

TCAD simulations of High-Voltage CMOS pixel structures for the CLIC vertex detector

Matthew Buckland (University of Liverpool, CERN)
On behalf of CLICdp collaboration

Outline

- CLIC vertex detector
- Capacitively coupled pixel detector
- TCAD simulations
 - Goals
 - 2D 3D comparison
 - 3 pixel structure
- Summary

CLIC vertex detector

- Compact linear collider (CLIC) is a proposed e⁺e⁻ collider with √s 3 TeV at the final stage
- Precision physics and experimental conditions impose stringent conditions on the vertex detector:
 - 3 µm point resolution
 - Low material budget, ~0.2% X₀ per layer => air cooling
 - Fast signal, ~10 ns time stamping
 - Low power consumption, power pulse operation

HV-CMOS sensor

- Capacitively couple pixel detector (CCPD):
 - HV-CMOS sensor
 - Operated at high voltage to maximise the depletion region
 - Improves performance due to decreased
 detector capacitance and larger signal amplitude
 - Sensor is capacitively coupled to readout chip via glue
 - Hence low cost and low mass, compared to bump bonding
- CCPDv3:
 - Fabricated in 180 nm AMS technology
 - 2 stage amplification, peaking time
 - ~ 120 ns
 - 25 μm x 25 μm pixels, 64 x 64 matrix

Goals of HV-CMOS TCAD studies

- Understand features of the measurements better e.g. transient signal development
- An accurate model will improve the comparison between simulation and measurements
- Use as input for simulation chain of sensor and readout chip
- Want to check the validity of the 2D simulations by comparing to 3D ones
- Limitations of 3D simulations:
 - Very memory intensive, using large amount of RAM (~16GB), long run times (+30hrs)
 - Has a trade off between mesh size (convergence) and memory
 - Reduced the model with less implants to reduce memory
- Hence 2D is much quicker but is it realistic?

CCPDv3 layers to be simulated

- Layers obtained from the design file (gds layout file), imported to ligament layout
- Full implant structure, no metal lines shown

2D Cut

- There is no ideal cut as it is not symmetric
- Adjusted some layers so that contacts could be made
- => not an exact cut of CCPDv3

Simulated TCAD structures

- 3 structures simulated: 2D full, 2D reduced and 3D reduced
- 2D full has all the implants and contacts
- The 2D reduced and 3D reduced structures both have the same implant structure
- 100 μm thick 31.5 μm wide, 10Ωcm
- Created in Sentaurus structure editor
- "Net active" is the doping concentration

3D reduced with oxide and aluminium

M. Buckland

E-field comparison

- Biased to -60V, operating voltage of device
- All electric fields are roughly the same:
 - higher value at edges of the deep n-well
 - Lower value in deep n-well and outside depletion
- One difference: 2D full model has a higher electric field value in the oxide because of the metal layer

Leakage current comparison

- Breakdown of real device was measured to be -93V
- See breakdown in 2D full at ≈ -88V and for 3D reduced ≈ -90V
- Breakdown in 2D reduced greater than -100V due to no metal layer
- Breakdown field of silicon ≈ 3x10⁵ V/cm

Capacitance comparison

- Deep n-well to bulk
- Test bench measurements: ~10 fF
- Parallel plate estimate:

$$C = \varepsilon_0 \varepsilon_r \frac{A}{d}$$

- Where A = area of deep n-well and d = depletion width
- At -60V:

$$C_{total} \approx C_{bottom} + 4C_{side} \approx 6 \text{ fF}$$

- Simulations are consistent with measurements
- 2D simulation results are given in F/µm, then multiplied by deep n-well length hence only estimates

MIP simulation

- In TCAD specify time, direction, position and charge deposition of the particle
- Charge is then instantaneously placed
- The MIP passes the centre of all three structures
- Deposits 80 electron-hole pairs per micron, no landau fluctuations
- Transient simulation from 0-10µs is performed at bias voltage -60V
- Real sensor is 250µm thick but found only 100µm contribute to signal over an appropriate time scale

MIP signal

- 3D reduced model has the largest peak but quickly drops to the lowest value
- The 2D full model has larger current value than the 2D reduced model
- After 10µs 3D reduced collects the most charge: around 900e- more than 2D full and 1400e- more than 2D reduced
- May be due to coarser mesh

2D full 3 pixel structure

- 3 pixel structure with a pixel pitch of 25µm
- Width 81.5µm, thickness 100µm
- Labelled pixel 1, 2 and 3 from left to right
- Look at different resistivities 10 Ω cm, 80 Ω cm, 200 Ω cm and 1000 Ω cm

Electric field for different resistivities, -60V

 Field extends the most under the deep n-well

 Pockets of low field under bias ring

 High field (red) is not as deep for the higher resistivities

Abs(ElectricField-V) (V*cm^-1)

5.000e+05

2.321e+03

1.077e+01

5.000e-02

2.321e-04

1.077e-06

5.000e-09

Breakdown for different resistivities

- The breakdown increases with resistivity
- The higher resistivities all breakdown \approx -100V suggesting the implant structure is the limiting factor

Capacitance comparison

- Deep n-well to bulk
- Kink in curve due to depletion region reaching edge
- Capacitance reduces with resistivity
- Small difference between
 80 Ωcm, 200 Ωcm and 1000 Ωcm

Depletion depth for different resistivities

 As expected the larger the bias voltage and resistivity the larger the depletion depth

MIP signal for different resistivities, -60V

- Send a MIP through the centre
- Similar current peak height and time for all resistivities
- After 10 μ s 1000 Ω cm collects the most charge by \approx 1000 e⁻
- 10 Ωcm is significantly slower at collecting charge
- Difference in signal collection speed increases with higher thresholds

MIP scan collected charge 2ns

- 10 Ωcm, -60V
- MIP scan across the structure, perpendicular to surface
- From 1.75µm (-39µm) to 79.75µm (+39µm) in 1µm steps
- Centre of device is 40.75µm (0µm)
- After 2ns not as much charge is collected when mip passes through deep n-well
- Pixels collect 0 charge when the mip is far enough away
- No diffusion from these regions yet
- Lowest collected charge at edges

1200

MIP scan collected charge 100ns

- 10 Ωcm, -60V
- After 100ns two side pixels collect more charge (edge effect)
- Did not occur after 2ns, hence this is due to diffusion
- Start to see diffusion to neighbouring pixels, charge sharing
- Total charge is uniform across whole device, agrees within 10%

Summary

- 2D 3D comparison:
 - Agreement between the models in electric field
 - IV and CV curves are similar for 2D full and 3D reduced
 - Difference is less than 10% for charge collection after 10µs
 - Reasonable to use the 2D full model
- 3 pixel structure
 - Breakdown and depletion depth increase with resistivity, capacitance decreases
 - Larger resistivities collect more charge, 1k Ωcm 50% larger than 10 Ωcm after 100ns
 - 10 Ωcm has slower charge collection, \approx 5 times slower to collect 1000 e⁻¹
 - After 100ns charge collection across the device is approximately uniform
 - In all simulations there is a substantial improvement for higher resistivites compared to 10 Ωcm

Backup

Meshing

 Global mesh refines around doping concentration and extra refinement around depletion region and mip track

2D cut of 3D reduced

E-field for different metal widths, -100V, 2D full

IV Curve M1 comp, 2D full

- The closer the M1 lines are the lower voltage at which breakdown will occur
- Around -88V for the correct M1 lines

Electric field, -60V, 10 Ωcm

- Very low outside depletion
- Highest around edges of deep n-well
- See low field inside deep n-well
- Field curves round to edges due to geometry of the structure
- Not true field lines, streamlines

E-field depth, 3 pixel structure

Side mip, 10Ωcm, -60V

- Simulate mip passing through side at different depths, look at pixel 2
- Slight decrease when mip passes through deep n-well
- Largest CC for depths of 6-8µm
- No diffusion from 90µm after 100ns

