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Abstract— Four separate FRP hot-stick flashover incidents 
have occurred in Canada during live-line working under steady-
state system conditions at the peak of the voltage negative half-
cycle during cold and freezing conditions. The incidents were 
reported at 500-kV AC line voltage working stress (95-96 kV/m) 
in 1997 and 2002 in Manitoba, and at 230-kV AC line voltage 
working stress (71 kV/m) twice in the neighbouring province, 
Saskatchewan, in 2012. To the best of our knowledge, the most 
reliable reproduction of these incidents has been achieved at 
UQAC Laboratories at a voltage stress of 105 kV/m at -1.04 °C, 
Relative humidity (RH) of 109 % with visible fog and 2.8 μg/cm2 
Equivalent Salt Deposit Density (ESDD) during a series of "true" 
cold fog tests. In this paper, suitable mathematical models for 
predicting the AC flashover voltage of ice-covered insulators are 
studied by considering a 1-mm ice layer covering an FRP hot 
stick. To the best of our knowledge, such modeling for FRP hot 
stick under cold and frozen conditions has never been attempted 
so far.  

Keywords— ice-covered FRP hot-stick, live line work, AC arc 
discharge model. 

I. INTRODUCTION  
     Environmental concerns and lack of new power line 
construction because of imposed restrictions are making it 
increasingly difficult for utilities to use planned outages 
during transmission line construction and maintenance. Power 
companies and their systems are subjected to a constantly 
increasing consumer demand. This situation makes energized 
maintenance or live-line working the only viable solutions, 
and where the two basic techniques to achieve that are 
insulating tool methods and bare hand methods. Having a 
good surface condition and an insulating length determined by 
IEEE Std. 516-2009 [1] and IEC 61472-2013 [2]  to respect 
MAD requirements, a FRP hot stick tool provides sufficient 
impedance between the lineman and the energized 
components.     

     Manitoba Hydro and Saskpower experienced four separate 
FRP hot-stick flashover incidents in spite of respecting the 
aforementioned standards. The incidents occurred in Canada 
under steady-state system conditions at the peak of the voltage 
negative half-cycle during cold and freezing conditions. The 
incidents were reported at 500-kV AC in an electric field 
magnitude of 95-96 kV/m in 1997 and 2002 in Manitoba [3-6] 
and at 230-kV AC in an electric field magnitude of 71 kV/m 

twice in the neighbouring province, Saskatchewan, in 2012 
[7].  

     In our previous studies reported in [8, 9], a three-
dimensional thermo-electrohydrodynamic model based on 
finite element method was developed for an ice-covered FRP 
hot-stick. Based on simulation results, the partial discharge 
current flowing through an ice layer covered the live tool is 
enough to raise the temperature of an ice layer just below 
freezing, where the cold-fog flashover mechanism can be 
justified. Moreover, wind speed and its direction have 
significant effects on ice temperature increase of an ice-
covered FRP live-line tool [9]. These simulation results could 
well justify the cold-fog flashover mechanism for the two 
flashovers that occurred on FRP live-line tools at temperatures 
of -13 and -19 °C in Manitoba and Saskatchewan. 

     By using three-dimensional FEM models elaborated in [10-
13], the voltage and electric field distributions around an FRP 
hot stick were calculated and assessed. The simulation 
geometries were similar to that of the flashover tests at UQAC 
[10, 11] and that of the Manitoba site incidents [12, 13] in a 
three-dimensional domain and could well explain some 
features of the flashover.  

     In another investigation [14], the authors studied the 
Minimum Approach Distance required for the hot sticks used 
in Manitoba. In this regard, the MADs obtained by IEEE Std. 
516-2009 [1] and IEC 61472-2013 [2] for various conditions 
were compared and analyzed. In this regard and by using the 
laboratory investigations reported in [14, 15], a new formula 
for MAD calculation under cold and freezing conditions was 
introduced.  

In this paper, the present mathematical models for 
predicting the AC flashover voltage of ice-covered insulators 
or contaminated insulators are examined to explore suitable arc 
models for FRP hot-sticks for extremely light levels of ESDD 
contamination, having a good concordance with the 
experimental results obtained at UQAC. 

II. EXPERIMENTAL INVESTIGATIONS 
     The aforementioned four incidents occurred on FRP hot 
sticks during live line work in Canada led to a series of tests at 
Manitoba Hydro, Hydro-Quebec Research Institute (IREQ), 
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ESDD for polluted insulators may works well in the case of 
FRP hot sticks. 
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