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Abstract—A mathematical expression of the output voltage 

from a nonuniform transmission line (NTL) with an arbitrary 

input pulse was deduced. Due to this mathematical expression, 

two transmission characteristics of NTLs with linear, exponential 

and Gaussian impedance profiles were further clarified. The first 

one is that the peak power efficiencies of NTLs with a half-sine 

input voltage are quantified as functions of Ψ (the ratio of the 

output impedance to the input impedance of the NTLs) and Γ 

(the ratio of the pulse width to the one-way transit time of the 

NTLs). The second one is that the top of an initially rectangle 

input voltage pulse falls at the terminal of the NTL and that the 

ratio of the droop to the top of the output voltage is also 

quantified as a function of Ψ and Γ. 

Keywords—nonuniform transmission line, analytical method, 

peak power efficiency, droop 

I. INTRODUCTION 

In the past decade, a number of architectures have been 
proposed for the design of future pulsed power Z-pinch drivers 
[1-3]. In these architectures nonuniform transmission lines 
(NTLs) were used as water-insulated radial-transmission-line 
impedance transformers to combine the outputs of several-
hundred terawatt-level pulse generators to produce a petawatt-
level pulse. In order to know the transmission characteristics of 
NTLs with different impedance profiles, studies were made 
with analytical method [4, 5], numerical simulation [6-9] and 
experiment [10]. Analytical method is the best way to 
investigate the transmission characteristics of NTLs because it 
is presented as mathematical expressions which offer a clear 
view into how variables affect the result [5]. However, the 
characteristic impedance varies along the NTL, which brings 
much difficulty to investigate the transmission characteristics 
using analytical method, especially in time domain. Thus most 
researchers dealt with NTLs in frequency domain (steady-state) 
except for limited cases in which the transient behavior of 
NTLs in  time domain was studied. Hsue and his colleague 
investigated the step response of a cascaded multiple-section 
line and gave a mathematical expression of the output voltage 
at the load end [4]. They focused on the first arriving wave due 
to the internal transmission-reflection components being a 
rather complicated function to analyze. Two years ago, we 
deduced a mathematical expression of the output voltage from 
NTLs in time domain and clarified the high-pass and pulse-
compression characteristics of NTLs using theoretical analysis 

of the analytical expressions [5]. However, that mathematical 
expression was only for an input voltage of half-sine shape. 
Moreover, other transmission characteristics of NTLs also need 
to be investigated. For example, the peak power efficiencies of 
NTLs with linear, exponential and Gaussian impedance 
profiles with a half-sine input voltage are quantified as 
functions of Ψ (the ratio of the output impedance to the input 
impedance of the NTLs) and Γ (the ratio of the pulse width to 
the one-way transit time of the NTLs) [7], and the top of an 
initially rectangle input voltage pulse falls at the output 
terminal of the NTL [11]. 

In this paper, we extended the mathematical expression of 
the output voltage proposed two years ago [5] and got a similar 
one which is for NTLs with an arbitrary input voltage pulse. 
Then the two transmission characteristics mentioned above 
were investigated by the analytical analysis of the new 
mathematical expression. 

II. OUTPUT VOLTAGE FROM AN NTL 

A. Mathematical Expression of the Output Voltage 

In [5], we considered the lossless NTL as a cascaded 
multiple section line where all the sections have the same 
length, as shown in Fig. 1. In this paper, we will use the same 
model. If the length of each section is short enough, the ith 
section can be assumed uniform and characterized by its 
characteristic impedance Zi(i=0,1,2,…,m). So the one-way 
transit time of the NTL is given by 

 line 1T m t                                  (1) 

where Δt is the one-way transit time of each section. 

 

Fig. 1. Cascaded multiple-section line with impedance-matching terminals. 
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Since we are interested in the transmission characteristics 
of the NTL itself, the impedance should be matched at the both 
terminals of the NTL. A semi-infinite uniform transmission 
line with an characteristic impedance of Z0 is inserted in 
between the pulse generator and the input terminal of the NTL. 
And a resistor R=Zm is used as the load connecting at the output 
terminal of the NTL. 

The only difference from the model in [5] is that the input 
voltage wave is not restricted to a half-sine shape. It can be an 
arbitrary pulse such as a rectangle wave. It is given by 
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where tend is the width of the input voltage wave and f(t) is an 
arbitrary function. 

Using the same method as in [5], we can obtain the 
mathematical expression of the output voltage 

 output line 0 input 0 input

1

( ) ( ) 2
l

i

i

U t T U t U t i t  


          (3) 

where l is the largest integer that is not larger than t/(2Δt) or 
(m-1). ρ0 and ρi(i=1,2,…,l) are the coefficients determined only 
by the characteristic impedances of the line sections and are 
given by 
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B. Variables in the Mathematical Expression 

Now we will look into all variables in (3) to see what 
makes a difference to Uoutput(t+Tline). 

1) Uinput(t-2i∙Δt) is determined by Uinput(t). Uinput(t) and 
Uinput(t-2i∙Δt) represent that the input pulse has an influence to 
the output voltage. It is easy to understand this. 

2)  We will focus on l. Due to (1), we can obtain 
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To ensure that (3) is correct, the length of each line section 
should be short enough, which means Δt→0 and m→+∞. Thus 
m is not a variable for Uoutput(t+Tline). In this case 
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Thus when t≤2Tline, l is the largest integer that is not larger than 
t/(2Δt), which equals to (m+1)t/(2Tline) . When t>2Tline, l is the 
largest integer that is not larger than (m-1). So for any selected 
time t, l is determined only by Tline. 

3) From (4)-(6), we can see that if all Zi(i=0,1,2,…,m) are 
multiplied by the same coefficient, ρi(i=0,1,2,…,l) remain the 
same. Thus Uoutput(t+Tline) remains the same. Particularly, for 
NTLs with linear, exponential and Gaussian [11] impedance 
profiles, when Ψ remains the same, Zi(i=0,1,2,…,m) are all 
proportional to the input impedance Z0. Thus ρi(i=0,1,2,…,l) 
are determined only by Ψ for these NTLs. 

In conclusion, for any selected time t, the output voltage 
Uoutput(t+Tline) is determined by Uinput(t), Tline, and 
ρi(i=0,1,2,…,l). For NTLs with linear, exponential and 
Gaussian impedance profiles, ρi(i=0,1,2,…,l) are determined 
only by Ψ. 

III. PEAK POWER EFFICIENCY OF AN NTL 

Hu and his colleagues found that the peak power 
efficiencies of NTLs with linear, exponential and Gaussian 
impedance profiles with a half-sine input voltage pulse are 
quantified as functions of Ψ(Ψ=Zm/Z0) and Γ(Γ=tend/Tline) using 
a 1-D circuit model [7]. In this section, we will clarify this 
transmission characteristic using analytical method. 

The peak power efficiency of an NTL is defined by 
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where (Uoutput)max is the amplitude of Uoutput(t+Tline) and  
(Uinput)max is the amplitude of Uinput(t). As the NTL is a linear 
system, Uoutput(t+Tline)is proportional to (Uinput)max. So (Uinput)max 
should be assumed to remain the same. We suppose that there 
are two NTLs systems named System A and System B. We 
need to clarify when the two systems have the same Γ and Ψ, 
they have the same (Uoutput)max. 

1) We assume that Γ, Ψ, tend and Tline of the two systems are 
the same. Zm and Z0 are different. A half-sine input voltage 
pulse can be determined totally by (Uinput)max and tend, so it is 
also the same in the two systems. Due to Section II B. 2), we 
can know that for any selected time t, l is the same. Due to 
Section II B. 3), we can know ρi(i=0,1,2,…,l) are the same. As 
all variables in (3) are the same, Uoutput(t+Tline) is the same. 
Thus (Uoutput)max is the same. 

2) We assume that Γ, Ψ, Zm and Z0 of the two systems are 
the same. tend and Tline are different. We assume that the input 
voltage waves of the two systems are respectively 
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It is obvious that 
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Due to the pulse-compression characteristic of NTLs in [5], 
the maxima of UoutputA(t+TlineA) and UoutputB(t+TlineB) occur at 

  A A0, 2mt    and   B B0, 2mt   , respectively. For 

any a time instant   A A0, 2t   , there must exist a time 

instant   B B0, 2t    that satisfies the following relation 
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Where lA is the largest integer that is not larger than tA/(2ΔtA) 
or (m-1), and lB is the largest integer that is not larger than 
tB/(2ΔtB) or (m-1). 

Due to (1) and (14), we obtain 
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Upon substitution of (15), (18) and (20) into (16) and (17), 
we obtain 

outputA A lineA outputB B lineB( ) ( )U t T U t T                (21) 

Equation (21) means that for any a time instant 

  A A0, 2t   , there exist a time instant   B B0, 2t    

which makes 
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Thus 
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Using the same method, we can obtain 
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Due to (23) and (24), we obtain 
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Thus System A and System B have the same (Uoutput)max. 

3) We assume that Γ and Ψ are the same. Zm, Z0, tend and 
Tline are different. We suppose a new system named System C. 
System C’s tend and Tline are the same with those of System A, 
while its Zm and Z0 are the same with those of System B. 
Obviously, System C’s Γ and Ψ are the same with those of 
System A and B. Then we can know that (Uoutput)max of System 
C is the same with that of System A based on 1), and that it is 
the same with that of System B based on 2). So (Uoutput)max of 
System A is the same with  that of System B. 

We can conclude from 1), 2) and 3) that η of NTLs with 
linear, exponential and Gaussian impedance profiles with a 
half-sine input voltage pulse are quantified as functions of Ψ 
and Γ. 

IV. DROOP OF THE OUTPUT VOLTAGE WAVE FROM AN NTL 

The output voltage wave of an NTL with a rectangle input 
voltage pulse is not a rectangle wave [11]. The top falls as 
shown in Figure 2. Uoutput(t+Tline) is lower than Uoutput(Tline), 
which is called the droop. In this section, we will clarify that 
the ratio of the droop to the top 

     output line output end line output lineU T U t T U T     is quantified 

only as a function of Ψ and Γ for NTLs with linear, exponential 
and Gaussian impedance profiles. 



 

Fig. 2. Droop of the output voltage wave from an NTL with a rectangle input 

voltage pulse. 

Due to (2) and (3), we can obtain 
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where l0 is the largest integer that is not larger than 0/(2Δt) or 
(m-1), so l0=0. lend is the largest integer that is not larger than 
tend/(2Δt) or (m-1). For a rectangle input voltage pulse, f(t) is a 
constant in (2). So we can define f(t)=U. Thus (26) and (27) are 
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We define h(m) is the ratio of the droop to the top when the 
number of line sections is (m+1). So we just need to calculate 
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From Section II, we can know that ρi(i=1,2,…,lend) are 
determined only by Ψ for NTLs with linear, exponential and 
Gaussian impedance profiles. 

lend is the largest integer that is not larger than tend/(2Δt) or 
(m-1). Due to (7), we obtain 
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Thus when Γ≤2, lend is the largest integer that is not larger 
than tend/(2Δt), which equals to (m+1)Γ/2. When Γ>2, lend is the 
largest integer that is not larger than (m-1). So lend is only 
determined by Γ and m. Thus from (30) we can know that 

 lim
m

h m


 is only qualified as a function of Ψ and Γ, which is 

right the conclusion at the beginning of this section. 

V. CONCLUSIONS 

The output voltage from an NTL with an arbitrary input 
voltage pulse can be calculated by a mathematical expression 
in time domain. The peak power efficiency and droop of the 
output voltage from the NTL can also be investigated using 
this mathematical expression. 

ACKNOWLEDGMENT 

The authors would like to thank the National Natural 
Science Foundation of China under Contact No. 51277109, the 
Key Laboratory of Pulsed Power of China Academy of 
Engineering Physics (CAEP) under Contact No. 
PPLF2014PZ02 and the fellowship of China Scholarship 
Council (CSC) for supporting the research. 

REFERENCES 

[1] W. A. Stygar et al., “Architecture of petawatt-class Z-pinch 
accelerators,” Phys. Rev. ST Accel. Beams, vol. 10, pp. 030401, March 
2007. 

[2] W. A. Stygar et al., “Conceptual designs of two petawatt-class pulsed-
power accelerators for high-energy-density-physics experiments,” Phys. 
Rev. ST Accel. Beams, vol. 18, pp. 110401, November 2015. 

[3] J. Deng et al., “Initial performance of the primary test stand,” IEEE 
Trans. Plasma Sci., vol. 41, pp. 2580-2583, October 2013. 

[4] C. Hsue and C. D. Hechtman, “Transient analysis of nonuniform, high-
pass transmission lines,” IEEE Trans. Microw. Theory Techn., vol. 38, 
pp. 1023–1030, August 1990. 

[5] C. Mao, X. Zou and X. Wang, “Analytical solution of nonuniform 
transmission lines for Z-pinch,” IEEE Trans. Plasma Sci., vol. 42, pp. 
2092-2097, August 2014. 

[6] D. R. Welch, T. C. Genoni, D. V. Rose, N. L. Bruner, and W. A. Stygar, 
“Optimized transmission-line impedance transformers for petawatt-class 
pulsed-power ccelerators,” Phys. Rev. ST Accel. Beams, vol. 11, pp. 
030401, March 2008. 

[7] Y. Hu et al., “Simulation analysis of transmission-line impedance 
transformers with the Gaussian, exponential, and linear impedance 
profiles for pulsed-power accelerators,” IEEE Trans. Plasma Sci., vol. 
39, pp. 3227–3232, November. 2011. 

[8] R. Zhang, C. Mao, K. Huang, X. Zou, and X. Wang, “Comparison of 
nonuniform transmission lines with Gaussian and exponential 
impedance profiles for Z-pinch,” IEEE Trans. Plasma Sci., vol. 40, pp. 
3395–3398, December 2012. 

[9] C. Mao, X. Zou and X. Wang, “Three-dimensional electromagnetic 
simulation of monolithic radial transmission lines for Z-pinch,” Laser 
Part. Beams, vol. 32, pp. 599-603, 2015. 

[10] R. A. Petr, W. C. Nunnally, C. V. Smith Jr., and M. H. Clark, 
“Investigation of a radial transmission line transformer for high-gradient 
particle accelerators,” Rev. Sci. Instrum., vol. 59, pp. 132-136, January, 
1988. 

[11] I. A. D. Lewis and F. H. Wells, Millimicrosecond Pulse Techniques, 2rd 
ed., New York: Pergamon Press, 1959. 

 


	I. Introduction
	II. Output Voltage from an NTL
	A. Mathematical Expression of the Output Voltage
	B. Variables in the Mathematical Expression

	III. Peak Power Efficiency of an NTL
	IV. Droop of the Output Voltage Wave from an NTL
	V. Conclusions
	Acknowledgment
	References


