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� This is a technical talk, about dealing with NLO and NLO+PS generators

when narrow resonances are present, (with automation in mind)

� Brief reminder on NLO calculation and NLO+PS generators
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¡ Resonance histories: Born and Real case

¡ Soft collinear term

� Implementation in the POWHEG BOX

� Test case: t-channel single top production

� NLO checks

� Fully showered results
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Brief reminder of NLO calculations
Besides UV divergences, NLO calculations in QCD display infrared divergences
due to the splitting of collinear massless partons and the emission of soft gluons.
These are handled in the framework of the subtraction method
(Ellis, Ross and Terrano, 1980). Schematically, we write an NLO cross section as

d�=d�B(B(�B)+V (�B))+ d�RR(�R)

Introduce a real phase space parametrization: �R=�R(�B ;�rad) with a smooth
behaviour in the collinear and soft limit, i.e.:

� If two partons become collinear in �R, �B is the phase space for the
merged collinear partons.

� If a parton becomes soft, �B is the phase space without that parton.
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� The phase space is: d�R=d�B d�rad.

� We call �B the underlying Born of �R(�B;�rad)

We compute an observable O (think of a product of theta functions describing
a histogram bin) as

hOi =

Z
d�B[B(�B)+V (�B)]O(�B)+

Z
d�RR(�R)O(�R)

=

Z
d�B

�
B(�B)+V (�B)+

Z
d�radRs(�B;�rad)

�
O(�B)

+

Z
d�Bd�rad[R(�R(�B;�rad))O(�R(�B;�rad))¡Rs(�R(�B;�rad))O(�B)] :

where Rs coincides with R in the soft and collinear limit.

� Only the �rst term has soft and collinear divergences (1/�, 1/�2 poles)
that cancel within the square bracket

� The second term is �nite if O is an IR insensitive observable, i.e. if

O(�R(�B;�rad)))O(�B) in the singular limit;

and can be computed safely in 4 dimensions.
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This assuming that only two partons can become collinear, and only one of
the two can become soft. In general cases, R must be separated into a sum of
contributions with this properties (i.e. only 1 singular region per contribution).
We write:

R=
X
�r

R�r; R�r=
d�r
¡1P

�r
0 d�r0
¡1 R

d�r is a function of the momenta of the collinear partons that vanishes in the
collinear or soft limit. Typically:

dij=

"
Ei
2Ej

2

(Ei+Ej)2
(1¡ cos �ij)

#
b

:

Notice: In the Catani-Seymour approach the separation into regions is not explicit;
subtraction terms are constructed and added to the real contribution with the
appropriate phase space. However, regions are implicitly used when proving
infrared �niteness.
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NLO calculations: a pictorial representation

Cross section
at �xed �B

�rad

 singular limit

 born+virtual
+real counterterm

d�

d�Bd�rad

At �xed �B, as a function
of �R, the cross section is
a distribution, i.e. it is
divergent in the singular
limit, but it has a �nite
integral over the singular
region, i.e. mathematically
it is a distribution.
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NLO+PS: a pictorial representation

Cross section
at �xed �B

�rad

 singular limit

d�

d�Bd�rad

At �xed �B, as a function
of �R, the cross section is
a smooth function.
Its integral over the singular
region is the same as in the
NLO cross section.
Di�ers with respect to
the pure NLO due to NNLO
and even higher order terms
arising from the resummation
of leading logarithmic terms.

In the NLO+PS implementations the singularities are tamed by the resummation
of Sudakov logarithms. Although the cross section di�ers from the pure NLO
cross section by terms of NNLO and higher, enhanced by Sudakov logarithms
near the singular region, the integral in �rad is the same as in NLO.
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NLO+PS

d� = B~(�B)exp
�
¡
Z
pT
0 >pT

R(�B;�rad
0 )

B(�B)
d�rad

0
�
R(�B;�rad)
B(�B)

d�Bd�rad

+ [R(�B ;�rad)¡Rs(�B;�rad)] d�Bd�rad

B~(�B)=B(�B)+V (�B)+

Z
Rs(�B ;�rad) d�rad :Z

exp
�
¡
Z
pT
0 >pT

Rs(�B;�rad
0 )

B(�B)
d�rad

0
�
Rs(�B ;�rad)

B(�B)
d�rad=1

This formula characterizes the hardest emission, both in MC@NLO and POWHEG.
Softer emissions are handled by the shower generator.

As in the NLO, the mapping of the real phase space into an underlying
Born is a crucial concept for NLO+PS.
In the POWHEG BOX, the NLO subtraction scheme and the NLO+PS implemen-
tation are tightly connected.
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Problems with resonances: NLO calculations

Standard schemes for NLO calculation fail in the narrow resonance limit.
Example: FKS (Frixione,Kunszt,Signer) in tt� production

FKS subtraction term kinematics does not preserve the bgW mass.
In the POWHEG BOX scheme: b direction preserved; Wb� recoiling system boosted
along b direction and b momentum set to conserve 4-momentum.
Thus: when bgW is on shell, the counterterm is o�-shell, spoiling IR cancellation
in the narrow width approximation. The same happens with CS (Catani,Seymour)
dipoles (W four momentum preserved.)

9



Message #1:

Current NLO subtraction schemes fail in the narrow width limit
In the top example: the mass of the bg splitting system displaces the top virtuality

by an amount mbg
2 /Eb (since Eb

2+mbg
2

q
�Eb+mbg

2 /Eb). Thus, the subtrac-
tiion works up to

mbg
2

Eb
�¡t; or mbg� Eb¡t

p
� 8GeV:

This does not look like a severe limitation in practical cases. In fact,
NLO calculations of W+W¡bb� have been performed by Bevilacqua etal, 2011,
and Denner etal, 2012, in the 5-�avour scheme, and Frederix, 2014, massive b.

Yet, a scheme that has a smooth zero width limit is preferable.
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Problems with resonances: PS
Key problem: momentum reshu�ing.

Collinear splitting conservers momentum only in the strict
collinear limit. Shower Monte Carlo enforce exact momentum conservation by
"Momentum reshu�ing" (i.e. adjust the momenta by subleading corrections to
enforce momentum conservation).

For example (Herwig): If a Final State particle undergoes splitting, and its
3-momentum is kept �xed to balance the 3-momenta of all other FS particles,
its energy becomes larger. In order to restore energy conservation, all 3-momenta
are rescaled down by a common factor.

If we have a radiating resonance decay, this procedure does not conserve the reso-
nance mass. Hence: in this case, Herwig does momentum reshu�ing maintaining
the resonance 4-momentum �xed, by rescaling the momenta of the resonance
decay products in the resonance rest frame.
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Problems with resonances: NLO+PS

POWHEG example:

B�exp
�
¡
Z
R

B
d�rad

�
R

B
d�rad

Here R contains the radiation, and B is the underlying Born kinematics.
The standard POWHEG underlying Born mapping does not preserve resonance
virtuality: if R is on shell, B is o� shell, R/B LARGE!

More quantitatively: consider for example t! bW ; b splits into a bg with mass
m2. The bW mass in the counterterm di�ers from the original top virtuality by
an amount m2/Eb. So, we expect that

The b jet mass pro�le is distorted when mjet
2 /Eb�¡top :
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Message #2:

Current NLO+PS schemes fail in the narrow width limit

Brute force solution: FullW+W¡bb� production in POWHEL has been implemented
(Kardos,Garzelli,Trocsanyi 2014), using the standard POWHEG BOX mapping.
The euristic argument given above would imply unphysical features of jet struc-
ture when mjet� ¡E

p
� 8GeV.
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NLO+PS with radiating resonances in zero width limit

POWHEG-BOX-V2 can deal with radiation in resonance decays in the zero-width
limit in a fully general way. In order to implement a process one must:

� Specify the resonance and its decay products in the user provided sub-
process list. For example:
realfl:[ 0, 0, 6, -6, 24,-24,-11, 12, 13,-14, 5, -5, 0]
realrs:[ 0, 0, 0, 0, 3, 4, 5, 5, 6, 6, 3, 4, 3]
represents a real graph for gg! (t! (W! e��) b g)(t�! (W¡! ���)).

� Virtual corrections should include virtual corrections to resonance decays.
In the zero width limit, virtual corrections to production and decay
decouple among each other.

� Real correction should yield separately the radiation from the hard inter-
action (if the radiated parton does not belong to a resonance), and the
radiation from each decaying resonance, depending upon realrs[n]
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Implementation in tt�production

(Campbell,Ellis,Re,P.N. 2014, arXiv:1412.1828, code in the POWHEG BOX V2)

Matrix elements from Campbell,Ellis,2012. Narrow resonance decay machinery
from POWHEG BOX V2. Finite width e�ects introduced in an approximate way.

Works as follows:

� If radiation comes from a resonance, the underlying Born is constructed
in the resonance frame, preserving the resonance 4-momentum and all
momenta of particles not arising from the resonance decay.

� Soft radiation does not arise (in the zero width limit) from interference
between radiation from di�erent resonances, or from production and a
resonance. Thus, soft collinear terms are computed for production and for
each radiating resonance decay independently (and in di�erent frames!).
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Handling �nite width:
the new method
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We assume that we have the full cross section for the production of the given �nal
state particles, irrespective of whether they are produced by resonance decays or
by other mechanism, and that we have at our disposal the full Born, virtual and
real amplitude.

� We consider all possible resonance decay histories that can lead to the
given �nal state.

� We separate the Born and Virtual amplitude into sum of contributions,
each one dominant in a single resonance history.

� We separate the Real contribution into a sum of terms, each one of them
dominating in a single resonance history, and with no more than one
singular region.

� In the real terms, we require that the singular region is compatible with
the resonance history. In other words, collinear partons must belong to
the same resonance in the resonance history of the given contribution.
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In formulae:

BFb=
X

fb2T (Fb)
Bfb; Bfb=�fbBFb ;

� Fb represent a given �nal state, irrespective of the resonance history.
we call it the bare �avour structure

� fb represent a given �nal state and resonance assignment. We call it the
full �avour structure.

� T (Fb) represent all possible resonance assignments for the given �nal
state.

� The factors �fb satisfy the condition:
P

fb2T (Fb)�fb=1:

�fb=
P fbP

fb
02T (Fb(fb))

P fb
0 ; Pfb=

Y
i2res(fb)

Mi
4

(si¡Mi
2)2+¡i

2Mi
2

where res(fb) represent all resonances in the full �avour structure fb.
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For the real, things are more complex:

R�r=
P fr(�r)d¡1(�r)P

fr
02T (Fr(�r))

P fr
0P

�r
02Sr(fr0)

d¡1(�r
0)
RFr(�r):

Now:

� �r labels a contribution to the real that is dominated by a single resonance
history, and that has only one collinear singular region.

� fr(�r) jFr(�r) represents the full j bare �avour structure of the contribu-
tion �r.

� Sr(fr) represent the sets of all �r with the same fr

� d(�r) is a function of the momenta of the collinear partons that
vanishes in the collinear or soft limit. Typically:

dij=

"
Ei
2Ej

2

(Ei+Ej)2
(1¡ cos �ij)

#
b

:

It is generally frame dependent, but it is Lorentz invariant in the collinear
limit.
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Example:

The example of two di�erent resonance histories for the same real process in single
top production. According to our de�nition, the process on the left is regular, i.e.
has no collinear singularities. The process on the right is singular when the u� is
collinear to the incoming gluon.
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In words:

� Each resonance enhancement factor is accompanied by a singular region
enhancement factor.

� Singular regions are compatible with the resonance assignment.

� The sum of all R�r that have the same bare �avour structure Fb yields
the full real contribution for that bare �avour structure.

So, in the separation of the contributions, the following happens:

A term R�r is dominant if the collinear partons of region �r have the smallest
kT , and the corresponding resonance history is the closest to its mass shell.
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Having performed this separation into regions, the underlying Born kinematics for
a given R�r is de�ned in the rest frame of the resonance of the collinear partons,
so that the momentum rescaling and boost of the recoil system preserves the
resonance 4-momentum.

This feature is already present in the POWHEG-BOX-V2.

Notice also that the underlying Born of R�r is one of the Bfb, since the resonance
projection factors for the real become equal to the projection factors for the
underlying Born in the singular limit.
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Soft-collinear terms
The separation of the divergent soft and collinear terms usually takes place
as follows. One writes the phase space for the region where particles i can be
collinear to j and soft, as

d�R=(2�)d�
¡X

k
�
[�l=/ id�l ] d�i;

and the single particle, d-dimensional phase space is written as

d�i=
(ki
0)1¡2�

2(2�)3¡2�
dki

0 d
i
3¡2�;

Soft terms are separated �rst by de�ning �=2ki
0/ s
p

, and writing:

(ki
0)1¡2�dki

0) �2 (�¡1¡2�) d�; �¡1¡2�=
¡1
2�
�(�)+

�
1
�

�
+

¡ 2�
�
log �
�

�
+

:
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The �(�) term singles out the soft term.The soft contribution becomes

Is;�r=¡
1
2�
d�B

Z
(s)1¡�

(4�)3¡2�
d
3¡2� lim

�!0
[�2R�r]

At this point one can sum over all the �r that share the same soft singularity,
and recover the soft approximation to the real cross section, given by the soft
eikonal formula, and the soft integral can be easily performed.

However:
In order for this to work, k0must have the same meaning for all soft contributions,
at least in the soft limit. This means that in the soft limit the soft phase space
must be the same for all singular regions.

In our case, this is no longer true. We require that subtractions are performed in
the frame of the resonance that owns the emitting parton. Thus, several di�erent
de�nitions of k0 are used, and one can no longer conclude that the sum of all
soft contributions yields the full R.
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We deal with this problem using the following trick. We rewrite

Is;�r = ¡ 1
2�
d�B

Z
(kres
2 )1¡�

(4�)3¡2�
d
3¡2� lim

�res!0
[�res
2 R�r]

= d�B
1

¡(1¡ 2�)

Z
d�i

e¡�res

�res
2 lim

�res!0
[�res
2 R�r]

= d�B
1

¡(1¡ 2�)

Z
d�ie

¡�resR~�r

�res being the � de�ned in the radiating resonance frame. We used the identityZ
0

1
d��¡1¡2� e¡�=¡(¡2�)= ¡(1¡ 2�)

¡2� ;

and the Lorentz invariant soft linearization of R�r:

R~�r=
1

�2
lim
�!0

[�2R�r]:

R~�r is the lowest order Taylor expansion of R in the soft momenta. It is Lorentz
invariant. Now the expression for Is;�r is all Lorentz invariant, except for e

¡�res:
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� We replace e¡�res with e¡�. The formula can then be turned into the
standard formula for soft divergences, and can be integrated as usual.

� We add back the di�erence e¡�res¡ e¡�. This di�erence does not have
soft singularities. It still has collinear singularity, and needs to be worked
out analytically. Its computation leads to an analytic form for the
divergent part, plus an analytic expression for a �nite part, plus a �nite
reminder to be integrated numerically using the soft phase space weighted
with the e¡�res¡ e¡� di�erence, that does not pose any problem in the
narrow width limit.
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At the end of this procedure:

� We have a new formula for the soft-collinear terms, that we implement in
the POWHEG BOX.

� We have an extra �nite term, that can be easily obtained by a numer-
ical integration in the soft phase space, of an expression proportional to
e¡�res¡ e¡�.
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POWHEG BOX implementation
All this has been implemented in a fully general way in a new version of the
POWHEG BOX. Now:

� As an input, the user provides the Born, Virtual and real matrix elements
for the bare �avour structures, and the full �avour lists for the Born
process and real processes. (We are planning to implement soon the auto-
matic generation of the full �avour structures, given only the bare ones).

� For each Born resonance structure, an independent phase space sampling
is set up automatically that probes the resonance peaks.

� The set of �r is determined by the BOX, including the regular contribu-
tions. The �r are compatible with the resonance structure.

� P weights are computed and included automatically.

� Radiation is handled using the already present (zero width case) mappings.
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Testing
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We have tested the system for the process of t-channel single top production,
with massless b quark.

First test:

� Compute the NLO result, at �xed coupling, ignoring resonances at �rst,
and then using the resonance features discussed here.

� We label the two generators as no-res and res in the following.
Insisting enough with statistics, we must get exactly the same result.

� In the single top case, this is more easily done if the "no resonances"
implementation uses a resonance aware, importance sampling Born phase
space.
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� NLO test plots: global suppression factor (mostly to avoid collinear b's)�
Me�

2

(Me�
2 + 402)

�
3

� 20
exp((yb¡ yW)2)+ 20

� No virtuals (irrelevant for the check)

� Top de�ned a e�bjet

� Jets: anti-kT , R= 0.5;

� wct: mass of hadronic fs system excluding b jet within 2 GeV fromW mass
(enhanced regular W+ production)

� In the plots:

¡ red: res

¡ blue: no-res
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The second plot enhances the graph:

Non-resonant aware calculation undershoots
low top mass end. However, the region still
drifts towards the red curve when statistics
is increased, pointing to a poor importance
sampling when statistics is poor.

Non resonant aware calculation: �3 times slower. However, in this case
the Born importance sampling is easy (only 1 resonance history at Born level)
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Full Simulation
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For the generation of events, we have interfaced POWHEG to Pythia 8, using both
the traditional code (no resonances recognized) and the new, resonance aware
code.
No resonances:

� No resonance information was included in the Les Houches �le.

� Pythia radiation was vetoed using the standard Les Houches mechanism

With resonances:

� The hardest radiation from production and from the resonance decay are
both kept (normally POWHEG keeps the hardest of the two).

� Radiation in production is normally vetoed by PYTHIA not to be harder
than that of POWHEG.

� Radiation in resonance decay by PYTHIA is vetoed by hand, if harder than
POWHEG radiation in decay, the shower is repeated on the same event.
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The b jet is the jet containing the hardest b hadron.

There are visible e�ects in the b¡ jet mass distribution.

The bprofile distribution is a histogram of the hadronic transverse energy �ow
versus the �R distance from the b jet.
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Some distortion in the top mass pro�le is also seen.
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Conclusion

� A new method for the NLO calculation, and for NLO+PS generation, that
deals with resonances and remains consistent in the small-width limit has
been conceived and implemented in the POWHEG BOX.

� Preliminary studies on single top production show noticeable di�erences
when this method is used with respect to the no-res (i.e. no resonance
aware) method.

� The new method has a considerable advantage, in terms of speed, with
respect to the non-resonance aware method (order of a factor of 10 in the
generation of events).

� Still to be checked: whether a fudged resonance assignment in the no-
res generator improves the agreement with res results.
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