

The University of Manchester

Characterization of a 3D module with micro-channel cooling

Cinzia Da Vià, (Manchester) Giulia Romagnoli, (Manchester and CERN) Malte Backhaus, Paolo Petagna, Desiree Hellenschmidt (CERN), Giulio Pellegrini (CNM Barcelon<u>a)</u>

Cinzia Da Via, Manchester. 11th Trento Workshop, Paris 22-24-02-2016

The HL-LHC Vertex detectors challenges:

A Possible Solution is an aggressive vertically integrated system composed by:

- SD silicon sensor modules with active edges
- Interconnected with micro-bump bonds and through chip bias supply

3D sensors Radiation Hardness

Irradiated 4E Devices Signal Ratio [%] 100 B2-10404E @ 0.0 neg B2454E @ 4.4E15 neg B2404E @ 2.14E16 neg 80 Measurements 07/2007 * 60 40 7500e 20 ^{^10¹⁵} 0 5 10 15 20 25 Fluence [neq/cm^2]

3D with 56 um inter electrode spacing and 200 micron thickness - 50% of the original charge available after 2x10^16ncm^-2 (I. Haughton PhD thesis) SINTEF 1cm² diode IES 56 um

Comparison 0 and 2x10¹⁶ncm⁻²

Power dissipation at 2x10¹⁶ n/cm²

- P3D+=Power density 3D sensors: Use existing data = 442mW/cm² with ~200V bias voltage and 200um thickness
- ♦ FE- 65nm TARGET FOR FE-65 IS 400mW/cm2
- PTOT= Power density module = [(P3D+PROC)]
- = 442 + 400 = ~ 850mW/cm2

For planar sensors the radiation induced Leakage current is the same but the bias voltage is ~ 5 times larger so a rough estimate for the power dissipation for the module is

~ 2.5 W/cm2

This figure is similar to the VELO detector

Advantages and Open Questions of Micro-channel cooling

Even lower mass :

Reduction of 'bulky' thermal interface required between cooling channel and substrate

Cooling channel is integrated in the substrate:

Can customize the routing of channels to run exactly under the heat sources.

Many parallel channels:

large liquid-to-substrate heat exchange surface.

No heat flows in the substrate plane:

Small thermal gradients across the module.

All material is silicon or silicon compatible:

- ✤ No mechanical stress due to CTE mismatch.
- Big Open Question 1: how to homogeneously cool a 1.5m stave
- Big Open Question 2: reliable low-mass connectors for an innermostbarrel layer

Not new in HEP: see LHCb talk

3D Vertically Integrated Module

- 3D silicon : CNM double side 285 um thick IBL qualification batch
- FE-I4A: thinned to 100um at IZM
- Si-Si micro-channels designed by CERN PH-DT, produced by PH-DT in EPFL CMi cleanroom, direct bonding CSEM
- Glue: 2-components Masterbond EP37-3FLFAO

Module assembly

Gluing area of silicon microchannels on PCB

Kovar connectors laser soldered to stainless steel tube - to demonstrate the feasibility.

Cu coating of the connector and bending of the tube

3D sensor + FE-I4

3D printed support in ABS with window inside to hold the PCB and support the micro-channels tubes!

Mounting Details

Soldering of fluidic connectors

SMASTERBOND' EP37-3FLFA0 Technical Data Sheet

Before Cu coating Before soldering

After soldering

Micro-channel plate connectorized

PressureTested: - air to 80 bar - CO₂ to 65 bar

Gluing of FEI4 Chip

- **3D printed ABS support**
- PCB from Bonn University
- Micro-channel plate
- FEI4-A chip

EP37-3FLFA Master Bond Polymer System Two component epoxy compound for potting, bonding, sealing and coating

Key Features ✓ Therm

Kovar

Silicon

~	Thermally conductive	v	NASA low outgassing approved
~	Electrically insulative	×	Cures at room or elevated temperatures
~	High flexibility	~	Excellent flowability

Wire-bonding done in PH-DT bond lab

Response to MIPs

occupancy

Thermal Characterization with TRACI

Installation and thermal sensors layout

Board installed in the vacuum vessel

Leakage Current-Temperature Dependence

FE-I4 Chip OFF

- Δ T between T setpoint (on TRACI) and T measured is ~2°C
- T is a mean over 10 PT100 measurements on the micro channels
- Flow: CO2, 0.5 g/s

Temperature Repeatability

FE-I4 Readout electronics Chip OFF

- Temperature spanning done several times to check IV curves repeatability
- The resulting ΔI is due to small temperature differences between the curve and from ramp up/ramp down hysteresis

Constant Bias Voltage & varying Temperature

- Fixed Bias Voltage: -30V
- Various temperature points

Determination of the Thermal Figure of Merit

STEP 1:

- Chip off: measure leakage current for certain temperature and fixed voltage (30V)
- Obtain curve for average leakage current

STEP 2:

- Chip off: measure current
- Determine Toff by using curve
- As in vacuum T off = T CO2

STEP 3:

- Chip on: measure current
- Determine Ton by using curve

STEP 4:

• Determine $\Delta T = Toff - Ton$

Extrapolated Ton Or Toff

Measured current

Direct Test of Thermal Figure of Merit

- Heater on a bare microchannel operated at room T to simulate power dissipation
 - Temperature measured using an Infra-Red FLIR A655sc-Camera

۲

Addressing open questions 3D printed Alumina

connectors

Prototypes micro-channels

99.5% Aluminum Oxide				
Mechanical	Units of Measure	SI/Metric		
Density	gm/cc (lb/ft ³)	3.89		
Porosity	% (%)	0		
Color	—	ivory		
Flexural Strength	MPa (lb/in ² x10 ³)	379		
Elastic Modulus	GPa (lb/in ² x10 ⁶)	375		
Shear Modulus	GPa (lb/in ² x10 ⁶)	152		
Bulk Modulus	GPa (lb/in ² x10 ⁶)	228		
Poisson's Ratio	—	0.22		
Compressive Strength	MPa (lb/in ² x10 ³)	2600		
Hardness	Kg/mm ²	1440		
Fracture Toughness K _{IC}	MPa•m ^{1/2}	4		
Maximum Use Temperature (no load)	°C (°F)	1750		
Thermal				
Thermal Conductivity	W/m°K (BTU•in/ft ² •hr•°F)	35		
Coefficient of Thermal Expansion	10 ^{−6} /°C (10 ^{−6} /°F)	8.4		
Specific Heat	J/Kg•°K (Btu/lb•°F)	880		
Electrical				
Dielectric Strength	ac-kv/mm (volts/mil)	16.9		
Dielectric Constant	@ 1 MHz	9.8		
Dissipation Factor	@ 1 kHz	0.0002		
Loss Tangent	@ 1 kHz	—		
Volume Resistivity	ohm•cm	>10 ¹⁴		

Si 2.6

Fludic connector in Alumina designed to match the ATLAS micro-channels design

Soldering test with metallized ceramic on silicon

Alumina micro-channel prototype

Scale = mm

Ceramic Microchannel Prototypes

10 mm channels

External channels lenght: 10.364 mm Internal channels lenght: 8.26 mm Straight part lenght: 5mm Distance between holes: 8 mm Inlet holes diameter: 1.6 mm

20 mm channels

4 Channels lenght: 20.52 mm Straight part lenght: 5mm Distance between holes: 16 mm Inlet holes diameter: 1.6 mm

3D Printed Ceramic Devices

Soldering of fluidic connectors

Vacuum brazing around 800°C ABA CuSil foil (Ag 63.0%, Cu 35.25%, Ti 1.75%)

Conclusions and Plans

The first integrated module with reduced radiation length composed by:
3D silicon sensor
285 um
FE-I4A readout chip
100 um
Si-Si microchannel cooling
500 um (not optimised)
was successfully tested showing normal electrical and thermal performances
when cooled with CO2 with a figure of merit of 4 (1/3 of the current one)

We plan to irradiate it to the FE-I4 limit (5x10¹⁵ncm-²)

We are planning to test alternative 3D printed Alumina connectors and channels. These might solve the open questions on the potential use of micro-channel cooling in inner pixel layers.

3D printed ceramic could be used to fabricate staves!

If this works it might make micro-channel cooling a possible option by the time of the PH2 since fabrication time (and tests) could be faster

