0→ |AR
⊥,‖| � |AL

⊥,‖|
In P ′4 :If CNP

9 < 0 then AR
0,‖ ↑, |AR

⊥| ↑ and |AL
0,‖| ↓, AL

⊥ ↓ due to + what L loses R gains (little change).
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Global Fits to Wilson coefficients: History and Results 2013 with 1fb−1

Situation in 2013: Descotes-Genon, Matias, Virto 1307.5683

68.3% C.L

95.5% C.L

99.7% C.L

Includes Low Recoil data

Only @1,6D bins
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Our statement in July 2013 DMV’13:
“We found that the Standard Model hypothesis CNP

7 = 0, CNP
9 = 0 has a pull of 4.5σ”.

Other groups later on confirmed the relevance of C9 using FFD-observables (Altmannshofer, Straub 1308.1501),
low-recoil (Horgan et al. 1310.3887), Bayesian approach (Beaujean, Bobethm Van Dyk 1310.2478).
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FIT 2015
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Theory and experimental updates in 2015 fit

BR(B → Xsγ)

New theory update: BSM
sγ = (3.36± 0.23) · 10−4 (Misiak et al 2015)

+6.4% shift in central value w.r.t 2006→ excellent agreement with WA

BR(Bs → µ+µ−)

New theory update (Bobeth et al 2013), New LHCb+CMS average (2014)

BR(B → Xsµ
+µ−)

New theory update (Huber et al 2015)

BR(B → Kµ+µ−) :

LHCb 2014 + Lattice form factors at large q2 (Bouchard et al 2013, 2015)

B(s) → (K ∗, φ)µ+µ− : BRs & Angular Observables

LHCb 2015 + Lattice form factors at large q2 (Horgan et al 2013)

BR(B → Ke+e−)[1,6] (or RK ) and B → K ∗e+e− at very low q2

LHCb 2014, 2015
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Fit 2015: Statistical Approach

Frequentist approach:

χ2(Ci) = [Oexp −Oth(Ci)]j [Cov−1]jk [Oexp −Oth(Ci)]k

Cov = Covexp + Covth. We have Covexp for the first time
Calculate Cov th: correlated multigaussian scan over all nuisance parameters
Cov th depends on Ci : Must check this dependence

For the Fit:

Minimise χ2 → χ2
min = χ2(C0

i ) (Best Fit Point = C0
i )

Confidence level regions: χ2(Ci)− χ2
min < ∆χσ,n

Definition of PullSM : Example

In a model with a single free parameter C9 the χ2 minimisation allows us to determine (within a
confidence interval) C9. (We determine indeed CNP

9 )

PullSM tells you how much in this model the value of C9 preferred by data is in tension with C9 = CSM
9 .
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Result of the fit with 1D Wilson coefficient 2015

This is the first analysis: - using the basis of optimized observables (B → K ∗µµ and Bs → φµµ)
- using the full dataset of 3fb−1:

Coefficient CNP
i = Ci − CSM

i Best fit 1σ 3σ PullSM

CNP
7 −0.02 [−0.04,−0.01] [−0.07,0.03] 1.3

CNP
9 −1.09 [−1.30,−0.88] [−1.68,−0.40] 4.5⇐

CNP
10 0.56 [0.33,0.81] [−0.11,1.37] 2.5

CNP
7′ 0.02 [−0.00,0.04] [−0.05,0.10] 0.8

CNP
9′ 0.44 [0.17,0.72] [−0.37,1.29] 1.6

CNP
10′ −0.25 [−0.44,−0.07] [−0.83,0.30] 1.4

CNP
9 = CNP

10 −0.22 [−0.41,−0.02] [−0.74,0.49] 1.1

CNP
9 = −CNP

10 −0.68 [−0.86,−0.51] [−1.23,−0.18] 4.2⇐

CNP
9 = −CNP

9′ −1.05 [−1.24,−0.85] [−1.59,−0.40] 4.8⇐ (no RK )

CNP
9 = −CNP

10
= −CNP

9′ = −CNP
10′

−0.68 [−0.88,−0.50] [−1.35,−0.16] 4.0
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Impact on the anomalies of a contribution from NP CNP
9 = −1.1

H1L
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(1),(2) and (3) use 3 fb−1 dataset and latest theory prediction for SM (gray) and NP (CNP
9 = −1.1).

2013th + exp,CNP
9 = −1.5
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Result of the fit with 2D Wilson coefficient constrained and unconstrained

Coefficient Best Fit Point PullSM p-value (%)

(CNP
7 , CNP

9 ) (−0.00,−1.09) 4.1 55.0

(CNP
9 , CNP

10 ) (−1.07,0.34) 4.4 62.0

(CNP
9 , CNP

7′ ) (−1.11,0.03) 4.3 59.0

(CNP
9 , CNP

9′ ) (−1.11,0.68) 4.5 66.0

(CNP
9 , CNP

10′ ) (−1.16,−0.35) 4.5 66.0

(CNP
9 = −CNP

9′ , CNP
10 = CNP

10′ ) (−1.13,0.29) 4.6 68.0

(CNP
9 = −CNP

9′ , CNP
10 = −CNP

10′ ) (−1.04,0.03) 4.4 63.0

(CNP
9 = CNP

9′ , CNP
10 = CNP

10′ ) (−0.68,−0.25) 3.9 49.0

(CNP
9 = −CNP

10 , CNP
9′ = CNP

10′ ) (−0.74,0.26) 3.8 48.0

CNP
9 always play a dominant role

All 2D scenarios above 4σ are quite indistinguishable. We have done a systematic work to check
what are the most relevant Wilson Coefficients to explain all deviations, by allowing progressively
different WC to get NP contributions and compare the pulls.
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Result of the fit to the SIX Wilson coefficients

C9 is consistent with SM only above 3σ
All other are consistent with zero at 1σ except for C′9 (at 2 σ).
The PullSM for the 6D fit is 3.7σ.
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Who drives the fit?
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The hierarchy of importance for the fit:
B → K ∗µµ, Bs → φµµ and B → Kµµ
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Impact of B → Ke+e−

under hypothesis of maximal

Lepton Flavour Universal Violation
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1D-Coefficient Best fit 1σ 3σ PullSM

CNP
9 −1.12 [−1.31,−0.91] [−1.68,−0.47] 4.5→ 5.0

CNP
9 = −CNP

10 −0.65 [−0.81,−0.50] [−1.13,−0.22] 4.2→ 4.6

CNP
9 = −CNP

9′ −1.06 [−1.24,−0.85] [−1.59,−0.41] 4.9

CNP
9 = −CNP

10 = −CNP
9′ = −CNP

10′ −0.66 [−0.83,−0.49] [−1.23,−0.20] 4.0→ 4.5

2D-Coefficient Best Fit Point PullSM

(CNP
7 ,CNP

9 ) (−0.01,−1.12) 4.1→ 4.6

(CNP
9 ,CNP

10 ) (−1.10,0.29) 4.4→ 4.8

(CNP
9 ,CNP

7′ ) (−1.14,0.03) 4.3→ 4.8

(CNP
9 ,CNP

9′ ) (−1.16,0.58) 4.5→ 4.9

(CNP
9 ,CNP

10′) (−1.18,−0.28) 4.5→ 4.9

(CNP
9 = −CNP

9′ ,C
NP
10 = CNP

10′) (−1.20,0.35) 4.6→ 5.0

(CNP
9 = −CNP

9′ ,C
NP
10 = −CNP

10′) (−1.03,0.05) 4.5

(CNP
9 = CNP

9′ ,C
NP
10 = CNP

10′) (−0.67,−0.15) 3.9→ 4.3

(CNP
9 = −CNP

10 ,C
NP
9′ = CNP

10′) (−0.66,0.17) 3.8→ 4.3

The strong correlations among
form factors of B → Kµµ and
B → Kee assuming no NP in
B → Kee enhances the NP
evidence in muons.

Notice that we use all bins in
B → Kµµ while RK is only [1,6].
All theory correlations
included.

Only scenarios explaining RK get
an extra enhancement of
+0.4-0.5 σ

Joaquim Matias Universitat Autònoma de Barcelona Global analysis of b → s`` anomalies



Fits considering Lepton Flavour (non-) Universality
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• If NP-LFUV is assumed, NP may enter both b → see and b → sµµ decays with different values.

⇒ For each scenario, we see that there is no clear indication of a NP contribution in the electron sector,
whereas one has clearly a non-vanishing contribution for the muon sector, with a deviation from the
Lepton Flavour Universality line.
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Prediction for LFU tests observables

RK [1, 6] RK∗ [1.1, 6] Rφ[1.1, 6]

SM 1.00± 0.01 1.00± 0.01 [1.00± 0.01] 1.00± 0.01

CNP
9 = −1.11 0.79± 0.01 0.87± 0.08 [0.84± 0.02] 0.84± 0.02

CNP
9 = −CNP

9′ = −1.09 1.00± 0.01 0.79± 0.14 [0.74± 0.04] 0.74± 0.03

CNP
9 = −CNP

10 = −0.69 0.67± 0.01 0.71± 0.03 [0.69± 0.01] 0.69± 0.01

CNP
9 = −1.15, CNP

9′ = 0.77 0.91± 0.01 0.80± 0.12 [0.76± 0.03] 0.76± 0.03

CNP
9 = −1.16, CNP

10 = 0.35 0.71± 0.01 0.78± 0.07 [0.75± 0.02] 0.76± 0.01

CNP
9 = −1.23, CNP

10′ = −0.38 0.87± 0.01 0.79± 0.11 [0.75± 0.02] 0.76± 0.02

CNP
9 = −CNP

9′ = −1.17, CNP
10 = CNP

10′ = 0.26 0.88± 0.01 0.76± 0.12 [0.71± 0.04] 0.71± 0.03

Table: Predictions for RK , RK∗ , Rφ at the best fit point of different scenarios of interest, assuming that NP enters
only in the muon sector, and using the inputs of our reference fit, in particular the KMPW form factors for B → K
and B → K ∗, and BSZ for Bs → φ. In the case of B → K ∗, we also indicate in brackets the predictions using the
form factors in BSZ.
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A CRUCIAL QUESTION:

How much the fit results
depend on the details?

Two first strong tests
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TEST 1: Does the fit result depend on method IQCDF-KMPW or Full-FF-BSZ?
NO
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Figure: We show the 3 σ regions allowed using form factors in BSZ’15 in the full form factor approach (long-dashed
blue) compared to our reference fit with the soft form factor approach (red, with 1,2,3 σ contours).

The results of the fit using (IQCDF-KMPW) or (Full-FF-BSZ) are perfectly consistent.
The fact that our regions are slightly larger points that our estimate of uncertainties (power
corrections, etc.) is conservative.
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TEST 2: Does the fit result depend on using Pi or Si observables? NO
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The results of the fit using Pi observables or Si observables are perfectly consistent.

The highest sensitivity to NP of the optimized observables due to the shielding on FF details
⇒ induces a small albeit systematic improvement in significance for the Pi .
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Does the error predictions on individual observables depend on FF
choice?YES

Only in a global fit thanks to correlations it is basically the same to use:

Optimized observables Pi.
FF dependent observables Si.

BUT when testing individual observables with data:

Optimized observables Pi are robust O(αs ξ⊥,‖).
FF dependent observables Si are largely FF-choice dependent O(ξ⊥,‖).

anomaly [4,6] bin P ′5 error SIZE [pull] S5 error SIZE [pull]

Full-FF-BSZ (1503.05534) 8.6% [2.7σ] 12% [2.0σ]

IQCDF-KMPW (1510.04239) 10% [2.9σ] 40% [1.2σ]

Shift of central values by 6%.
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Cross check: Bin by Bin analysis of C9 in three scenarios
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Figure: Determination of C9 from the reference fit restricted to
the data available in a given q2-region. We present the
scenarios where NP enters C9 and: all other coefficients remain
SM only (top), CNP

9 = −CNP
9′ (center), CNP

9 = −CNP
10 (bottom).

Result of bin-by-bin analysis of C9 in 3
scenarios.

Notice the excellent agreement
of bins [2,5], [4,6], [5,8].
Strong argument in favour of including
the [5,8] region-bin.

First bin is afflicted by lepton-mass
effects. (see Back-up slides)

We do not find indication for a
q2-dependence in C9 neither in the
plots nor in a 6D fit adding ai + bis
to Ceff

9 for i = K ∗,K , φ.
→ disfavours again charm explanation.

2nd and 3rd plot test if you allow for NP
in other WC the agreement of C9 bin by
bin improves as compared to 1st plot.
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Deconstructing naı̈ve (wrong) statements (arguments)
or

How robust are the criticisms?

Discussion of Criticism from 3 (unpublished) papers: Lyon-Zwicky, arXiv: 1406.0566 (LZ’14)
Jaeger-Camalich, arXiv: 1412.3183 (JC’14)

Ciuchini-Silvestrini-Valli et al. arXiv: 1512.07157 (CSV)

Frequent naı̈ve statement: Uncertainties are underestimated?

It is important to understand first what the uncertainties are
and how they are treated.

Joaquim Matias Universitat Autònoma de Barcelona Global analysis of b → s`` anomalies



Hadronic Uncertainties I:

Factorizable power corrections
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Criticism 1: Factorizable Power Corrections ∆F Λ give a huge contribution?

What are Factorizable power corrections and how they emerge?

Appear when expressing the full form factor in a soft form factor piece + corrections:

F full(q2) = F soft(ξ⊥,‖(q2)) + ∆Fαs (q2) + ∆F Λ with ∆F Λ = aF + bF
q2

m2
B

+ cF
q4

m4
B

⇒ ∆F Λ deviation between known SFF (F soft )+ known αs (∆Fαs ) and the computed full FF (e.g. LCSR).
Example:

A1(q2) =
2E

mB + mK∗
ξ⊥(q2) + ∆Aαs

1 (q2) + ∆AΛ
1 (q2) ,

How one can obtain power corrections?. Example: (DHMV’14)

â(1)
F b̂(1)

F ĉ(1)
F r(0 GeV2) r(4 GeV2) r(8 GeV2)

A1(KMPW) −0.01± 0.03 −0.06± 0.02 0.16± 0.02 5% 6% 5%
A1(BZ) −0.01± 0.03 0.04± 0.02 0.08± 0.02 3% 1% 3%

r = (aF + bF q2/m2
B + cF q4/m4

B)/FF (q2) is the percentage of p.c. found to be ≤ 10%

Remark: In our analysis we perform a fit to second order in q2/m2
B and keep the correlated results

aF , bF , cF as central values for ∆F Λ. Errors are taken uncorrelated to be O(Λ/mb)× FF ' 0.1FF.
Later on JC’14 followed same strategy.
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How ξ⊥,‖ are defined?

Soft FF can be naturally defined (at all orders) in many different ways. Example:

ξ
(1)
⊥ (q2) ≡ mB

mB + mK∗
V(q2) ξ

(1)
‖ (q2) ≡ mB + mK∗

2E
A1(q2) − mB −mK∗

mB
A2(q2), (Beneke et al. 05)

or
ξ

(2)
⊥ (q2) ≡ T1(q2), ξ

(2)
‖ (q2) ≡ mK∗

E
A0(q2). (old Beneke et al. 01)

This is the choice of scheme. Illustrative example (using BSZ for a moment):

〈P′5〉[4,6] error of f.f.+p.c. scheme-1 error of f.f.+p.c. scheme-2
in transversity basis in helicity basis

NO correlations among errors of p.c. (hyp. 10%) ±0.05 ±0.12
WITH correlations among errors of p.c. ±0.03 ±0.03

FULL FF scheme indep. ±0.03
Conclusions:

Scheme dependence: Observables does not depend on the scheme choice

if correlations are included but they depend on the choice in the uncorrelated case.

Conservative errors:

A fit to BSZ p.c. predicts typically 5%⇒ our 10% estimate is already very conservative.

An estimate of 10% in helicity basis in scheme-2 (JC’14) is inflated by a factor 4 w.r.t. full-FF case.

⇒ in absence of correlations (as in JC’14 or DHMV’14) the choice of scheme matters a lot!
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Why scheme-2 is not an appropriate scheme?

In the old scheme used by (also JC’14): ξ(2)
⊥ (q2) ≡ T1(q2), ξ

(2)
‖ (q2) ≡ mK∗

E A0(q2).

⇒ Power corrections associated to ∆T Λ
1 (q2) and ∆AΛ

0 (q2) are absorbed in ξ⊥,‖.

Problems of T1 choice: (see back-up slides for more problems)

Taking T1 from LCSR and use it to define ξ⊥ is non-optimal (as done in JC’14).

AL,R
⊥ = N⊥

[
C9±10[Vsff+αs(q2) + ∆V Λ] + C7[Tsff+αs

1 (q2) + ∆T Λ
1 ]
]

+O(αs,Λ/mb, ...)

where ∆Vλ = aV + ... and ∆T Λ
1 = aT 1 + ...

• in scheme-1, aV = 0 (ours) in transversity basis: ⇒ AL,R
⊥ ∝ C7 aT1 and C7 ∼ −0.3

• in scheme-2, aT1 = 0 (JC’14) in helicity basis two problems:

⇒ AL,R
⊥ ∝ C9±10 aV where C9−10 ∼ 8

⇒ aV = (aV− − aV +) mB
mB−m∗K

uncorrelated in helicity 10% implies 20%!!

Problem of A0 choice:

Pi observables do not depend on A0(q2) FF.⇒ A0 choice would be only a good choice for
lepton-mass suppressed observables.
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Two last important problems in JC’14:

I) P ′5 is claimed to be scheme independent in their approach in JC’14.

This is wrong consequence of using helicity basis + restricted set of schemes.

Proven numerically in DLMV’14 and analytically in (CDLMV’16)⇒ missing term.
II) Undervalutation of the error of ξ⊥ in JC’14 (affects FL and Si ):

ξ⊥ = 0.31± 0.04 in JC’14: from spread of only central values of BZ,KMPW,DSE.
ξ⊥ = 0.31+0.20

−0.10 is our input using KMPW but including errors!

Positive outcome: New ingredient added in JC’12: factorizable power corrections.

Error of JC’12 and JC’14: missing the keypoint of scheme dependence that leads them to
artificially inflate errors.

Our contribution DHMV’14:
Systematic computation of p.c.
Identification of the relevance of the scheme choice with uncorrelated p.c.
Correct evaluation of impact in observables

In summary, we have shown that to take power corrections uncorrelated and O(Λ/mb) is perfectly fine
(even recommended to be on a conservative side) but always using an appropriate scheme choice.
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Hadronic Uncertainties II:

Non-factorizable power corrections
and long distance charm contributions
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B → K ∗`¯̀ : Corrections to QCDF at low-q2

Non-factorizable power corrections (amplitudes): subleading new unknown non-perturbative.
BEYOND SCET/QCDF at leading power in 1/mb: Factorization of matrix elements into form
factors, light-cone distribution amplitudes and hard-scattering kernels.

cc̄ loops

⇒ Single out in the amplitude Ti in 〈K ∗γ∗|Heff |B〉 the piece
not associated to FF: T had

i = Ti |C(′)
7 →0

Multiply each amplitude i = 0,⊥, ‖ with a complex q2-dependent factor.

T had
i →

(
1 + ri(q2)

)
T had

i

where ri(s) = ra
i eiφa

i + rb
i eiφb

i (s/m2
B) + r c

i eiφc
i (s/m2

B)2 and ra,b,c
i ∈ [0,0.1] and φa,b,c

i ∈ [−π, π]
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Charm-loop contributions

General considerations on resonances:

Focus on low-q2: q2 ≤ 7− 8 GeV2 to limit impact of J/ψ tail.
⇒ LHCb interesting test split [4.3,8.68]→ [4,6], [6,8]

At large-recoil two type of contributions: ∆CBK∗
9 = δCBK (∗)

9,pert + siδC
BK (∗),i
9,non pert

- Short distance (hard-gluons)
LO included in C9 → C9 + Y (q2)
higher-order corrections via QCDF/HQET.

- Long distance (soft-gluons)

Only existing computation KMPW’10 using LCSR.
Partial computation yields ∆CBK∗

9 > 0 (si = 1)⇒ enlarges the anomaly. Our central value is si = 0 to
be conservative
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B → K ∗`+`− : Impact of long-distance cc̄ loops – DHMV

Inspired by Khodjamirian et al (KMPW): C9 → C9 + si δC
LD(i)
9 (q2)

Notice that KMPW implies si = 1, but we vary it independently si = 0± 1, i = 0,⊥, ‖ (Zwicky)

δCLD,(⊥,‖)
9 (q2) =

a(⊥,‖) + b(⊥,‖)q2[c(⊥,‖) − q2]

b(⊥,‖)q2[c(⊥,‖) − q2]

δCLD,0
9 (q2) =

a0 + b0[q2 + s0][c0 − q2]

b0[q2 + s0][c0 − q2]
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Obtaining from fitting the long-distance part to KMPW.
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Criticism 2: A huge non-factorizable (charm contribution) can explain P ′5?

Attempt 1 (Lyon, Zwicky’14 unpublished):

Using e+e− → hadrons to build a model of cc̄ resonances at low-recoil in B → Kµµ.
Two problems: extrapolate result at large-recoil and assume it holds the same for B → K ∗µµ.

Left: Different predictions from LZ’14 for P ′5 corresponding to different hypothesis of extrapolation
from high-q2 to low-q2: in all cases LZ’14 predicts bin [6,8] above [4,6].

• Positive outcome: Phase of helicity amplitudes eiδJ/ΨK∗ from δJ/ΨK∗ ' 0 (KMPW) to π.
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Data tell us: Smooth
behaviour of 3 fb−1 data
where bin [6,8] is not above
[4,6] does not favour claims
on large-long distance charm
q2 effects in [6,8] bin.

• Our contribution DHMV’14&15: We include a free parameter si for each amplitude from -1 to 1

Indeed, our charm error estimate @anomaly is more conservative than BSZwicky estimate.
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Criticism 2: Is reasonable to expect a huge non-factorizable contribution?

Attempt 2 (Valli, Silvestrini et al.):

Introduce an arbritary parametrization for non-factorizable

Hλ → Hλ + hλ where hλ = h(0)
λ + h(1)

λ q2 + h(2)
λ q4

with (λ = 0,±) (copied from JC’14)

List of problems:

1. Complete Lack of theory input/output⇒ no predictivity with 18 free parameters (any shape).

g̃ = ∆Cnon pert .
9 /(2C1)

They force the fit (red points) to agree on the
very low-q2 with KMPW. This has two problems:

At very low-q2 there are other problems they
forgot (lepton mass effects).
By forcing the fit to agree at very low-q2 can
induce an artificial tilt of your fit.

More interestingly the blue points where KMPW
is not imposed is perfectly compatible with

C9 − CSM
9 ' constant+KMPW similar to us!!.

So what is this constant CNP
9 or h(1)

λ ?
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2. If the answer is h(1)
λ you are unable to explain many data, if it is CNP

9 = −1.1 ”yes you can”:

nor RK (solved with CNP
9 = −1.1) neither any LFVU observable like RK∗ due to charm universality.

any tiny tension in the low-recoil region of B0 → K ∗0µµ (1.7→ 0.3σ), B+ → K ∗+µµ (2.5→ 1.2σ),
Bs → φµµ (2.3→ 0.5σ). Also the old bin [2,4.3] of P2 of 2013 cannot be explained.

... (stay tunned)

Contradictory statements:

”No deviation is present once all the theoretical uncertainties are taken into account”.

⇒ By forcing the fit they induce a problem (2.7σ) in S4 a fully SM-like observable
(us and BSZ we both find good agreement with SM in all bins!)
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... (stay tunned)

Contradictory statements:

”No deviation is present once all the theoretical uncertainties are taken into account”.

⇒ By forcing the fit they induce a problem (2.7σ) in S4 in an otherwise fully SM-like
observable (us and BSZ we find at most 0.8σ in all S4 bins!)
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3. Symmetries are powerful friends... if no new scalars and no new weak phases are introduced any
consistent computation should fulfill UNAVOIDABLY: [Serra-Matias’14]

Prel
2 =

1
2

[
P ′4P ′5 + δa +

1
β

√
(−1 + P1 + P ′24 )(−1− P1 + β2P ′25 ) + δb

]
where δa and δb are function of product of tiny P ′6, P ′8, P3.

This is true independently of any crazy non-factorizable, factorizable, or New Physics (with no weak
phases) that is included inside the Hλ (or A⊥,‖,0)

Example:

⇒ Using theory predictions (DHMV’15) for bin [4,6] one has:

〈P1〉 = 0.03
〈
P ′4
〉

= +0.82
〈
P ′5
〉

= −0.82 〈P2〉 = −0.18

consistency relation⇒ 〈P2〉rel = −0.17 (∆ = 0.01 from binning). Perfect agreement.

⇒ Using CSV theory “predictions”:

〈S3〉 = −0.03± 0.02 〈S4〉 = −0.12± 0.01 〈S5〉 = −0.20± 0.05 〈P2〉 = −0.11± 0.07

consistency relation⇒ 〈P2〉rel = +0.26± 0.07 (∆ = 0.37!!) ⇒ 3.7σ violation of consistency
⇒ 4.6σ if full fit numbers used.

Summary: This hard violation of consistency relation in the bin [4,6] (also [6,8]) points to an
important problem of CSV. Moreover, are these really predictions (same set of theory inputs)?
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Z ′ particle a possible explanation?

In [DMV’13] we proposed to explain the anomaly in B → K ∗µµ with a Z ′ gauge boson contributing to

O9 = e2/(16π2) (s̄γµPLb)(¯̀γµ`) ,

with specific couplings as a possible explanation of the anomaly in P ′5.

B K∗

b s

q

Z ′

ℓ−

ℓ+

1

B(s) B̄(s)

b

s

s

b

Z ′

2

Using the notation of Buras’12,’13

Lq =
(

s̄γνPLb∆sb
L + s̄γνPRb∆sb

R + h.c.
)

Z ′ν Llep =
(
µ̄γνPLµ∆L

µµ̄ + µ̄γνPRµ∆R
µµ̄ + ...

)
Z ′ν

The Wilson coefficients of the semileptonic operators are:

CNP
{9,10} = − 1

s2
W g2

SM

1
M2

Z ′

∆sb
L ∆µµ

{V,A}
λts

, CNP
{9′,10′} = − 1

s2
W g2

SM

1
M2

Z ′

∆sb
R ∆µµ

{V,A}
λts

,

with the vector and axial couplings to muons: ∆µµ
V,A = ∆µµ

R ±∆µµ
L .

∆sb
L with same phase as λts = VtbV ∗ts (to avoid φs) like in MFV. Main constraint from ∆MBs (∆sb

L,R).
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A Z ′ model can belong to the following categories:

no-coupling non-zero couplings PullSM

C9 no-right-handed quark & no-muon-axial coupling ∆sb
L 6= 0, ∆µµ

V 6= 0 5.0σ
(C9,C10) no-right-handed quark coupling ∆sb

L 6= 0, ∆µµ
V 6= 0, ∆µµ

A 6= 0 4.8σ
(C9,C′9) no-muon-axial coupling ∆sb

L 6= 0, ∆sb
R 6= 0,, ∆µµ

V 6= 0 4.9σ
(C10,C′10) no-muon-vector coupling ∆sb

L 6= 0, ∆sb
R 6= 0, ∆µµ

A 6= 0 ...
(C′9,C

′
10) no-left-handed quark coupling ∆sb

R 6= 0, ∆µµ
V 6= 0, ∆µµ

A 6= 0 ...

Example: CNP
9 = −1.1, ∆µµ

V /M ′Z = −0.6 TeV−1 and ∆bs
L /M

′
Z = 0.003 TeV−1

If NP enters all four semileptonic coefficients, the following relationships hold:

CNP
9

CNP
10

=
CNP

9′

CNP
10′

=
∆µµ

V
∆µµ

A
,

CNP
9

CNP
9′

=
CNP

10

CNP
10′

=
∆sb

L

∆sb
R
.

Many ongoing attempts to embed this kind of Z ′ inside a model [U.Haisch, W.Altmannshofer, A.Buras, D. Straub,..]
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Conclusions

The global analysis of b → s`+`− with 3 fb−1 dataset shows that the solution we proposed in 2013
to solve the anomaly with a contribution CNP

9 ' −1 is confirmed and reinforced. We include all type
of corrections: (non)-factorizable of αs and power correction type including long-distance charm.

→We use full dataset, optimized basis of observables and latest theory updates.

The fit result is very robust and does not show a significant dependence nor on the theory
approach used neither on the observables used once correlations are taken into account.
⇒ IQCDF and FULL-FF are nicely complementary methods.

We have shown that the treatment of uncertainties entering the observables in B → K ∗µµ is
indeed under excellent control and the alternative explanations to New Physics are indeed
not in very solid ground. We have proven (redressing the reassessing...) :

Factorizable p.c.: While using power corrections with uncorrelated errors is perfectly fine we have
shown that an inadequate scheme’s choice (JC’14) inflates artificially errors.

Charm-loops: They all predict bin [6,8] above [4,6] against data. They cannot explain LFVU. Also
fundamental consistency problems detected.

Near future? Maybe CNP
10 or the prime coefficients can become significant soon.

A heavy Z′ (1-2 TeV) with bs-coupling is a viable explanation for many (not all) scenarios.
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Thank you!
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Back-up slides
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A few properties of the relevant observables P1,2

The idea of exact cancellation of the poorly known soft form factors at LO at the zero of AFB was
incorporated in the construction of the Pi (this is why they are “clean” compared to the Si )

P1 and P2 observables function of A⊥ and A‖ amplitudes

P1: Proportional to |A⊥|2 − |A‖|2
Test the LH structure of SM.
The existence of RH currents breaks the
SM relation A⊥ ∼ −A‖

P2: Proportional to Re(AiAj)

Zero of P2 at the same position as the
zero of AFB
P2 is the clean version of AFB. Their
different normalizations offer different
sensitivities.
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P3 and P ′6,8 are proportional to ImAiAj and small if there are no large phases. All are < 0.1.

PCP
i are all negligibly small if there is no New Physics in weak phases.

Joaquim Matias Universitat Autònoma de Barcelona Global analysis of b → s`` anomalies



What happened to P2 in 2015?

The new binning of FL in 2015 had a temporary effect on the very interesting bin [2.5,4]
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More data (in this
bin) is crucial.
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Updated plot of 2015
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Figure: For the scenario where NP occurs in the two Wilson coefficients C7 and C9, we compare the situation from
the analysis in Fig. 1 of Ref. DMV’13(on the left) and the current situation (on the right). On the right, we show the
3 σ regions allowed by large-recoil only (dashed green), by bins in the [1-6] range (long-dashed blue), by low recoil
(dot-dashed purple) and by considering all data (red, with 1,2,3 σ contours).
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Bin [0.1,0.98] lepton-mass effect

LHCb naturally given the limited statistics takes the massless lepton limit. They measure:

1
d(Γ + Γ̄)/dq2

d3(Γ + Γ̄)

dΩ
=

9
32π

[ 3
4

(1− F LHCb
L ) sin2 θK + F LHCb

L cos2 θK

+
1
4

(1− F LHCb
L ) sin2 θK cos 2θl − F LHCb

L cos2 θK cos 2θl + ...
]

which is modified once lepton masses are considered

1
d(Γ + Γ̄)/dq2

d3(Γ + Γ̄)

dΩ
=

9
32π

[ 3
4

F̂T sin2 θK + F̂Lcos2 θK

+
1
4

FT sin2 θK cos 2θl − FL cos2 θK cos 2θl + ...
]

where F̂T ,L and FL,T are [JM’12]. All our observables are thus written and computed in terms of the
longitudinal and transverse polarisation fractions FL,T

FL = − J2c

d(Γ + Γ̄)/dq2
FT = 4

J2s

d(Γ + Γ̄)/dq2
⇒ F̂L =

J1c

d(Γ + Γ̄)/dq2

WHEN measured value F̂L is used instead of FL SM prediction is shifted towards the data in 1st bin

〈FL〉[0.1,0.98] = 0.21→ 0.26 , 〈P2〉[0.1,0.98] = 0.12→ 0.09 ,〈
P ′4
〉

[0.1,0.98]
= −0.49→ −0.38 ,

〈
P ′5
〉

[0.1,0.98]
= 0.68→ 0.53 .

Considering the expected accuracy during the run 2, it will be important once LHCb has enough
statistics to distinguish between FL and F̂L. In the following, we will not attempt to correct for this effect,
but instead check that the largest-recoil bin has only a minor impact in our result.
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|δC7| = 0.1 |δC9| = 1 |δC10| = 1 |δC7′ | = 0.1 |δC9′ | = 1 |δC10′ | = 1

〈P1〉[0.1,.98]
+|δCi | −− −− −− −0.53 −0.05 −−
−|δCi | −− −− −− +0.52 +0.05 −−

〈P1〉[6,8]
+|δCi | −− −− −− +0.11 +0.16 −0.37
−|δCi | −− −− −− −0.12 −0.17 +0.37

〈P1〉[15,19]
+|δCi | −− −− −− +0.03 +0.15 −0.14
−|δCi | −− −− −− −0.03 −0.11 +0.19

〈P2〉[2.5,4]
+|δCi | −0.31 −0.21 +0.05 −− −− −−
−|δCi | +0.19 +0.15 −0.04 −0.03 −− −−

〈P2〉[6,8]
+|δCi | −0.07 −0.09 −0.06 −− −− −−
−|δCi | +0.11 +0.17 +0.05 −− −− −−

〈P2〉[15,19]
+|δCi | −− −− −− −− −0.05 +0.06
−|δCi | −− +0.04 −− −− +0.05 −0.06

〈P ′4〉[6,8]
+|δCi | +0.04 −− −− −0.11 −0.10 +0.17
−|δCi | −0.05 −− −− +0.09 +0.10 −0.20

〈P ′4〉[15,19]
+|δCi | −− −− −− −− −0.06 +0.05
−|δCi | −− −− −− −− +0.04 −0.08

〈P ′5〉[4,6]
+|δCi | −0.11 −0.15 −0.10 −0.11 −0.06 +0.21
−|δCi | +0.16 +0.28 +0.09 +0.15 +0.10 −0.21

〈P ′5〉[6,8]
+|δCi | −0.04 −0.07 −0.07 −0.08 −0.08 +0.19
−|δCi | +0.07 +0.19 +0.09 +0.10 +0.11 −0.18

〈P ′5〉[15,19]
+|δCi | −− −− −− −0.03 −0.11 +0.12
−|δCi | −− +0.06 +0.03 +0.03 +0.10 −0.14

Table: Impact on a given observable of the shift of a single Wilson coefficient by an amount δCi (the other Wilson
coefficients keeping their SM value). The first row corresponds to a variation of +|δCi | and the second row to
−|δCi |. The changes significantly improving the agreement with the 2015 LHCb data are highlighted in boldface.
Notice that the dependence of the observables on the Wilson coefficients may exhibit non-linearities.
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Correlations play a central role

If one wants to solve the anomalies exhibited in b → sµµ processes through power corrections, it is
important not to focus on one single observable, like P ′5, alone but on the full set.

Illustrative example. Let’s do the following exercise: Assume you take the non-optimal scheme-2 as in
(JC’14) and helicity basis

aV± =
1
2

[(
1 +

mK∗

mB

)
a1 ∓

(
1− mK∗

mB

)
aV

]
.

Notice that taking aV− in a range ±0.1 correspond to
an absurd 33% power correction in KMPW.

→ because a 10% in KMPW corresponds to 0.03 in aV−.
→ accepting values like (aV− = −0.1, aV + = 0) would

imply that BSZ computation of A1(q2) is wrong by
several sigmas.

An explanation of
〈
P ′5
〉

[4,6]
, 〈P2〉[4,6] and 〈P1〉[4,6] within

SM requires a 20% correction. Adding
〈
P ′5
〉

[6,8]
no

common solution found even beyond 20%.

• Power corrections aV− and aV + needed to obtain agreement between SM predictions and experiment
at 1 σ, considering different observables. This illustrates that aV± can indeed be used to obtain
agreement between SM prediction and experiment in one observable, but correlations hinder a similar
agreement when a larger set of observables is considered.
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J1s =
(2 + β2

` )

4

[
|AL
⊥|2 + |AL

‖|2 + (L→ R)
]

+
4m2

`

q2 Re
(

AL
⊥AR
⊥
∗

+ AL
‖A

R
‖
∗)
,

J1c = |AL
0|2 + |AR

0 |2 +
4m2

`

q2

[
|At |2 + 2Re(AL

0AR
0
∗
)
]

+ β2
` |AS|2,

J2s =
β2
`

4

[
|AL
⊥|2 + |AL

‖|2 + (L→ R)
]
, J2c = −β2

`

[
|AL

0|2 + (L→ R)
]
,

J3 =
1
2
β2
`

[
|AL
⊥|2 − |AL

‖|2 + (L→ R)
]
, J4 =

1√
2
β2
`

[
Re(AL

0AL
‖
∗
) + (L→ R)

]
,

J5 =
√

2β`

[
Re(AL

0AL
⊥
∗
)− (L→ R)− m`√

q2
Re(AL

‖A
∗
S + AR

‖A∗S)

]
,

J6s = 2β`
[
Re(AL

‖A
L
⊥
∗
)− (L→ R)

]
, J6c = 4β`

m`√
q2

Re
[
AL

0A∗S + (L→ R)
]
,

J7 =
√

2β`

[
Im(AL

0AL
‖
∗
)− (L→ R) +

m`√
q2

Im(AL
⊥A∗S + AR

⊥A∗S)

]
,

J8 =
1√
2
β2
`

[
Im(AL

0AL
⊥
∗
) + (L→ R)

]
, J9 = β2

`

[
Im(AL

‖
∗
AL
⊥) + (L→ R)

]
In red lepton mass terms and β` =

√
1− 4m2

`/q2
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The corresponding spin amplitudes A⊥,A‖,A0 are function:

Wilson Coefficients: Ceff
7 , Ceff′

7 , Ceff
9 , C10

Form factors A1,2(s),V (s),T1,2,3(s)

A⊥L,R = N
√

2λ1/2
[

(Ceff
9 ∓ C10)

V (q2)

mB + m∗K
+

2mb

q2 (Ceff
7 + Ceff′

7 )T1(q2)

]

A‖L,R = −N
√

2(m2
B −m2

K∗)

[
(Ceff

9 ∓ C10)
A1(q2)

mB −mK∗
+

2mb

q2 (Ceff
7 − Ceff′

7 )T2(q2)

]
,

A0L,R = − N

2mK∗
√

q2
×
[

(Ceff
9 ∓ C10)

{
(m2

B −m2
K∗ − q2)(mB + mK∗)A1(q2)−

−λ A2(q2)

mB + mK∗

}
+ 2mb(Ceff

7 − Ceff′
7 )

{
(m2

B + 3m2
K∗ − q2)T2(q2)−

− λ

m2
B −m2

K∗
T3(q2)

}]
,
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Hadronic Matrix Elements:

The hadronic matrix elements are in naive factorization:

〈K ∗(pK∗)|s̄γµPL,Rb|B(p)〉 = iεµναβεν∗pαqβ
V (q2)

mB + mK∗
∓

∓1
2

{
ε∗µ(mB + mK∗)A1(q2)− (ε∗ · q)(2p − q)µ

A2(q2)

mB + mK∗
−

−2mK∗

q2 (ε∗ · q)[A3(q2)− A0(q2)]qµ

}
,

〈K ∗(pK∗)|s̄iσµνqνPR,Lb|B(p)〉 = −iεµναβεν∗pαqβT1(q2)±

±1
2

{
[ε∗µ(m2

B −m2
K∗)− (ε∗ · q)(2p − q)µ]T2(q2) +

+(ε∗ · q)

[
qµ −

q2

m2
B −m2

K∗
(2p − q)µ

]
T3(q2)

}
.

where A3(q2) = mB+mK∗
2mK∗

A1(q2)− mB−mK∗
2mK∗

A2(q2)
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K ∗ spin amplitudes

K ∗ Spin Amplitudes (A0,⊥,‖) related Helicity Amplitudes (H0,±):

A0 = H0 A⊥,‖ =
H+ ∓ H−√

2

They follow in naive factorisation a Λ/mb hierarchy:

H0 : H− : H+ = 1 :
Λ

mb
:

(
Λ

mb

)2

due to spectator quark flip, broken by electromagnetic effects.
At quark level in SM in the limit mB →∞ and E∗K →∞:

H+ = 0 ⇒ A⊥ = −A‖

At hadron level A⊥ ≈ −A‖.
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Criticism 1: Factorizable Power Corrections gives a huge contribution

General idea: : Parametrize power corrections to form factors:

F (q2) = F soft(ξ⊥,‖(q2)) + ∆Fαs (q2) + aF + bF
q2

m2
B

+ cF
q4

m4
B
... (JC′12)

⇒ aF ,bF , cF ... represent the deviation to the SFF+ known αs in the full form factor F (taken e.g. from LCSR)

V(q2) =
mB + mK∗

mB
ξ⊥(q2) + ∆Vαs (q2) + ∆V Λ(q2) ,

A1(q2) =
2E

mB + mK∗
ξ⊥(q2) + ∆Aαs

1 (q2) + ∆AΛ
1 (q2) ,

A2(q2) =
mB

mB −mK∗

[
ξ⊥(q2)− ξ‖(q2)

]
+ ∆Aαs

2 (q2) + ∆AΛ
2 (q2) ,

A0(q2) =
E

mK∗
ξ‖(q2) + ∆Aαs

0 (q2) + ∆AΛ
0 (q2) ,

T1(q2) = ξ⊥(q2) + ∆Tαs
1 (q2) + ∆T Λ

1 (q2) ...

STEP 1: Define the SFF ξ⊥,‖ to all orders by means of a factorisation scheme CHOICE.
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STEP 3: A correct treatment of power corrections require to respect the correlations among them:

a) kinematic correlations among QCD form factors at maximum recoil
b) from the renormalization scheme definition of the soft form factors ξ⊥ and ξ‖.

STEP 4: The error estimate in previous table

âF −∆âF ≤ aF ≤ âF + ∆âF ,

b̂F −∆b̂F ≤ bF ≤ b̂F + ∆b̂F ,

ĉF −∆ĉF ≤ cF ≤ ĉF + ∆ĉF .

comes from ∆F Λ ∼ F ×O(Λ/mb) ∼ 0.1F ⇒ error assignment larger than size of p.c. itself for ∆â.

IN SUMMARY:
Each set of observables has an optimal scheme choice, a non-optimal choice may induce artificially
large corrections.
Interestingly an independent computation using full-FF (BSZ) that has embedded the correlations of
a specific LCSR computation gives predictions in good agreement with us for the Pi .
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Factorizable power corrections:

The fit to factorizable power corrections show they are of order 10% as expected from
dimensional arguments.
The freedom to define ξ⊥,‖ allows you find an optimal scheme with minimal sensitivity to
power corrections.
Our results are in excellent agreement with a different approach/methodology/FF set.

In summary a careful computation of power corrections shows they are perfectly under control.

Charm-loop contributions:

RK , nor the future RK∗ or Rφ cannot be explained with a charm contribution.
The behaviour of bin [6,8] versus [4,6] in observables like P ′5 precludes it.
A 6-D fit or a bin-by-bin analysis does not find indication for a q2-dependence in C9.

In summary three arguments against a large-charm explanation of all the anomalies.

Even if one can try to find alternative explanations for individual deviations (with not
much success...), at the end of the day one has to rely on a different explanation for each
deviation, contrary to a shift in the Wilson Coefficients which explains all at the same
time.
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A glimpse into the future: Wilson coefficients versus Anomalies

RK 〈P ′5〉[4,6],[6,8] BBs→φµµ BBs→µµ best-fit-point of global fit

CNP
9

+
− X X[100%] X X

CNP
10

+ X X[36%] X X X
− X[32%]

C9′
+ X[21%] X X
− X X[36%]

C10′
+ X X[75%]

− X[75%] X X X

Table: A checkmark (X) indicates that a shift in the Wilson coefficient with this sign moves the prediction
in the right direction to solve the corresponding anomaly. BBs→µµ is not an anomaly but a very mild tension.

CNP
9 < 0 is consistent with all anomalies. This is the reason why it gives a strong pull.
CNP

10 , C′9,10 fail in some anomaly. BUT
⇒ CNP

10 is the most promising coefficient after C9.
⇒ C′9,C

′
10 seems quite inconsistent between the different anomalies and the global fit.
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QUESTION 1: Branching Ratios versus Angular Observables Pi?
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Figure: Angular observables (FFI at LO Pi ) dominates clearly over Branching ratios
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QUESTION 2: B → K ∗µµ, B → Kµµ and Bs → φµµ?
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Figure: The hierarchy of importance for the fit: B → K ∗µµ, Bs → φµµ and B → Kµµ
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QUESTION 3: Which information and constraints provide each region?
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Figure: We show the 3 σ regions allowed by large-recoil only (dashed green), by bins in the [1-6] range
(long-dashed blue), by low recoil (dot-dashed purple) and by considering all data (red, with 1,2,3 σ contours).

Low-recoil is strongly constraining! Important implications for power corrections and charm.
Bins [1,6] are perfectly coherent with the full large-recoil.
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More technical arguments why scheme-2 is not an appropriate scheme

In the old scheme used by (also JC’14): ξ(2)
⊥ (q2) ≡ T1(q2), ξ

(2)
‖ (q2) ≡ mK∗

E A0(q2).

⇒ Power corrections associated to ∆T Λ
1 (q2) and ∆AΛ

0 (q2) are absorbed in ξ⊥,‖.

Problems of T1 choice:

Extracting T1(0) from data on B → K ∗γ is plagued of assumptions (as done in JC’12):
1) assumption of no NP in C(′)

7 + ignoring possible non-factorizable power corrections.

Taking T1 from LCSR and use it to define ξ⊥ is also non-optimal (as done in JC’14).

AL,R
⊥ = N⊥

[
C+

9±10[Vsff+αs(q2) + ∆V Λ] + C+
7 [Tsff+αs

1 (q2) + ∆T Λ
1 ]
]

+O(αs,Λ/mb, ...)

If one is interested in obtaining accurated predictions for observables dominated by C9 (like P ′5)
better to have a good control of p.c on V than in T1.

⇒ T1 may be a good choice for observables dominated by C7.

Problem of A0 choice:

Pi observables do not depend on A0(q2) FF.⇒ A0 choice would be a good choice for lepton-mass
suppressed observables.
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What does the fit tells you about IMPACT of POWER CORRECTIONS:

���� ����� ������

���� ���� ������ [���]

���� ��� ������

���

-� -� -� � � � �
-�

-�

-�

�

�

�

�

��
��

�
�
��
�

40% Power Corrections

20% Power Corrections

10% Power Corrections

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

C9
NP

C
1

0
N

P

We show the impact in the fit of increasing power corrections up to 40%

At a certain point p.c.-sensitive observable become subdominant and low-recoil dominates.
→ even if power corrections diverge we still get a pull from low-recoil.
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4. Long list of wrong and misleading statements in CSV: (few examples)

“ Since observables cannot depend on arbitrary scheme definitions, their deviation from the infinite
mass limit cannot be reduced in this way”.

Trivial and misleading: It is an obvious statement but it refers to a computation where power
corrections are taken uncorrelated (JC or us) so as already demonstrated the scheme matters.

h(0)
λ mimics a contribution to Ceff

7 and it cannot be separated from a NP contribution:

Wrong: Using radiative constraints B → Xsγ, AI(B → K ∗γ), SK∗γ can be disentangled.

h(2)
λ = (2.5±1.5)×10−5 that gives the q2-dependence (not using KMPW) deviates from zero by 1.6σ!!

Comparison of theory “predictions” from BSZ (using BSZ) and CSV “postdiction” (using BSZ)

q2 bin S5 BSZ S5 CSV dev. S4 BSZ S4 CSV dev.

[0.1,0.98] +0.247± 0.010 +0.302± 0.026 +0.5σ +0.097± 0.004 −0.012± 0.025 +4.3σ!!
[1.1,2.5] +0.059± 0.030 +0.217± 0.061 +2.3σ −0.009± 0.017 −0.041± 0.018 +1.3σ

[2.5,4] −0.182± 0.040 −0.066± 0.049 +1.8σ −0.135± 0.026 −0.088± 0.011 +1.7σ
[4,6] −0.329± 0.039 −0.200± 0.046 +2.1σ −0.213± 0.025 −0.119± 0.009 +3.5σ!!

Positive outcome: what do we learnt from that paper??
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