Development and construction of the Belle II DEPFET pixel vertex detector

B. Schwenker for the DEPFET collaboration
Outline

- SuperKEKB and Belle II experiment
- The Belle II vertex detector
- Test results from final ASIC generation
 - Using small scale test demonstrator
- Results from VXD beam test
 - Large scale demonstrator / prev. ASIC generation
- Summary and outlook
The DEPFET collaboration

- Original collaboration: DEPFET pixel detector @ ILC (since 2002)
- Now: design, deliver and operate PXD for Belle II

IHEP Beijing, China (Z.A. Liu)
Charles University, Prague, Czech Rep. (Z. Dolezal)
DESY Hamburg (C. Niebuhr)
University of Bonn (J. Dingfelder)
University of Hamburg (C. Hagner)
University of Heidelberg (P. Fischer)
University of Giessen (W. Kühn)
University of Göttingen (A. Frey)
Karlsruhe Institute of Technology (T. Müller, I. Peric)
University of Mainz (C. Sfienti)
MPG Semiconductor Laboratory, Munich (J. Ninkovic)
Ludw.-Max.-University, Munich (T. Kuhr)
MPI for Physics, Munich (H.-G. Moser)
Technical University, Munich (S. Paul, A.Knoll)
Struct. Biol.Research Center, KEK (S. Wakatsuki)
IFJ PAN, Krakow, Poland (M. Rozanska)
University of Barcelona, Spain (A. Dieguez)
CNM, Barcelona, Spain (E. Cabruja)
IFCA Santander, Spain (I. Vila)
IFIC, Valencia, Spain (J. Fuster)
University of Tabuk, Saudi Arabia (R. Ayad)

DEPFET@Belle II

Management

Project Leader
C. Kiesling (MPI)

Technical Coord.
L. Andricek (HLL)

IB- Board
Chair: J. Dingfelder (Bonn)

Integration Coordinator
Shuji Tanaka (KEK)
SuperKEKB and the Belle II experiment

- SuperKEKB: Asymmetric e+e- collider @ \(E_{cm} = 10.58 \text{GeV} = m(Y(4S)) \)
- Peak luminosity \(L = 8 \times 10^{35} \text{ cm}^{-2} \text{ s}^{-1} \), 40 times higher than KEKB machine
- Nano beam schema: Beam size reduction and higher currents
The BELLE II detector

- Detector requirements
 - Vertexing capability
 - Particle identification
 - E.M. calorimetry
 - K^0_L and muon ID
 - Data handling capabilities
The Belle II pixel vertex detector
Belle II vertexing requirements

<table>
<thead>
<tr>
<th></th>
<th>Belle II PXD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radiation</td>
<td>2 Mrad/year</td>
</tr>
<tr>
<td></td>
<td>$2 \cdot 10^{12}$ 1 MeV n_{eq} per year</td>
</tr>
<tr>
<td>Duty cycle</td>
<td>1</td>
</tr>
<tr>
<td>Frame time</td>
<td>20 μs</td>
</tr>
<tr>
<td>Momentum range</td>
<td>50 MeV $<$ p $<$ multi GeV</td>
</tr>
<tr>
<td>Acceptance</td>
<td>17$^\circ$-155$^\circ$</td>
</tr>
<tr>
<td>Material budget</td>
<td>0.2% X_0</td>
</tr>
</tbody>
</table>

- Modest impact parameter resolution (15 μm), dominated by multiple scattering → pixel size (50 x 75 μm2)
- Lowest possible material budget (0.2% X)
 - Ultra-transparent detectors
 - Lightweight mechanics and minimal services
The Belle II vertex detector

- 2 DEPFET layers (PXD)
- 4 Double Sided Si-Strip Detector layers (SVD)
- **PXD + SVD integration**
 - Nov. 2017

<table>
<thead>
<tr>
<th></th>
<th>DEPFET PXD</th>
<th>L1</th>
<th>L2</th>
</tr>
</thead>
<tbody>
<tr>
<td># ladders</td>
<td>8</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Distance from IP (cm)</td>
<td>1.4</td>
<td>2.2</td>
<td></td>
</tr>
<tr>
<td>Sensitive thickness (μm)</td>
<td>75</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>#pixels/module</td>
<td>768x250</td>
<td>768x250</td>
<td></td>
</tr>
<tr>
<td>Total no. of pixels</td>
<td>3.072x10⁶</td>
<td>4.608x10⁶</td>
<td></td>
</tr>
<tr>
<td>Pixel size (μm²)</td>
<td>55x50</td>
<td>60x50</td>
<td>70x50</td>
</tr>
<tr>
<td>Frame/row rate</td>
<td>50kHz/10MHz</td>
<td>50kHz/10MHz</td>
<td></td>
</tr>
<tr>
<td>Total sensitive Area (cm²)</td>
<td>89.6</td>
<td>176.9</td>
<td></td>
</tr>
</tbody>
</table>

Total 0.2% X₀
VXD Phase 2 hardware (Beast)

- Machine commissioning
- Radiation safe environment for the VXD
- 2 PXD and 4 SVD ladders
- +X direction, highest sensitivity to backgrounds

Integration of the phase 2 hardware (incl. other radiation monitors): November 2016 @ DESY
Installation at KEK: July 2017
The PXD module: Readout electronics

SwitcherB - Row Control
- Gate and Clear signal
- Rad. hard proved (36 Mrad)

DCDB - Drain Current Digitizer
Amplification and digitization of DEPFET signals.
- 256 input channels
- 8-bit ADC per channel
- 92 ns sampling time
- Rad. hard proved (10 Mrad)

DHP - Data Handling Processor
- Common mode and pedestal correction
- Data reduction (zero suppression)
- Timing and trigger control
- Rad. Hard proved (100 Mrad)
PXD9: Belle II DEPFET Sensors

- Small matrices 80x32 pixels
 → Small test systems

- Final size modules 768x250 pixels
 → VXD test beam
 → Phase II
 → full Belle II PXD

- Small matrices 80x32 pixels
 → Small test systems
Hybrid 5: Small scale detector demonstrator

- Small PXD9 Belle II matrix
 - Pixel pitch: 50x55 μm²
 - Thinned to 75 μm
 - Gate length: 5 μm
 - Thin gate oxide (rad. hard.)
 - 32x64 pixels readout

- Final readout chain
 - SwitcherB
 - DCDB
 - DHPT
 - DHH

- All measurements at nominal speed
ASIC performance

- After optimization, all 256 DCD channels perform within specs
 - Operation at nominal speed (92ns sampling time)
 - Measure ADC curve using external current source

INLpp < 8 ADU
Median = 4.5
Noise < 0.55 ADU
Spread < 0.08 ADU
Homogeneous gain
Min to max variation
~10%
DCD noise and pedestals compression

without pedestal compression

min-max pedestal = 217 ADU

noise mean = 1.41 ADU

with pedestal compression

2bit DAC corr.

Switchable current sources at DCD inputs

min-max pedestal = 111 ADU

noise mean = 0.83 ADU
Sr90 Spectrum

DCD4.2
(final DCD version)

MPV = 31.75 ADU

SNR ~ 38

gate length 5µm

$g_q \sim 700 \text{ pA/e}$
PXD9: Belle II DEPFET Sensors

• ALL results are satisfactory, as expected by design and also according to simulations:

 ASICs performance: Noise, speed, ...
 Sensor: Charge collection, signal-to-noise, gain, ...

→ Not mentioned here: Irradiation campaigns, stability tests, other test vehicles…
Combined VXD test beam

- VXD common test beam in April 2016
- Small sector of the full Belle II VXD
 2 PXD + 4 SVD layers
- Complete VXD readout chain: HLT, monitoring, event building, PocketDAQ
- CO₂ cooling, slow control, environmental sensors
- Illumination with (up to) 6 GeV e⁻ under solenoid magnetic field (PCMAG)
- Alignment, tracking algorithms, ROI

Goal: System integration and Phase 2 Commissioning
Test beam setup
PXD on the SCB
SVD Cartridge
Integration into PCMAG
VXD test beam DAQ structure
PXD hit maps

Threshold = 5ADU (~1200 electrons)

Both detectors fully functional. Only a few ø(20) pixels masked
Trigger on 4 scintillators Collimated beam No magnetic field
Event display: PXD + SVD integration

Online (HLT) extrapolation to PXD → define region of interest

Track passing all SVD layers
Efficiency study in PXD

Track selection cuts:
- B-field 1T, 5GeV electron beam
- using only single track events
- select high momentum $p > 1\text{GeV}$
- p-value > 0.001

Layer 1

Layer 2

Run w/o beam

Run w/o beam
Closer look to efficiencies

:- MPV cluster signal drops for certain readout channels

:- At those places, threshold too high

→ efficiency drops

:- Need to work on gain Homogeneity

:- Head room for improvements

→ New ASICs
→ better tuning
PXD residuals

Residuals for perpendicular incident MIPs
- 14 μm (50 μm pitch)
- 18 μm (60 μm pitch)
- Measured residuals very close to digital resolution
- Spatial resolution of perp. tracks is worst case
- (small charge sharing → small clusters)
Summary and outlook

• Combined PXD-SVD beam test @ DESY
 – 2 PXD half-ladders fully operational
 – Sensors with homogeneous response
 – Hit maps, SNR OK
 – PXD residuals as expected
 – VXD correlations (mapping and timing)
 – PXD efficiency >95%, average > 98%
 – Operation with CO2 cooling (@ -27°C)
Summary and outlook

- **Belle II PXD takes shape**
 - Integration of the Phase II PXD (2 ladders) at DESY in November 2016
 - Installation of Phase II detector at KEK in summer 2017
 - Production of the Phase III detector (full 2 layer PXD) is ongoing.
 - Start integration of PXD half-shells @ DESY in spring 2017
 - Transport of PXD to KEK October 2017

Further reading: Cern Courier September 2016
Thanks
DEPFET's in a nutshell

- fully depleted sensitive volume
 - fast signal rise time (~ns), small cluster size
- In-house fabrication at MPS Semiconductor Lab
 - Wafer scale devices possible
 - Thinning to (almost) any desired thickness
 - no stitching, 100% fill factor
- no charge transfer needed
 - faster read out
 - better radiation tolerance
- Charge collection in "off" state, read out on demand
 - potentially low power device
- internal amplification
 - charge-to-current conversion
 - r/o cap. independent of sensor thickness
 - Good S/N for thin devices $\sim 40\text{nA/}\mu\text{m}$ for mip

Current receiver, ADC chip
Commissioning schedule
ASIC performance

- DHPT1.2: Proper data transmission after 10 m Infiniband cable

![Eye diagram with 237 mV signal level](image-url)
Closer look at noise occupancy

Noise occupancy ($<10^{-6}$) from a long run w/o beam

Noise hits appear to cluster in groups of adjacent physical columns.

Always groups of 8 very noisy columns, i.e. same column pair in DCD ASIC.
In-house MPG HLL DEPFET Sensor Production

- Starting material SOI wafer: 75µm top, 450µm support
- Production in three phases, 19 lithography steps
 - 9 implantations, 2 poly-silicon layers
 - 2 aluminum layers
 - last metal copper and thinning of sensitive area
PXD production wafer level QA tests

Percentage of live pixels

<table>
<thead>
<tr>
<th></th>
<th>Pilot run</th>
<th>Pre-production</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>W30</td>
<td>W35</td>
</tr>
<tr>
<td>IF</td>
<td>0*</td>
<td>98.44</td>
</tr>
<tr>
<td>OF1</td>
<td>100.00</td>
<td>98.44</td>
</tr>
<tr>
<td>OF2</td>
<td>99.48</td>
<td>98.96</td>
</tr>
<tr>
<td>OB1</td>
<td>97.72</td>
<td>99.40*</td>
</tr>
<tr>
<td>OB2</td>
<td>99.48</td>
<td>0</td>
</tr>
<tr>
<td>IB</td>
<td>97.92</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>83.3%</td>
<td>66.6%</td>
</tr>
</tbody>
</table>

- 34/42 (80.1%) working sensors
- 25/42 (59.5%) prime grade sensors (>99% pixels)
- 9/42 (21.4%) second grade sensors

Failure due to operator error during testing
SuperKEKB Injection Scheme – Need of Electronic Shutter

- Continuous injection → ~ 400 revolutions with two noisy bunches (100ns apart) every 20 ms
- DEPFET integrates two trains, these noisy bunches would blank the frames → 20% loss of data

- The best solution: gate the DEPFET during the passage of the noisy bunches
- ~100ns gate, with some rise and fall times, twice per frame → 2x2µs of 20 µs blind
- Assuming 4 ms relaxation time (not clear), ~200 consecutive frames with gate cycles

- DEPFET operation mode during gating: DEPFET off, Clear active (Vgs=3 .. 5V, Vclear=16 .. 20V)
DEPFET Gated Mode Operation

Switching to gated mode:

» DHE receives signal from acc., sends "veto" DHPT switches to gated sequence controls Switcher
» DCD operation mode remains untouched

Normal charge collection

» Vgs=4V, Vclear=5V
» all signal charge collected in internal gate

Gated mode

» Vgs=4V, Vclear=20V
» all signal charge dumped to Clear

Challenge: switch all Clear contacts in the matrix from ~5V ~20V shown on small matrix, but as expected, it’s more difficult on large modules
VXD Cooling System

Requirements

- **PXD:** Sensor < 25 °C to minimize shot noise due to leakage current; ASICs < 50 °C to avoid risk of electro-migration
- **SVD:** APV25 readout chips surface@~0 °C for SNR improvement
- **Power consumption:** PXD 360W; SVD 700W, together with the heat load through 9m of vacuum isolated flex lines; required cooling capacity of 2-3kW
- **VXD needs to be thermally isolated against CDC and beam pipe. Room temperature at the inner surface of CDC is required for stable calibration and dE/dx performance**
- **IBBelle CO2 cooling plant in collaboration with CERN (currently shipped to Japan)**
- 75µm thin Si-substrates with Belle II geometry
- Glued at the narrow edge + ceramic insert to get ladders
- Resistors integrated on Si-substrates to simulate the power distribution
- Additional power of 25 W is given on the kapton cables to simulate their power dissipation
- Thermal mock-up consist of 2-layer PXD and 4-layer SVD (half of L.6 cooling pipes are under preparation)
Temperature on PXD

- Thermal and mechanical measurements to PXD have been finished. Maximum temperature along the sensor is around **20 °C in VXD volume**

Figure 5: The temperature distribution of PXD ladders along the z-direction. BW(FW) is on the left(right) side. The gray areas indicate the regions of DCD/DHP, while the 75μm thick sensitive area is shown in the center. The thick solid line indicates the averaged temperature along z-direction measured from the Pt100s. Different markers show the average temperature in y-direction at certain position along z-axis, the error bar on the marker represents the temperature range in x-direction. Thin solid lines show the temperature distribution measured by the IR camera on selected ladders.
- TIA gain adjustable by combination of feedback resistors of 26k (En30), 13k (En60) and 19k (En90)

<table>
<thead>
<tr>
<th>Rf [kOhm]</th>
<th>gain [nA/ADC]</th>
<th>range [uA]</th>
<th>range (+-100 ADC) [uA]</th>
</tr>
</thead>
<tbody>
<tr>
<td>26 (En30)</td>
<td>75</td>
<td>19</td>
<td>15</td>
</tr>
<tr>
<td>19 (En90)</td>
<td>96</td>
<td>25</td>
<td>19</td>
</tr>
<tr>
<td>13 (En60)</td>
<td>144</td>
<td>36</td>
<td>29</td>
</tr>
<tr>
<td>8.7 (En30+En60)</td>
<td>171</td>
<td>44</td>
<td>34</td>
</tr>
<tr>
<td>7.7 (En60+En90)</td>
<td>217</td>
<td>61</td>
<td>48</td>
</tr>
<tr>
<td>6.0 (all)</td>
<td>313</td>
<td>80</td>
<td>63</td>
</tr>
</tbody>
</table>

measured with H5.0.26 with DCD4.2 by Bonn