Commissioning of REX

Jose Alberto Rodriguez, BE-OP-PSB (167538) on behalf of the ISOLDE operations team

Content:

- Introduction
- Hardware commissioning
- Commissioning with beam
- Status of the RF amplifiers
- Summary

74th ISOLDE Collaboration Committee Meeting - 2015/11/10

Introduction

Beam produced or charge-bred in the EBIS is injected into the REX linac and accelerated to 2.85 MeV/u before it is sent to the superconducting linac

RF Systems:

Final Energy		Diagnostics:						
[MeV/u]	Magnets:			REX		HIE-ISO	LDE]
0.3	Triplets	6		FC		FC		1
0.3	Doublets	1		МСР		Si deteo	detector canning Slits	
1.2	Doublets			Collimator ape	rtures	Scannin		
1.55	Steerers	1H, 1V			.015	Comma		
1.88	Power conve	Power converters:			Vacuum (incl. low energy			
2.2	200 A, 50 V	20 (1 spar	e)	Sectors	10			
2.85	bipolar 3.5 A	A 2	·	Turbopumps	~20			
				Cryopumps	3		Beam to HIE-	ISOLDE
Beam from EBIS					~25		2.85 MeV/u	
Collaboration (Liplet E Meeti	9 - 2015/11	Triplet	Zap 7 2 gab 7 2 gab 7 2 gab 7 2 gab 7 2 gab 7 2 gab 7	Alberto	HV Steerer 9gap	ez, BE-OF	H0
	Final Energy [MeV/u] 0.3 0.3 1.2 1.55 1.88 2.2 2.85 EBIS	Final Energy [MeV/u]Magnets:0.3Triplets0.3Doublets1.2Steerers1.55Steerers1.88Power convertion2.2200 A, 50 V2.85bipolar 3.5 AEBISCollaboration Committee Meeti	Final Energy [MeV/u] Magnets: 0.3 Triplets 6 0.3 Doublets 1 1.2 Steerers 1H, 1V 1.55 1.88 Power converters: 2.2 200 A, 50 V 20 (1 spar bipolar 3.5 A 2.85 bipolar 3.5 A 2 EBIS Collaboration Committee Meeting - 2015/11	Final Energy [MeV/u] Magnets: 0.3 Triplets 6 0.3 Doublets 1 1.2 Steerers 1H, 1V 1.55 1.88 Power converters: 2.2 200 A, 50 V 20 (1 spare) 2.85 bipolar 3.5 A 2	Final Energy [MeV/u] Magnets: REX 0.3 Triplets 6 0.3 Doublets 1 1.2 Steerers 1H, 1V 1.55 Steerers 1H, 1V 1.88 Power converters: Vacuum (incl. 2.2 200 A, 50 V 20 (1 spare) bipolar 3.5 A 2 Sectors Turbopumps Gauges EBIS State of the	Final Energy [MeV/u] Magnets: REX 0.3 Triplets 6 0.3 Doublets 1 1.2 Steerers 1H, 1V 1.55 Power converters: O(1) 2.2 200 A, 50 V 20 (1 spare) bipolar 3.5 A 2 BIS Sectors 10 Turbopumps ~20 Cryopumps 3 Gauges ~25	Magnets: REX HIE-ISO 0.3 Triplets 6 0.3 Doublets 1 1.2 Steerers 1H, 1V 1.55 Steerers 1H, 1V 1.88 Power converters: 200 A, 50 V 20 (1 spare) bipolar 3.5 A 2 Sectors 10 Turbopumps ~20 Cryopumps 3 Gauges ~25 Sectors 10 Turbopumps 3 Gauges ~25	Final Energy [MeV/u] Magnets: REX HIE-ISOLDE 0.3 1.2 1.2 1.2 5 1.2 1.2 1.55 1.88 Steerers 1H, 1V 1H, 1V Scanning Slits Collimator apertures Scanning Slits Collimator apertures 2.2 200 A, 50 V 20 (1 spare) bipolar 3.5 A 2 Sectors 10 Turbopumps 3 Gauges ~25 Beam to HIE 2.85 1 1 1 1 10 Turbopumps 3 3 10 1 1 Collaboration Committee Meeting - 2015/11/10 Dose Alberto Figuez, BE-OF B (1)

Hardware commissioning

Power converters and magnets (ready before wk. 25):

- ✓ New power converters for quads (19 units)
- ✓ New cooling water circuits for all the quads operational
- ✓ Electrical short in last triplet repaired and triplet refurbished
- ✓ Additional tests and measurements in other quadrupoles completed (thermal switches, temperature rise...)

Vacuum (ready before wk. 25):

- ✓ Scheduled maintenance completed. Faulty turbo pumps, controllers and gauges replaced
- ✓ Fast Penning gauges for fast acting valve to protect cryomodule installed

Controls (ready before wk. 25):

- ✓ New low level controls functional (new power converters, RF amplifiers...)
- ✓ High level applications updated (working sets and equipment arrays ready)

RF systems

- Maintenance and refurbishment of amplifiers for the six first structures. DC converters (incl. the spares) refurbished, HV diode repaired, new cooling...
- ✓ Temporary 9gap amplifier has been refurbished, installed and ready since wk. 25. New low loss RF line.
- ✓ PLC software for amplifiers upgraded
- ✓ Connection to the new HIE-ISOLDE RF reference line

Commissioning with beam

Stage 1: REX diagnostics box:

- ✓ Commissioning with beam started on wk. 25 (June 16^{th})
- ✓ Beam with an A/Q=4.0 was accelerated to 0.3 MeV/u (RFQ output energy)
- ✓ We reached the first diagnostic box and re-commissioned the FC, MCP and collimator wheel on wk. 25
- ✓ Beam transmission through RFQ for different power levels on wk. 26

Commissioning with beam

Stage 2: First HIE-ISOLDE diagnostics box:

- ✓ First diagnostics box of HIE-ISOLDE installed at the end of wk. 27
- ✓ First beam in FC and to the Si detector with 0.3 MeV/u energy on wk. 28
- ✓ Systematic characterization by E. D. Cantero and S. Sadovich on wk. 33 and after

Commissioning with beam

Stage 3: Commissioning and phasing of RF Structures in REX:

- ✓ Cavities and their amplifiers were commissioned after they were turned on by the RF team
- ✓ Several problems in the different RF systems were discovered and solved at this time
- ✓ Finally, operational settings (phases and amplitudes) for all RF cavities were determined

Status of the RF amplifiers

- ✓ RF amplifiers have been very stable and reliable since week 36
- ✓ Only one short intervention for the 7gap1 was necessary during the commissioning with beam and operations of HIE-ISOLDE (negligible downtime)
- ✓ The average and peak powers were not very demanding (repetition rate was 10 Hz or lower)
- We will need to confirm reliable operation under the more demanding conditions needed for next year
- Several cooling fans have failed and will need to be replaced during the winter shutdown

Status of the final 9gap amplifier:

ĭ

- The final amplifier was supposed to be ready for the start of the physics program this year
- The delivery was delayed and the RF group provided a temporary amplifier that has been used during the physics run this year after some modifications
- This amplifier is limited in peak power and duty cycle and will introduce many constrains in the physics program next year if it is not replaced
- The final amplifier failed an acceptance test conducted on wk. 36 in the company headquarters
- The situation had improved by wk. 41 when the next visit to the company took place. However, several non-conformities were found

-

7gap

7gap

gap

New visit plan in ~ 2 wks of two CERN experts to help the company solve the problem

Ξ

Bunchei

74th ISOLDE Collaboration Committee Meeting - 2015/11/10

Best case scenario: problem solved and amplifier ready for delivery before the end of the year XLHO

Jose Alberto Rodriguez, BE-OP-PSB (x167538)

gal

Summary

Hardware refurbishment and commissioning :

- Hardware refurbishment and commissioning all systems other than some of the RF completed finished before the start of the commissioning with beam on wk. 25
- RFQ, buncher and 9gap (temporary amplifier) ready on wk. 25
- The hardware recommissioning of the rest of the amplifiers took a few additional weeks
- Due to delay in delivery of the final 9gap amplifier, we had to use the temporary amplifier (constrains in maximum A/Q and time structure deliver to users)

Commissioning with Beam:

- Commissioning started in wk. 25 and progressed as hardware was ready
- ¹²C⁴⁺ beam produced in the charge breeder has been accelerated to 2.85 MeV/u (REX nominal final energy) on wk. 36

Status of the final 9gap amplifier:

- Acceptance tests in wk. 36 and wk. 41 showed that the amplifier was not ready
- Two CERN experts will visit the company in ~ 2 weeks to try to solve the problem

74th ISOLDE Collaboration Committee Meeting - 2015/11/10

Jose Alberto Rodriguez, BE-OP-PSB (x167538)