TCAD simulations of LGAD devices using Silvaco software

M. Bomben - LPNHE & UPD, Paris

Outline

- Simulated structure & doping profile
- CV & Electric field
- Simulation of alpha particles hitting from the backside
- Simulation of MIPs hitting from the frontside
- Comments & conclusion

Simulated structure & doping profile

- 2D simulation of a 200 μm thick n-on-p diode, 150 μm wide
- Bulk doping conc. = 1x10¹² /cm³
- 2 versions studied: with and without multiplication implant
- Profile from real data*
- Peak @ 1μm
- Plateau 0.5 μm wide

The 2D simulated structure

Depletion voltage, reference vs LGAD

Electric field – mult. zone

Alpha's simulations

- Alpha impinging from the back
 - Range: 5 μm
 - Energy ~ 1 MIP in 200 μ m
- 200 µm thick devices
- V_{bias} = 50, 100, 150 & 200 V
- **Φ** = 0
- T = from -35° C to +20° C
- Observables: signal, electric field and gain

Signal, V = 150 V

Signal, V = 150 V

Elec. Conc. – 150 V, 500 ps after particle strike

Hole Conc. – 150 V, 500 ps after particle strike

Elec. Conc. – 150 V, 1 ns after particle strike

Hole Conc. – 150 V, 1 ns after particle strike

Elec. Conc. – 150 V, 2 ns after particle strike

Hole Conc. – 150 V, 2 ns after particle strike

Signal, V = 150 V

Signal, V = 200 V

LGAD vs reference – 200 V

LGAD vs reference – 200 V - zoom

Charge: comparison

Gain for Fluence = 0

Gain vs temperature

MIPs simulations

- MIP impinging from the front
- 50, 100, 200 & 300 µm thick devices
- V_{bias} = from 50 to 1000 V
- $\Phi = 0, 1 \times 10^{15}, 3 \times 10^{15} \& 1 \times 10^{16}$
 - Model: Moscatelli et al. 2015 NSS 2015
 - and Passeri et al. 2015 Nucl. Instr. Meth. A (in press)
 - Bulk damage only (N.B. no acceptor removal, only trapping)
- Observables: signal, IV, electric field and gain

Passeri et al. 2015

Modeling of radiation damage effects in silicon detectors at high fluences HL-LHC with Sentaurus TCAD

D. Passeri^{a,b,*}, F. Moscatelli^{c,b}, A. Morozzi^{a,b}, G.M. Bilei^b

Table 1

Parameters for fluences up to 7×10^{15} n/cm².

Defect	E (eV)	$\sigma_e (\mathrm{cm}^{-2})$	$\sigma_n (\mathrm{cm}^{-2})$	η
Acceptor	$E_c - 0.42$	1.00×10^{-15}	1.00×10^{-14}	1.6
Acceptor	$E_c - 0.46$	7.00×10^{-15}	7.00×10^{-14}	0.9
Donor	$E_v + 0.36$	3.23×10^{-13}	3.23×10^{-14}	0.9

Table 2

Parameters for fluences within 7×10^{15} n/cm² and 2.2×10^{16} n/cm².

Defect	E (eV)	$\sigma_e (\mathrm{cm}^{-2})$	$\sigma_n (\mathrm{cm}^{-2})$	η
Acceptor	$E_c - 0.42$	1.00×10^{-15}	1.00×10^{-14}	1.6
Acceptor	$E_c - 0.46$	3.00×10^{-15}	3.00×10^{-14}	0.9
Donor	$E_v + 0.36$	3.23×10^{-13}	3.23×10^{-14}	0.9

Signal vs time, different thicknesses – 200 V

Signal of irr. samples – $\Phi = 1 \times 10^{15}$

Gain vs different thicknesses – 200 V

Gain vs different thicknesses – 500 V

Electric field ratio

Electric field normalized to the reference detector

Gain vs bias voltage – w = $300 \,\mu$ m

Gain vs bias voltage – w = 200 μ m

More realistic structure

Very preliminary results on the new structure

Very preliminary results on the new structure

Conclusions & outlook

- Signal properties in LGAD have been studied
 - Both alpha from backside and MIPs
- Alpha studies show that the holes are multiplied
- Colder device is faster (expected) and gives rise to more charge
 - Reason: impact ionization is more effective (longer mean free path)
- MIP studies confirms that signal "takes" longer for LGAD
 - But response at t=0 is the same as for non-LGAD (expected)
 - Hence: the front-end will make the difference for timing
 - Anyway, interesting timing studies can be carried out
- Lower gain after irradiation could be apparent: an important difference could be linked to the electric field strength
- Gain for w = 200 μ m goes from 1 to 1.7 from 0 to 1000V at Φ =1x10¹⁶
- Next: more realistic detectors (based on real numbers), new doping profiles, surface damage effects

Backup

Signal, V = 50 V

Signal, V = 100 V

More bias points (I)

Same horizontal scale for all

More bias points (II)

Summary plot for T = 20° C

Summary plot for T = -20° C

"Temperature" gain

Electric field ratio

Signal vs time, different thicknesses – 200 V

Signal vs time, different thicknesses – 500V

Signal vs time, w = 50 μ m, un-irr. – 500 V

No breakdown in thin un-irr. till 1000 V

Break down voltage summary for irr. LGAD

Φ[neq/cm²] w[μm]	1x10 ¹⁵	3x10 ¹⁵	1x10 ¹⁶
50	450	450	450
100	> 500	900	900
200	> 500	> 1000	> 1000

Signal vs time, different thicknesses – 200 V

Breakdown in thin irr. LGAD and ref.

Signal vs time, different thicknesses

Breakdown in thin irr. LGAD and ref.

Breakdown in thin irr. LGAD and ref.

Simulation of irr. samples – $\Phi = 3 \times 10^{15}$

Simulation of irr. samples – $\Phi = 1 \times 10^{16}$

Signal of irr. samples – $\Phi = 1 \times 10^{15}$

Simulation of irr. samples – $\Phi = 1 \times 10^{15}$

Simulation of irr. samples – $\Phi = 3 \times 10^{15}$

Simulation of irr. samples – $\Phi = 3 \times 10^{15}$

Simulation of irr. samples – $\Phi = 1 \times 10^{16}$

Simulation of irr. samples – $\Phi = 1 \times 10^{16}$

Ratio of electric field – LGAD only

Ratio of electric field – LGAD only

Electric field for all fluences

Electric field for all fluences

Electric field ratio

Electric field ratio

