The 4D challenge

Is it possible to build a tracker with concurrent excellent time and position resolution?

Tracking in 4 Dimensions

INFN Torino, Univ. Trento, FBK, UCSC Santa Cruz

LGAD R&D: RD50 Collaboration

LGAD Production:

CNM, Barcelona

N. Cartiglia, INFN, Torino - 4D tracking tracking Torino NH
MF
M artialia

Trento @ Paris

The inclusion of track-timing in the event information has the capability of changing radically how we design experiments.

Timing can be available at different levels of the event reconstruction. Let me pick 3 situations (colors == time)

- **1) Timing at each point along the track:**
	- \rightarrow Massive simplification of patter recognition, new tracking algorithms will be faster even in very dense environments
	- \rightarrow Use only "time compatible points"

The effect of timing information

2) **Timing at the trigger decision (ATLAS):**

 \rightarrow Tracking information might not be available in time for L1 decision, timing can be much faster

The effect of timing information

3) **Timing for each track/vertex of the event (CMS):**

Missing Et: consider overlapping vertexes, one with missing Et: Timing allows obtaining at HL-LHC the same resolution on missing Et that we have now

Timing

H è γ γ **:** The timing of the γγ allows to select an area 1 cm) where the vertex is located. The vertex timing allows to select the correct vertex within this area

Displaced vertexes: The timing of the displaced track and that of each vertex allow identifying the correct vertex

Timing

Is timing really necessary?

The research into 4D tracking is strongly motivated by the HL-LHC experimental conditions:

150-200 events/bunch crossing

According to CMS simulations:

- **Time RMS between vertexes: 153 ps**
- Average distance between two vertexes: 500 um $\frac{9}{2}$
Fraction of overlapping vertexes: 10-20%
- **Fraction of overlapping vertexes: 10-20%**
	- Of those events, a large fraction will have significant degradation of the quality of reconstruction

At HL-LHC: Timing is equivalent to additional luminosity

In other experiments (NA62, PADME…): Timing is key to background rejection

Where do we place a track-timing detector?

Some (all?) layers in a silicon tracker can provide timing information

An additional detector can provide timing information, separated from the tracker

How do we build a 4D tracking system?

PIXEL PP

Z space 30-20= 10mm

INFN

Time resolution

 $\sigma_t = (\frac{N}{4V})$ dV/dt $($ 2+ (Landau Shape)² + TDC

Usual "Jitter" term Here enters everything that is "Noise" and the steepness of the signal

Time walk: time correction circuitry **Shape variations**: non homogeneous energy deposition

Possible approaches for timing systems

We need to minimize this expression:

$$
\sigma_t^2 = \left(\frac{N}{dV/dt}\right)^2
$$

- **APD** (silicon with gain \sim 100): maximize dV/dt
	- Very large signal
- **Diamond:** minimize N, minimize dt
	- Large energy gap, very low noise, low capacitance
	- Very good mobility, short collection time t_r
- **LGAD** (silicon with gain ~ 10): minimize N, moderate dV/dt
	- Low gain to avoid shot noise and excess noise factor

The APD approach

The key to this approach is the large signal: if your signal is large enough,

So far they reported excellent time resolution on a single channel.

To be done:

- Radiation hardness above 10^{14} n_{eq}/cm²
- Fine Segmentation
- How to deal with shot noise (proportional to gain)

The Diamond approach

Diamond detectors have small signal: two ways of fighting this problem

INEN

LGAD - Ultra-Fast Silicon Detector

Traditional Silicon Detector

Ultra-Fast Silicon Detector

Adding a highly doped, thin layer of of p-implant near the p-n junction creates a high electric field that accelerates the electrons enough to start multiplication. Same principle of APD, but with much lower gain.

Gain changes very smoothly with bias voltage.

Easy to set the value of gain requested.

There are 3 quantities determining the output rise time after the amplifier:

- 1. The signal rise time (t_{Cur})
- 2. The RC circuit formed by the detector capacitance and the amplifier input impedance (t_{RC})
- 3. The amplifier rise time (t_{Amp})

 \vec{z}

INEN

UFSD - Landau noise

Resolution due only to shape variation, assuming perfect time walk compensation

To minimize Landau noise:

 \rightarrow Set the comparator threshold as low as you can

\rightarrow Use thin sensors

UFSD - Irradiation - I

Irradiation causes 3 main effects:

- 1. Decrease of charge collection efficiency due to trapping
- 2. Changes in doping concentration
- 3. Increased leakage current

1) Decrease of charge collection efficiency due to trapping

We ran a full simulation of CCE effect. In 50 micron thick sensors the effect is rather small: **up to 1015 neq/cm2 the effect is negligible in the fast initial edge used for timing.**

(poster Sec. A, B. Baldassarri)

Electronics need to be calibrated for different signal shapes

UFSD - Irradiation - II

2) Changes in doping concentration

There is evidence **that in thick sensors** dynamic effects cause an apparent "initial acceptor removal" at fluences above a few 10^{14} n_{ea}/cm²

 \rightarrow the "real" p-doping of the LGAD gain layer is deactivated.

R&D paths:

- Use Vbias to compensate for the loss on gain
- Use thin sensors: weaker dynamic effects
- Long term: Gallium doping

3) Increased leakage current

Assuming Gain \sim 15, T = -30C, Shot noise starts to be important at fluences above $\sim 10^{15}$ neg/cm²

- Keep the sensor cold
- Low gain
- Small sensor

with a precision of \sim 4.2 mm ("z-by-timing" resolution $\Delta z = c \Delta (t_1 - t_2) / 2$)

Sensor geometry for CT-PPS

4 (6) planes per station (qualitative sketch):

No cracks aligned: 2 (3) planes facing the beam 2 (3) turned by 180 $^{\circ}$

Acknowledgments

We kindly acknowledge the following funding agencies:

- INFN Gruppo V
- Horizon 2020
- Ministero degli Affari Esteri, Italy, MAE
- U.S. Department of Energy grant number DE-SC0010107

Summary and outlook

Tracking is 4 Dimensions is a very powerful tool

Low gain Avalanche Detectors have the potential to bring this technique to full fruition using gain \sim 10 and thin sensors Why **low** gain?

Milder electric fields, possible electrodes segmentation, lower shot

noise, no dark count, behavior similar to standard Silicon detectors

Why **thin** sensors?

Higher signal steepness, more radiation resistance, easier to achieve parallel plate geometry, smaller Landau Noise

UFSD activities 2016:

- Thin sensor prototypes (CNM, FBK)
- Irradiation program. Gallium instead of Boron?
- Sensor demonstrator for ATLAS, CMS
- Discrete component read-out amplifier
- First custom chip, 8 channel, analog-comparator
- Installation of system demonstrator in CMS
- **Goal: 30 ps**

Backup

Noise in LGAD & APD – Aide Memoire

Noise increases faster than then signal è **the ratio S/N becomes worse at higher gain.**

There is an Optimum Gain value: ~ 40 for APD, With segmentation probably lower ~ 20

