

M.Mikuž, G.Kramberger, V.Cindro, I.Mandić, M.Zavrtanik

University of Ljubljana & Jožef Stefan Institute

11th "Trento" Workshop on

Advanced Silicon Radiation Detectors

Paris, February 22nd, 2016

Why the 10¹⁷ Ballpark?

- Run1 at LHC finished, 2 under way
 - LHC trackers designed for 730 fb⁻¹ of 14
 TeV pp collisions, ~35 fb⁻¹ up to now
 - Will probably get ~½ of planned
- HL-LHC in advanced planning
 - 3000 fb⁻¹ i.e. ~10xLHC
 - ~10¹⁵ n_{eq}/cm² for strips (neutrons&pions)
 - ~10¹⁶ n_{eg}/cm² for pixels (pions)
 - $nx10^{16} n_{eq}/cm^2$ for vFW pixels $(\pi \& n)$
 - ~10¹⁷ n_{eq}/cm² for FCAL (neutrons)
- Can (tracking) sensors survive in these extreme environments?

1 MeV neutron equivalent fluence

ATLAS FCAL

3000 fb⁻¹

TREDI, Paris, Feb 22, 2016

Marko Mikuž: E, μ and τ in irrad. Si

Expectations for $10^{17} \, n_{eq}/cm^2$

- Linear extrapolation from low fluence data
 - Current: $I_{leak} = 4 \text{ A/cm}^3 @20^{\circ}\text{C}$
 - 2 mA for 300 μm thick 1 cm² detector @ -20°C
 - Depletion: N_{eff} ≈ 1.5x10¹⁵ cm⁻³
 - FDV ≈ 100 kV
 - − Trapping $\tau_{eff} \approx 1/40 \text{ ns} = 25 \text{ ps}$
 - $Q \approx Q_0/d v_{sat} \tau_{eff} \approx 80 \text{ e/µm } 200 \text{ µm/ns } 1/40 \text{ ns} = 400 \text{ e} \text{ in very high electric field (>>1 V/µm)}$
- Observed signal not at all compatible with expectations

From:

G. Kramberger et al., JINST 8 P08004 (2013).

Edge TCT

Edge-TCT

- Generate charges by edge-on IR laser perpendicular to strips, detector edge polished
- Focus laser under the strip to be measured, move detector to scan
- Measure induced signal with fast amplifier with sub-ns rise-time (Transient Current Technique)
- Laser beam width 8 μm FWHM under the chosen strip, fast (40 ps) and powerful laser
 - Caveat injecting charge under all strips effectively results in constant weighting (albeit not electric!) field

Electric Field Measurement

- Initial signal proportional to velocity sum at given detector depth
- Caveats for field extraction
 - Transfer function of electronics smears out signal, snapshot taken at ~600 ps
 - Problematic with heavy trapping
 - Electrons with v_{sat} hit electrode in 500 ps
 - Mobility depends on E
 - v saturates for E >> 1V/μm

Marko Mikuž: E, μ and τ in irrad. 51

Selected Results from Neutrons

Hamamatsu ATL07 n⁺ mini-strip, FZ p-type, neutron irradiated at JSI TRIGA reactor

- In steps up to 10^{16} n_{eq}/cm^2

- Very instructive regarding qualitative electric field shape
 - Non-irradiated "by the book" for abrupt junction n⁺p diode
 - SCR and ENB nicely separated, small double junction near backplane
 - Medium fluence (Φ =10¹⁵ neutrons): some surprise
 - Smaller space charge than expected in SCR, some field in "ENB"
 - Large fluence (Φ =10¹⁶): full of surprises
 - Still lower space charge, sizeable field in "ENB"
 - Charge multiplication (CM) additional trouble for interpretation at large V
- Can we bring these observations to quantitative level?

TREDI, Paris, Feb 22, 2016

Marko Mikuž: E, μ and τ in irrad. Si

Published in :

G. Kramberger et al.,

JINST 9 P10016(2014).

Extending the Reach

- In 2014 added 5x10¹⁶ and 10¹⁷ n_{eq}/cm² measurements of the same detector
 - 10¹⁶ of this fluence fully annealed, the rest 80 min @ 60°C
- Intrinsic feature signal oscillations
 - period ~5/4 ns
 - CLR? ($C^2pf => L^20 nH^2 1cm of wire$)
 - velocity (slope) and charge (integral) yield consistent results
 - should be, as $Q \approx Q_0 v_{sum} \tau_{eff}/d$
- ©Cannot use *I(t)* to measure trapping...

Field Measurement Mastered

- Solution: concurrent forward bias v_{sum} measurements
 - clean Ohmic behaviour with some linear (field) dependence
 - constant (positive) space charge
 - can use $\int E(y)dy = \overline{E}d = V$ to pin down field scale
 - corrections from v(E) non-linearity small
- Can use same scale for reverse bias!
- FW measurements up to 700 V
 - know E scale up to 2.33 V/μm
 - can reveal v(E) dependence

Proton Irradiations

- 5 sample pairs of ATL12 mini-strips irradiated at CERN PS during summer 2015
 - got 0.5, 1.0, 2.9, 11, 28e15 protons/cm²
 - NIEL hardness factor 0.62
 - thanks to CERN IRRAD team
- Covers HL-LHC tracker range well
- Samples back in September, one of the pair investigated by E-TCT for all fluences
 - concurrent forward and reverse bias measurements

Mobility Considerations FW bias

- For forward bias can extract v(E) up to a scale factor
- Observe less saturation than predicted
- Model with

$$v_{sum}(E) = \frac{\mu_{0,e}E}{1 + \frac{\mu_{0,e}E}{v_{e,sat}}} + \frac{\mu_{0,h}E}{1 + \frac{\mu_{0,h}E}{v_{h,sat}}}$$

- keep saturation velocities at nominal values @-20°C ($v_{e,sat}$ = 107 μm/ns; $v_{h,sat}$ = 83 μm/ns)
- float (common) zero field mobility degradation
- fit v(E) for $\phi_n \ge 5 \times 10^{15}$ and $\phi_p \ge 3 \times 10^{15}$ n.b. FW profiles less uniform for lower fluences and for protons, but departures from average field still small

Mobility Fits

- Data follow the model perfectly
 - $-\mu_0$ degradation the only free parameter, scale fixed by $v_{sum,sat}$
 - although E range limited, $v_{sum,max}$ still > 1/3 of $v_{sum,sat}$

Mobility Results

- Fit to $v_p + v_h$ with common mobility degradation factor
 - factor of 2 at 10^{16} n_{eq}/cm^2
 - factor of 6 at 10^{17} n_{eq}/cm^2
 - need 2x/6x higher E to saturate v!

Фп	$\mu_{0,sum}$	Фр	$\mu_{0, sum}$
[10 ¹⁵ n _{eq} /cm ²]	[cm²/Vs]	$[10^{15} n_{eq}/cm^2]$	[cm ² /Vs]
non-irr (model)		2680	
5	1661 ± 134	1.8	2165± 212
10	1238 ± 131	6.8	1319± 67
50	555 ± 32	17	750± 54
100	407 ± 40	T=-2	20°C

Mobility Analysis

 Fit mobility dependence on fluence with a power law

$$\mu_{0,sum}(\Phi) = C\Phi^a$$

- Fits perfectly with a ≈ -1/2 indicating a single scattering process in this fluence range
 - ~same a for neutrons and protons
- Below ~10¹⁵ n_{eq}/cm² the process gets obscured by acoustic phonon scattering
- At same equivalent fluence, mobility decrease ~20 % worse for protons
 - NIEL violation
- Is $\alpha \approx -1/2$ accidental?

Irradiation particle	а	σ_a
Reactor neutrons	-0.46	0.04
PS protons	-0.49	0.05

Velocity and Field Profiles

- Knowing v(E) can set scale to velocity profiles
 - assumption: same scale on FW and reverse bias
 - protons: for 5x10¹⁴ and 10¹⁵ use same scale, fixed by average field for 5x10¹⁴ at 1100 V (no good FW data)
- Invert *E(v)* to get electric field profiles
 - big errors when approaching v_{sat} i.e. at high E
 - exaggerated by CM in high field regions
 - v > v_{sat} not physical, but can be faked by CM

Velocity Profiles Neutrons

Field Profiles Neutrons

Velocity Profiles Protons

Field Profiles Protons

Protons <-> Neutrons ~10¹⁶

Field profiles compared

 Protons with more "double junction", flatter field, less peaked at junction

Protons 2.8x10¹⁶ p/cm²

Field profile, compared to 10¹⁶ neutrons

Looks more neutron-like, with deeper SCR

Trapping Considerations

• Extrapolation from low fluence data with $\theta_{e,h}(-20^{\circ}\text{C})=4.4,5.8\times10^{-16}\,\text{cm}^2/\text{ns}$; $1/\tau=\theta\Phi$

Ф [1е15]	5	10	50	100
τ [ps]	400	200	40	20
<i>mfp@v_{sat}</i> [μm]	95	48	9.5	4.8
MPV [e ₀]	7600	3800	760	380
<i>MPV</i> @1000 V	8900	5500	1800	1150
<i>CCD</i> _{1000 V} [μm]	110	70	23	14

- Measured data exceeds (by far) linear extrapolation of trapping
 - n.b.1: E^3 V/µm by far not enough to saturate velocity
 - n.b.2: little sign of CM at highest fluence

Magic revisited

 $k = 26.4 \, e_0 / V$ b = -0.683

> TRIGA neutrons PS protons

Mobility sum vs. Fluence

Non-irradiated mobility sum

- Q=k.V most natural when linear v(E)
 - not to $E^{\sim}3$ V/µm, especially at low Φ
 - far from saturation, too
- Fluence dependence as $\Phi^{-2/3}$
 - but mobility already decreases as $\Phi^{-1/2}$
- Small margin left for trapping increase, certainly not linear

 $\mu_{_0}$ [cm $^2 Ns$]

More Considerations

• More realistic: take v_{sum} at average $E = 3.3 \text{ V/}\mu\text{m}$

Ф [1e15]	5	10	50	100
<i>v_{sum}(3.3</i> V/μm)	137	126	90	77
<i>CCD</i> _{1000 V} [μm]	110	70	23	14
τ ≈ <i>CCD/v</i> [ps]	800	560	260	180
τ _{ext} [ps]	400	200	40	20

- Implies factor of 6-9 less trapping at highest fluences
 - lowest fluence still x2 from extrapolation
 - weak dependence on fluence as anticipated by "-1/6" power law
 - not good when large E variations (damped by v(E))
 - not good when *CCD* ≈ thickness (less signal at same τ)

Result?

- Victory ? Wrong... two effects
 - saturating v(E) -> less
 signal, effectively more
 trapping
 - charge multiplication -> more signal, less trapping
- Old story revisited, no handle on 1st few 10 microns where a lot can happen

Another try

- Focus on cases with small and linear $v(E) \rightarrow v(E) = \overline{v}$
 - 100 V at 5x10¹⁶ and 10¹⁷ look promising flat field
 - also the integral of *E(x)*yields 63/100 and 76/100 V
- Can assume linear v(E) in whole detector
 - assume same ratio as for low fluences
 - less trapping compared to linear extrapolation by factors of 3.2 and 5.4

Φ	τ _e [ps]	τ _h [ps]
5e16	147	81
1e17	81	62

Exploiting TCT Waveforms

- Waveforms at $y=100 \mu m$, 800 V, $5x10^{16}$ and 10^{17}
 - $E \approx 3$ V/μm, CCD/2 implies signal within ~10 μm or <0.2 ns
 - the rest you see is the transfer function of the system
- Still distinct signals from the two fluences
 - treat 10¹⁷ waveform as transfer function of the system
 - convolute with $e^{-t/\tau}$ to match $5x10^{16}$ response
 - τ = 0.2 ns provides a good match
- In fact, measure $\Delta \tau$, as "transfer" already convoluted with $e^{-t/\tau(1e17)}$!

Marko Mikuž: E, μ and τ in irrad. Si

Waveforms: How sensitive?

- $\Delta \tau = 0.2$ ns certainly best fit, 0.1 too narrow, 0.3 too broad
- precision ~50 ps

Trapping – position dependence ?

- Waveforms plotted every 50 um in detector depth for reverse bias at 1000 V
- Forward bias in middle of detector added at 600 V
- Very little, if any, wf dependence on position observed
- Trapping not position (even not bias) dependent!?

wavef 5e16 1e17/A5e16 Reverse 1000V.txt

Summary

- Velocity profiling performed for Si detectors irradiated
 - with neutrons from 10^{15} to 10^{17} n_{eq}/cm²
 - with protons from $5x10^{14}$ to $3x10^{16}$ p/cm²
- Velocity vs. electric field fluence impact observed and interpreted as reduction of zero field mobility
 - Zero field mobility follows power law with $a \approx -1/2$
 - Protons degrade mobility by ~20 % more
- Absolute velocities and field maps provided
 - With caveats at high electric fields
- Trapping estimates for very high neutron fluences
 - from charge collection
 - from waveforms
 - all estimates point to severe non-linearity of trapping with fluence
- To do:
 - CCE for protons
 - 2nd proton irradiated set
 - Sensible error estimates

Backup Slides

