b-mass effects in $b \bar{b} \rightarrow h$

21/12/15, Milan Meeting, Davide Napoletano

Outline

－Introduction
－ 4 F vs 5 F scheme

5F Improved scheme＠NLO

Some results
\＆ロ・4島〉

Introduction

$\Lambda_{Q C D} \sim 250 \mathrm{MeV}$, A quark Q is heavy $\Leftrightarrow m_{Q} \gg \Lambda_{Q C D}$.
$m_{u}, m_{d}, m_{s} \ll \Lambda_{Q C D} \Rightarrow$ light quarks
$m_{c}>\Lambda_{Q C D}$ but not by much!

Introduction

$\Lambda_{Q C D} \sim 250 \mathrm{MeV}$, A quark Q is heavy $\Leftrightarrow m_{Q} \gg \Lambda_{Q C D}$.
$m_{u}, m_{d}, m_{s} \ll \Lambda_{Q C D} \Rightarrow$ light quarks
$m_{c}>\Lambda_{Q C D}$ but not by much!

- b quark only quark such that

$$
\Lambda_{Q C D} \ll m \ll M\left(m_{W}, m_{Z}, m_{H}, m_{t}\right)
$$

- b phenomenology crucially important at the LCH, from flavour physics, to Higgs characterisation and measurements and as window to New Physics.
- From a theoretical viewpoint we need better control on this kind of processes which appear as both BSM signals and SM irreducible backgrounds.
- Important examples: H and Z associated production
- Historically two approaches:

Introduction

	$\underbrace{\text { cham }}_{\text {chen }}$	${ }^{\text {Tris oover }}$	$\Lambda_{Q C D} \sim 250 \mathrm{MeV}$, A quark Q is heavy $\Leftrightarrow m_{Q} \gg \Lambda_{Q C D}$.
	$?$		$m_{u}, m_{d}, m_{s} \ll \Lambda_{Q C D} \Rightarrow \text { light quarks }$
${ }^{\text {cosem }}$			$m_{c}>\Lambda_{Q C D}$ but not by much!

- b quark only quark such that

$$
\Lambda_{Q C D} \ll m \ll M\left(m_{W}, m_{Z}, m_{H}, m_{t}\right)
$$

- b phenomenology crucially important at the LCH, from flavour physics, to Higgs characterisation and measurements and as window to New Physics.
- From a theoretical viewpoint we need better control on this kind of processes which appear as both BSM signals and SM irreducible backgrounds.
- Important examples: H and Z associated production.
- Historically two approaches:

$4 F$ versus 5 F scheme

4F scheme

\times Doesn't re-sum possibly large logs, but it does have them explicitly
\times Higher orders are computationally more difficult
\checkmark Mass effects present at any order
\checkmark MC@NLO no problem

5F scheme

\checkmark Stabler predictions, re-summation of IS large logs into b-PDF
\checkmark Higher order easily accessible
\times Differential features effects are pushed to higher orders
\times Implementation in MC depends on the $g \rightarrow b \bar{b}$ splitting implemented

Improved theoretical predictions

Directions

- Matching the two schemes, FONLL, SCET, etc...
- Somehow difficult to extend to differential distributions
- Design of a 5F-improved scheme to include mass effects
- In principle easy to do, but full of subtleties (Factorisation. Parton-Shower...)

Improved theoretical predictions

Directions

- Matching the two schemes, FONLL, SCET, etc...
- Somehow difficult to extend to differential distributions
- Design of a 5F-improved scheme to include mass effects
- In principle easy to do, but full of subtleties (Factorisation, Parton-Shower...)

Improved theoretical predictions

Directions

- Matching the two schemes, FONLL, SCET, etc...TOTAL RATES
- Somehow difficult to extend to differential distributions
- Design of a 5F-improved scheme to include mass effects SHAPES
- In principle easy to do, but full of subtleties (Factorisation, Parton-Shower...)

I've been working on both approaches.
The former being essentially a concluded work.

Outline

- Introduction

- 4 F vs 5 F scheme
- 5F Improved scheme @ NLO

Some results

Computing NLO observable

First problem

To compute a NLO observable we need:

$$
\mathrm{d} \sigma=\mathrm{d} \boldsymbol{\Phi}_{\mathcal{B}}\left[\mathcal{B}\left(\Phi_{\mathcal{B}}\right)+\mathcal{V}\left(\Phi_{\mathcal{B}}\right)\right]+\mathrm{d} \Phi_{\mathcal{B}+1} \mathcal{R}\left(\Phi_{\mathcal{B}+1}\right)
$$

$+$

- $\mathcal{V}\left(\Phi_{\mathcal{B}}\right)$ and $\int \mathrm{d} \Phi_{\mathcal{B}+1} \mathcal{R}\left(\Phi_{\mathcal{B}+1}\right)$ are separately soft (and collinear) divergent in $4 d$

Computing NLO observable

First problem

To compute a NLO observable we need:

$$
\mathrm{d} \sigma=\mathrm{d} \Phi_{\mathcal{B}}\left[\mathcal{B}\left(\Phi_{\mathcal{B}}\right)+\mathcal{V}\left(\Phi_{\mathcal{B}}\right)\right]+\mathrm{d} \Phi_{\mathcal{B}+1} \mathcal{R}\left(\Phi_{\mathcal{B}+1}\right)
$$

- $\mathcal{V}\left(\Phi_{\mathcal{B}}\right)$ and $\int \mathrm{d} \Phi_{\mathcal{B}+1} \mathcal{R}\left(\Phi_{\mathcal{B}+1}\right)$ are separately soft (and collinear) divergent in $4 d$
- $\int \mathrm{d} \Phi_{\mathcal{B}} \mathcal{V}\left(\Phi_{\mathcal{B}}\right)+\int \mathrm{d} \Phi_{\mathcal{B}+1} \mathcal{R}\left(\Phi_{\mathcal{B}+1}\right)$ is finite!

[^0]
Computing NLO observable

First problem

To compute a NLO observable we need:

$$
\mathrm{d} \sigma=\mathrm{d} \boldsymbol{\Phi}_{\mathcal{B}}\left[\mathcal{B}\left(\Phi_{\mathcal{B}}\right)+\mathcal{V}\left(\Phi_{\mathcal{B}}\right)\right]+\mathrm{d} \Phi_{\mathcal{B}+1} \mathcal{R}\left(\Phi_{\mathcal{B}+1}\right)
$$

$+$

- $\mathcal{V}\left(\Phi_{\mathcal{B}}\right)$ and $\int \mathrm{d} \Phi_{\mathcal{B}+1} \mathcal{R}\left(\Phi_{\mathcal{B}+1}\right)$ are separately soft (and collinear) divergent in $4 d$
- $\int \mathrm{d} \Phi_{\mathcal{B}} \mathcal{V}\left(\Phi_{\mathcal{B}}\right)+\int \mathrm{d} \Phi_{\mathcal{B}+1} \mathcal{R}\left(\Phi_{\mathcal{B}+1}\right)$ is finite!
- Need method to render the integrand finite for MC integration! \Longrightarrow Catani-Seymour Dipole formalism.

Computing NLO observable

First problem ...

To compute a NLO observable we need:

$$
\mathrm{d} \sigma=\mathrm{d} \Phi_{\mathcal{B}}\left[\mathcal{B}\left(\Phi_{\mathcal{B}}\right)+\mathcal{V}\left(\Phi_{\mathcal{B}}\right)\right]+\mathrm{d} \Phi_{\mathcal{B}+1} \mathcal{R}\left(\Phi_{\mathcal{B}+1}\right)
$$

$$
\mathrm{d} \sigma=\mathrm{d} \Phi_{\mathcal{B}}\left[\mathcal{B}\left(\Phi_{\mathcal{B}}\right)+\mathcal{V}\left(\Phi_{\mathcal{B}}\right)+\mathcal{I}\left(\Phi_{\mathcal{B}}\right)\right]+\mathrm{d} \Phi_{\mathcal{B}+1}\left[\mathcal{R}\left(\Phi_{\mathcal{B}+1}\right)-\mathcal{S}\left(\Phi_{\mathcal{B}} \otimes \Phi_{1}\right)\right]
$$

- Massive and massless dipoles are not the same.

Parton Shower

Subsequent emission

Parton Shower

Subsequent emission

Splitting probability: usually modelled by splitting functions

- Extension to Real MEs

Massive extensions so far only present for final state quark.

Parton Shower

Subsequent emission

Massive extensions so far only present for final state quark...

What else ．．．？

MC event generation

What else ... ?

IS Factorisation

What else ... ?

IS Factorisation

Outline

- Introduction

- 4 F vs 5 F scheme

5F Improved scheme @ NLO

- Some results

Mass effects @ LO

5F Massive vs 5F Massless

Mass effects @ LO

5F Massive vs 5F Massless

$\%_{m}=$ mass effects only in MEs $\%_{M}=$ mass effects in ME + PS

Mass effects @ LO

5F Massive vs 5F Massless

No significant effect it seems in terms of shapes

Resummation

Total rate, 5F scheme

Resummation

Total rate, 5F scheme

$$
\sigma_{b \bar{b} \rightarrow h}(\mu)
$$

Full 5F @ NLO vs 5F expanded b to $\mathcal{O}\left(\alpha_{S}^{2}\right)$

Resummation

Total rate, 5F scheme

Resummation seems to have biggest impact.

Shape vs Rates

Not much difference shape-wise

Conclusions

Conclusions

- 4F, 5F, the old problem
- But it looks like differences are just in rates
- Difference mainly made up by resummation
- small, not negligible, mass effects
- 5F scheme is therefore slightly better
- Best ontion for MC is to include mass effects in the 5F
- By hopefully retaining the resummation!

Conclusions

Conclusions

- $4 \mathrm{~F}, 5 \mathrm{~F}$, the old problem
- But it looks like differences are just in rates
- Difference mainly made up by resummation
- small, not negligible, mass effects
- 5F scheme is therefore slightly better
- Best option for MC is to include mass effects in the 5F
- By hopefully retaining the resummation!

Conclusions

Conclusions

- $4 \mathrm{~F}, 5 \mathrm{~F}$, the old problem
- But it looks like differences are just in rates
- Difference mainly made up by resummation
- small, not negligible, mass effects
- 5F scheme is therefore slightly better
- Best option for MC is to include mass effects in the 5F
- By hopefully retaining the resummation!

[^0]: - Need method to render the integrand finite for MC integration! \Longrightarrow Catani-Seymour Dipole formalism.

