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Abstract – Arbitrary transient electric field shapes are generated 

in free space utilizing a set of transient signals with proper shape, 

amplitude, and time shift. Akin to wavelets in signal processing, 

brief, non-periodic oscillations are superimposed at a pre-selected 

location in space to effect destructive and constructive 

interference. With a properly chosen signal set, an entirely 

different frequency or shape is generated. Two methods have 

been employed to find optimum signal sets, the Discrete Wavelet 

Transform (DWT) and Particle Swarm Optimization (PSO). 

While the DWT approach dictates constant time step and 

rectangular matching between wavelets, PSO is not restricted in 

this manner, allowing for more flexibility in choosing amplitudes 

and signal delays.  
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I. INTRODUCTION 

Using Particle Swarm Optimization, PSO, a signal may be 
constructed that closely matches a desired shape in time or 
frequency domain through time shift and amplitude 
modification of a number of non-periodic oscillations. This 
previously postulated approach [1] has been experimentally 
verified utilizing a Transverse Electro-magnetic (TEM) Horn 
Antenna array [2-5], which has been designed and 
implemented due to its wide frequency response necessary to 
transmit and receive short non-periodic signals. The frequency 
response of the transmitting horn antenna was exploited by 
applying a Gaussian input pulse, which was a-priori simulated 
and is now confirmed to produce the desired bipolar output. 
For ease of control, the input pulse is generated digitally, run 
through a data pattern generator, and converted to an analog 
signal driven by a clock. This pulse is then amplified and 
transmitted from multiple synchronized antennas, added in the 
far-field, and superimposed.  

As expected, for in-phase conditions, the resulting received 
signal has been found to increase in amplitude by a factor 
relative to the number of transmitting antennas. To date, a 
synchronization accuracy of better than 100 ps between 
individual channels has been achieved. The generation of 
arbitrary signals in the 100 MHz to GHz regime is 
demonstrated. 

Using a TEM Horn antenna array, a number of signals is 
transmitted and combined in free space. Additionally, the 
manner in which these signals are arranged is modeled 
mathematically. By combining a series of non-periodic basis 
signals separated by multiples of 417 ps (as limited by the 

testing equipment), a new signal of a differing frequency can 
be produced. Theoretically, this signal is not limited in 
periodicity, so, running for a large number of periods, the 
accuracy will increase. Any undesirable startup or ending may 
be effectively eliminated by cutting a section in the middle of 
the signal and reproducing it repeatedly.  

The methods discussed in this manuscript will allow for 
any number of signal types to be produced based on their 
theoretical success. In light of this success, it is desired to 
statistically analyze and further test the PSO to ensure optimal 
functionality.   

II. METHODS 

 Wavelets have found widespread utilization in a 
number of applications, such as data compression and 
time/frequency analysis. The wavelet transform is similar to 
the Fourier transform in that it can provide spectral 
information. The wavelet transform does not, however, 
provide infinite resolution in the time domain, which only 
allows for spectral information to be chosen in localized 
locations. As such, the time domain and frequency domain 
cannot be represented equally [6]. This imperfection has led to 
a variety of methods by which to optimize a given signal.  

The important distinction between the standard Discrete 
Wavelet Transform, DWT, and the approach presented here is 
that the former uses hundreds if not thousands of wavelets to 
match a given signal shape, whereas the current interest is 
focused on reasonably reproducing a desired signal with a few 
repeated basis signals only (on the order of a few tens). 
Moreover, the basis signal is chosen such that it may be 
realistically radiated. As will be shown in the following, a 
bipolar pulse shape is most suitable as basis signal in this 
context.  

A.   Discrete Wavelet Transform  

  Simplicity and fast compute time have made the DWT 
a popular approach amongst scholars. Its ability to combine 
wavelet and scaling functions makes image compression and 
de-noising relatively straightforward [7, 8]. The equation can 
be modeled as follows: 

𝑓(𝑡) = 𝐴(𝑡) + 𝐷(𝑡)         (1) 

where f(t) is a discrete signal, A(t) is an averaged signal, 
and D(t) is a detailed signal. Furthermore, these signals can be 
expanded: 



𝐴(𝑡) =  ∑ 𝑎𝑚𝛷(𝑡 − 𝑡𝑚)         (2) 

𝐷(𝑡) =  ∑𝑑𝑚𝛹(𝑡 − 𝑡𝑚)         (3) 

where Φ represents the scaling function (time shifted and 
amplitude adjusted) while Ψ represents the wavelet function. 
Additionally, 𝑎𝑚 and 𝑑𝑚 represent amplitude coefficients for 
the averaged and detailed signals, respectively. Time shift for 
wavelets is kept constant, with 𝑡𝑚 representing the individual 
time shift for a given wavelet. In order to attain low 
computational load, only the first level transform is applied 
and, as a result, basis functions are kept at the same frequency. 
This method is best at matching the wave shape of its 
representative signal; An example utilizing bipolar wavelet 
functions with roughly 2 GHz center frequency is shown in 
Figs. 1 and 2 below: 

 
Fig. 1a. DWT for 900 MHz wave using a set of 2 GHz Wavelets. Dashed line – 

desired signal, solid line – reconstructed using 15 wavelets. b. Single 2 GHz 

basis signal. 

 
Fig. 2a. FFT of Reconstructed Signal, maximum at ~ 900 MHz. b. FFT of 
basis signal, maximum at ~2.5 GHz. 

As seen in Figure 2, the Fourier Transform reveals a center 
frequency of ~900 MHz, thus confirming the shape to be 
accurate. While this works, the time and amplitude values are 
dependent upon one another. If independent parameters are 
desired, a different method must be implemented. 

B.   Particle Swarm Optimization 

With variable time step, amplitude, and signal delay, the 
PSO method follows a more detailed and complex 
computation. While this increases the runtime, it also decreases 
the error and adds flexibility. By running via a parallel compute 
method and utilizing message passing interface (MPI), 
however, the runtime is manageable. This effectively allows 

multiple CPUs to communicate in tandem. The error between 
the desired signal and the reconstructed signal is calculated 
globally as a point-by-point root mean square (RMS) error. 
The particles in the PSO each contain a unique solution set to 
the problem, as predefined by a fitting function. The algorithm 
is defined as follows [9]: 

{
𝑣𝑖 ⃗⃗⃗⃗ ←  𝜒 (

𝑣𝑖 ⃗⃗⃗⃗ + 𝑈 ⃗⃗  ⃗(0, 𝜙1) ⊗ (𝑝𝑖 ⃗⃗⃗⃗ − 𝑥𝑖 ⃗⃗⃗⃗ )

+ 𝑈 ⃗⃗  ⃗(0, 𝜙2) ⊗ (𝑝𝑔 ⃗⃗ ⃗⃗  ⃗ − 𝑥𝑖 ⃗⃗⃗⃗ )
)

𝑥𝑖⃗⃗⃗  ← 𝑥𝑖⃗⃗⃗  + 𝑣𝑖⃗⃗⃗  

   (4) 

where χ = 0.73, ϕ1 = ϕ2 = 2.05 (Clerc’s constriction method), pi 
is the best local parameter, pg is the best global parameter, xi is 
the current position, and vi is the current velocity. A uniform 
random number is generated between 0 and 2.05, which is 
limited to 0.73*2.05 ~ 1.50. This algorithm is looped over all 
basis signals and particles for each parameter (timeshift, 
amplitude, etc.).  

While the DWT provides only a shape matching function, 
the PSO can be altered to accommodate multiple types of 
optimizations. For instance, peak power, primarily concerned 
with the frequency domain, computes the maximum power 
output across all frequencies. The only drawback is that the 
center frequency has been slightly shifted right of our goal (600 
MHz), see Figs 3 and 4. 

 
Fig. 3. PSO fitting functions for 600 MHz using fifteen 2 GHz basis signals. 

Dashed line – 600 MHz sinusoid, orange – maximum overall power, black – 

waveshape optimized signal, blue – spectral purity optimized. 

Fig. 4. FFT of fitting functions, settings as in Fig. 3. 

Similarly, spectral purity resides in optimizing in the 
frequency domain, albeit at a lower overall power; this is done 
to produce a spectrum that exhibits a maximum in a small band 
at 600 MHz. Waveform match, on the other hand, is focused 
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on the time domain in order to match the desired shape. In 
comparison, waveform match is a good compromise between 
functions in balancing power and center frequency. It is this 
versatility that drives the PSO ahead of the DWT. 

III. ANALYSIS 

Analysis of the PSO can be accomplished by running 
maximum power calculations and comparing to that of the 
DWT. One would expect the outputted power to be higher in 
the PSO and, thus, more efficient. Likewise, the frequency 
output derived from the Fourier transform provides useful 
insight (again, a higher output is predicted).  Lastly, the method 
of random searching employed in the PSO (similar to the 
Monte Carlo approach) is checked for accuracy and 
statistically modeled. 

Using an ideal 2 GHz basis signal at 1 Vpp, a spectrum can 
be calculated by integrating over a range of frequencies (0 – 7 
GHz). This spectrum will serve as the model to which the PSO 
and DWT methods will be compared. Using the following 
equation, the spectrum voltage can be converted to power: 

𝑃 =
𝑉2

𝑍0
         (5) 

where E is the electric field in volts/meter and Z0 is the constant 
for free space impedance (377 Ω). Note that this equation still 
works if E is substituted for V (volts); the units then become 
watts/meter2 instead of watts. Once units are in terms of power, 
the spectrum is normalized by dividing by half the length of 
the spectrum array (the other half of the array is lost when 
taking the Fourier transform; this accounts for both positive 
and negative values).  

The PSO values are then generated by maximizing the 
power within a 20 MHz band defined as follows: 

𝑃𝐵 =
𝑃(𝑓)∗𝐵

∆𝑓
          (6) 

where PB is band power, P(f) is power at the set frequency, B 
is the bandwidth, and ∆f is the frequency step size. For 
instance, a power value of 90.3 mW with a bandwidth of 
20 MHz and step size of 33.3 MHz, yields a band power of 
54.2 mW. This calculation is repeated for a number of 
frequencies in the range of 0 – 7 GHz. For the PSO, not every 
frequency was chosen due to the computation time (~3 hours 
per frequency), so 12 values were used and then interpolated 
via piecewise cubic Hermite polynomial, see Fig. 5. 

 

Fig. 5. Band power (20 MHz BW) of PSO and DWT at different frequencies. 1 

– PSO optimized for total maximum power, 2 – PSO optimized for maximum 

power in band, 3 – DWT optimized for wave shape matching sinusoid at given 

frequency.  

The band power for total maximum power optimization, with 
an average of ~800 mW in the 0 to 7 GHz range, has nearly 
twice the power of the PSO (463 mW) and four times the power 
of the DWT (201 mW). That is, the PSO is reduced to 58% 
power, while the DWT is reduced to 25% power. This power 
reduction is to be expected since the band power optimization 
typically leads to a narrower spectrum, more closely 
resembling a sinusoid at the given frequency.  

IV. CONCLUSION 

It has been shown that a signal of arbitrary frequency may 
be represented by the combination of a limited number (few 
tens) of basis signals. The time shifts and amplitude 
adjustments for these wavelet/basis functions are found using 
both the discrete wavelet transform and particle swarm 
optimization. The use of particle swarm optimization allows 
for increased versatility in defining the signals or their power 
in a specific band. 

As compared to the discrete approach, statistical analysis 
proved the particle swarm method to produce tighter fitting 
results in the case of a very limited number of basis signals. It 
is, thus, the preferred method for reconstructing signals.  
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