Track reconstruction in high multiplicity events

Maximiliano Puccio for the ALICE collaboration
Universitá & INFN Torino

VERTEX 2016 - La Biodola - September 30th 2016
Pb-Pb $\sqrt{s_{\text{NN}}}$ = 5.02 TeV

ALICE

dN_{ch}/dη~ 2000

Interaction rate: 8 kHz (50 kHz Run 3)
How to track every charged particle?

CHALLENGES:

- High track density
 ✓ Highly granular detectors are necessary: up to 50 tracks/cm2 in the innermost ITS layer
- High combinatorial complexity
 ✓ Algorithms must reject combinatorics as early as possible

The silicon tracker (ITS) and the Time Projection Chamber provide the required granularity.

Challenge for Run3:

- Online data processing (thus tracking and vertexing) for both ITS and TPC
Current strategy in ALICE

OFFLINE
- Tracks are reconstructed in the TPC
- Reconstructed tracks are then propagated to the ITS
 - ITS clusters are picked and the track parameters updated
- A ITS standalone algorithm runs on the clusters not associated to tracks in the previous iteration
- The ITS standalone algorithm is also used in low multiplicity events and on a small sample of Pb-Pb events for dedicated analyses

ONLINE
- A faster version of the TPC tracking based on Cellular Automata is run in the High Level Trigger (HLT)
- Tracks found in the HLT can be used as seed in the offline reconstruction and for online calibration of the drift velocity
Future strategy: O² project in ALICE

- Starting from Run3 we expect Pb-Pb collisions at peak rate of 50kHz
 - 1.1 TB/s of data will be collected
- Data volume must be reduced before writing to tape
- Online processing is the only option

O² project integrates in a single infrastructure DAQ, HLT and Offline reconstruction systems to provide online processing of the collected data

Infrastructure specs:
- ~250 First Level Processors worker nodes equipped with FPGA
- ~1500 Event Processing Nodes worker nodes equipped with GPU
- Data collected (2021, 2022): 54 PB/yr

<table>
<thead>
<tr>
<th>Detector</th>
<th>< Event size ></th>
<th>Pb-Pb@50kHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPC</td>
<td>20.7 MB</td>
<td>1012 GB/s</td>
</tr>
<tr>
<td>ITS</td>
<td>0.8 MB</td>
<td>40 GB/s</td>
</tr>
<tr>
<td>TRD</td>
<td>0.5 MB</td>
<td>20 GB/s</td>
</tr>
<tr>
<td>MFT</td>
<td>0.2 MB</td>
<td>10 GB/s</td>
</tr>
<tr>
<td>Others</td>
<td>0.3 MB</td>
<td>12.2 GB/s</td>
</tr>
</tbody>
</table>
Online data volume reduction

- The impressive reduction factor that can be obtained for the TPC is based on:
 - zero suppression
 - clustering and compression
 - removal of clusters non associated to particle tracks
 - data format optimisation
- Largely based on the present HLT results

<table>
<thead>
<tr>
<th>Detector</th>
<th>Data rate for Pb-Pb @ 50 kHz</th>
<th>Compressed data rate</th>
<th>Data reduction factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPC</td>
<td>1012 (GB/s)</td>
<td>50 (GB/s)</td>
<td>20.2</td>
</tr>
<tr>
<td>ITS</td>
<td>40 (GB/s)</td>
<td>26 (8) (GB/s)</td>
<td>1.5 (5)</td>
</tr>
<tr>
<td>TRD</td>
<td>20 (GB/s)</td>
<td>3 (GB/s)</td>
<td>6.7</td>
</tr>
<tr>
<td>MFT</td>
<td>10 (GB/s)</td>
<td>5 (GB/s)</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>1082 (GB/s)</td>
<td>84 (66) (GB/s)</td>
<td>12.9 (16.4)</td>
</tr>
</tbody>
</table>

Still uncertainties for the ITS Upgrade:
- The contribution from noisy clusters is unknown: here a very pessimistic estimate of a probability of 10^{-5} per pixel has been made (as was stated in the ITS Upgrade TDR)
- If full synchronous reconstruction will be feasible a higher reduction factor will be achieved (noise removal)

Online calibration and tracking are mandatory

- The impressive reduction factor that can be obtained for the TPC is based on:
 - zero suppression
 - clustering and compression
 - removal of clusters non associated to particle tracks
 - data format optimisation
- Largely based on the present HLT results

<table>
<thead>
<tr>
<th>Detector</th>
<th>Data rate for Pb-Pb @ 50 kHz</th>
<th>Compressed data rate</th>
<th>Data reduction factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPC</td>
<td>1012 (GB/s)</td>
<td>50 (GB/s)</td>
<td>20.2</td>
</tr>
<tr>
<td>ITS</td>
<td>40 (GB/s)</td>
<td>26 (8) (GB/s)</td>
<td>1.5 (5)</td>
</tr>
<tr>
<td>TRD</td>
<td>20 (GB/s)</td>
<td>3 (GB/s)</td>
<td>6.7</td>
</tr>
<tr>
<td>MFT</td>
<td>10 (GB/s)</td>
<td>5 (GB/s)</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>1082 (GB/s)</td>
<td>84 (66) (GB/s)</td>
<td>12.9 (16.4)</td>
</tr>
</tbody>
</table>
TPC tracking with the HLT is currently the most relevant example of High Performance Computing in ALICE

- It is the basis for the reconstruction code in the forthcoming LHC Run 3, with an upgraded ALICE apparatus at a much higher interaction rate
- The TPC volume is split in 36 sectors: tracking is done in each sector individually.
- Tracks are then merged and refitted using Kalman Filter

The radial and azimuthal coordinates of the clusters are measured by charge collection in 159 rows.

- Inner radius: 85 cm
- Outer radius: 250 cm
- The coordinate along the beam axis is measured via the drift time
Neighbours finder
- For each hit at row k, the best pair of neighbouring hits from row k+2 and k-2 is found (best=straight line)
- The hit-to-hit links (3-points straight lines) are determined and saved

Tracklet reconstruction
- Track segments (tracklets) are created following hit-to-hit links
- A simplified Kalman filter is used to fit geometrical trajectories

Tracklet selection
- In case of tracks with overlapping parts, the longest is kept
Track merging and fitting

Track following
- Track parameters are fit to the seed
- The trajectory is extrapolated to adjacent TPC row
- Cluster closest to extrapolated position is found and the fit is improved with the new cluster.

Track merging
- All the track segments found in the different sectors are then combined and merged if their parameters are compatible.
Track merging and fitting

Track following
- Track parameters are fit to the seed
- The trajectory is extrapolated to adjacent TPC row
- Cluster closest to extrapolated position is found and the fit is improved with the new cluster.

Track merging
- All the track segments found in the different sectors are then combined and merged if their parameters are compatible.
TPC tracking performance

- GPU tracker is about 10 times faster w.r.t. the CPU version
- Track merging and fitting is done on CPU (no gain on GPU)
- The whole tracking is done with 1 GPU + 3 CPU cores
- Performance of 1GPU+3 CPU cores ~ 27 CPU cores

<table>
<thead>
<tr>
<th>Steps</th>
<th>Method</th>
<th>Time Fraction</th>
<th>Where</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seeding</td>
<td>Cellular Automaton</td>
<td>~30%</td>
<td>CPU or GPU</td>
</tr>
<tr>
<td>Track following</td>
<td>Kalman Filter</td>
<td>~60%</td>
<td></td>
</tr>
<tr>
<td>Track merging</td>
<td>Combinatorics</td>
<td>~2%</td>
<td>CPU</td>
</tr>
<tr>
<td>Track fit</td>
<td>Kalman Filter</td>
<td>~8%</td>
<td></td>
</tr>
</tbody>
</table>
ITS Upgrade

Talk by S. Beolè on Tuesday

Feature

<table>
<thead>
<tr>
<th>Feature</th>
<th>ITS</th>
<th>ITS Upgrade</th>
</tr>
</thead>
<tbody>
<tr>
<td># Layers</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>Acceptance</td>
<td>$</td>
<td>\eta</td>
</tr>
<tr>
<td>Material budget/layer</td>
<td>1.1% X_0</td>
<td>0.3-1% X_0</td>
</tr>
<tr>
<td>Spatial resolution</td>
<td>12 x 100 µm²</td>
<td>5 x 5 µm²</td>
</tr>
<tr>
<td></td>
<td>35 x 20 µm²</td>
<td></td>
</tr>
<tr>
<td>Max Pb-Pb readout rate</td>
<td>1 kHz</td>
<td>100 kHz</td>
</tr>
<tr>
<td>Technology</td>
<td>Hybrid Silicon Pixels, Silicon drift detectors, Silicon strip</td>
<td>Monolithic Active Pixel Sensors (MAPS)</td>
</tr>
</tbody>
</table>

- Better pointing resolution by a factor of 3(5) in $r\phi$ (z) at $p_T =500$ MeV/c
 - innermost layer is closer to the IP: 39 mm \rightarrow 22 mm
 - less material budget: \sim0.3% X_0 for the 3 inner barrel, 1% X_0 for the outer.
 - reduced pixel size: from 50×425 µm² \rightarrow $(30\times30$ µm² $)$

- Better tracking efficiency and p_T resolution at low p_T thanks to the higher resolution and to the additional layer

- Faster readout

- Accessible for maintenance during winter shutdowns
Tracking in the ITS Upgrade

- TPC tracks can be prolonged inwards to the ITS
 - However **distortions due to space charge** will affect the standalone tracking in the TPC
- The ITS can be used as a standalone detector and tracks found in the ITS can be prolonged to the TPC.
- The ITS tracks will be used for the TPC calibration to correct for the distortions
 ✓ Method already in use offline for the Run2 and working!
 ✓ In Run3 the same method can be used to calibrate online the TPC
- A ITS standalone tracker based on a Cellular Automaton has been coded and tested on CPU, within the present ALICE offline framework.
Disclaimer:
For easiness in explanations, in the following I will show only the transverse section of the detector.
Tracking in ITS Upgrade
Tracking in ITS Upgrade

Determination of the primary vertex with fast algorithms
Tracking in ITS Upgrade

- Using a pattern recognition method, find track candidates
- Determination of the primary vertex with fast algorithms
Tracking in ITS Upgrade

Using a pattern recognition method, find track candidates

Fitting of the candidates using Kalman Filter in three passes (inward, outward, inward)

Determination of the primary vertex with fast algorithms
Tracking in ITS Upgrade

Using a pattern recognition method, find track candidates

Fitting of the candidates using Kalman Filter in three passes (inward, outward, inward)

Candidates with the best χ^2 are saved as tracks

Determination of the primary vertex with fast algorithms
Data layout

- Hits are sorted and stored according their azimuthal angle and their z coordinate
- An index table is filled to quickly fetch the hits in the region of interest of the detector
 - Increase data locality
 - Possible parallelisation
Cellular Automata in the ITS Upgrade
I will show how the algorithm works only for a limited region of ITS for simplicity.
For each cluster on each layer a 2D window is opened. Then the clusters are joined with those on the next layer within the window.

I will show how the algorithm works only for a limited region of ITS for simplicity.
Cellular Automata in the ITS Upgrade

For each cluster on each layer a 2D window is opened. Then the clusters are joined with those on the next layer within the window. Subsequent doublets are combined in cells (3 points seed) and track params are computed.

I will show how the algorithm works only for a limited region of ITS for simplicity.
Cellular Automata in the ITS Upgrade

For each cluster on each layer a 2D window is opened. Then the clusters are joined with those on the next layer within the window.

Subsequent doublets are combined in cells (3 points seed) and track params are computed.

Each cell has an index representing the number of connected inner cells + 1.

I will show how the algorithm works only for a limited region of ITS for simplicity.
For each cluster on each layer a 2D window is opened. Then the clusters are joined with those on the next layer within the window.

Subsequent doublets are combined in cells (3 points seed) and track params are computed.

Each cell has an index representing the number of connected inner cells + 1.

Longest, continuous sequences of indices represent candidates.

I will show how the algorithm works only for a limited region of ITS for simplicity.
Cellular Automata in the ITS Upgrade

For each cluster on each layer a 2D window is opened. Then the clusters are joined with those on the next layer within the window.

Subsequent doublets are combined in cells (3 points seed) and track params are computed.

Each cell has an index representing the number of connected inner cells + 1.

Longest, continuous sequences of indices represent candidates.

I will show how the algorithm works only for a limited region of ITS for simplicity.
Performance of CA tracker for ITSU

Efficiency for long tracks in central Pb-Pb (0-5%) w/o noise

<table>
<thead>
<tr>
<th>Event type</th>
<th>$p_T > 0.6$ GeV/c</th>
<th>$p_T > 2$ GeV/c</th>
<th>Full</th>
</tr>
</thead>
<tbody>
<tr>
<td>Central Pb-Pb</td>
<td>~0.3 s</td>
<td>~0.2 s</td>
<td>~0.7 s</td>
</tr>
<tr>
<td>Central Pb-Pb with 10^{-5} noise</td>
<td>~1.3 s</td>
<td>~1.0 s</td>
<td>~5 s</td>
</tr>
<tr>
<td>pp with noise</td>
<td>~0.6 s</td>
<td>~0.7 s</td>
<td>~2.3 s</td>
</tr>
</tbody>
</table>
Performance of CA tracker for ITSU

Efficiency for long tracks in central Pb-Pb (0-5%) w/o noise

<table>
<thead>
<tr>
<th>Event type</th>
<th>$p_T > 0.6$ GeV/c</th>
<th>$p_T > 2$ GeV/c</th>
<th>Full</th>
</tr>
</thead>
<tbody>
<tr>
<td>Central Pb-Pb</td>
<td>~0.3 s</td>
<td>~0.2 s</td>
<td>~0.7 s</td>
</tr>
<tr>
<td>Central Pb-Pb with 10^{-5} noise</td>
<td>~1.3 s</td>
<td>~1.0 s</td>
<td>~5 s</td>
</tr>
<tr>
<td>pp with noise</td>
<td>~0.6 s</td>
<td>~0.7 s</td>
<td>~2.3 s</td>
</tr>
</tbody>
</table>

New baseline for the chip noise is much lower!
First porting of the doublet finder on OpenCL

OpenCL reference
First porting of the doublet finder on OpenCL

Transfer of the clusters and LUT on the GPU global (constant) memory
First porting of the doublet finder on OpenCL

Layer 0

Layer 1

Each block of thread will process one bin on layer 0
First porting of the doublet finder on OpenCL

Layer 0

Layer 1

OpenCL reference

Each thread will take care of one cluster layer 0
First porting of the doublet finder on OpenCL

Each thread will take care of one cluster layer 0
First porting of the doublet finder on OpenCL

All the clusters of one bin on layer 1 are copied in the shared memory and a for loop starts over these clusters looking for good doublets.
All the clusters of one bin on layer 1 are copied in the shared memory and a for loop starts over these clusters looking for good doublets.
First porting of the doublet finder on OpenCL

Layer 0

Layer 1

All the clusters of one bin on layer 1 are copied in the shared memory and a for loop starts over these clusters looking for good doublets

mpuccio@cern.ch - Track reconstruction in high multiplicity events - 30.09.16
All the clusters of one bin on layer 1 are copied in the shared memory and a for loop starts over these clusters looking for good doublets.
First porting of the doublet finder on OpenCL

All the clusters of one bin on layer 1 are copied in the shared memory and a for loop starts over these clusters looking for good doublets.

mpuccio@cern.ch - Track reconstruction in high multiplicity events - 30.09.16
First porting of the doublet finder on OpenCL

All the clusters of one bin on layer 1 are copied in the shared memory and a for loop starts over these clusters looking for good doublets.
First porting of the doublet finder on OpenCL

All the clusters of one bin on layer 1 are copied in the shared memory and a for loop starts over these clusters looking for good doublets.
All the clusters of one bin on layer 1 are copied in the shared memory and a for loop starts over these clusters looking for good doublets.
First porting of the doublet finder on OpenCL

All the clusters of one bin on layer 1 are copied in the shared memory and a for loop starts over these clusters looking for good doublets.
First porting of the doublet finder on OpenCL

Factor 4 speed-up on 8 threads CPU, still no acceleration on GPU due to the memory transfer overhead.

mpuccio@cern.ch - Track reconstruction in high multiplicity events - 30.09.16
Conclusions

• ALICE is running GPU based online track reconstruction in the TPC since 2010
 ✓ Overall good performance and no major issue in the operation!
• From Run3 on we will run also the reconstruction of tracks and vertices in the Inner Tracking System
 ✓ Feasibility proven by first results
 ✓ Ongoing effort for the optimisation and porting on heterogeneous architectures
• Key ingredient for the used algorithms:
 ✓ Combinatorics rejection based on local information