Benchmarking Current PC Server Hardware

Parallel Benchmarks used at DESY

Götz Waschk

HEPiX Spring Meeting 2009,Umeå University May 26, 2009

- Introduction
- Hardware
 - Nehalem CPU
 - Shanghai CPU
 - Harpertown CPU
- FORM Benchmark
- Lattice Quantum Chromodynamics Benchmarks
 - Chroma Benchmark
- > Summary
- > References

Computing at DESY

Main computing tasks at DESY in Zeuthen:

- > Grid (WLCG)
- National Analysis Facility
- Local Batch Farm
- > Parallel Computing
 - Special Purpose Computers (APE)
 - Parallel Clusters

Nehalem CPU

- New Intel Xeon quad core generation
- New micro architecture
 - QuickPath Interconnect
 - Simultaneous Multithreading
 - Turbo Boost overclocking mode
- Available Hardware
 - tick Dell PowerEdge M610, Intel Xeon E5520, 2.27 GHz, 8 MB L3 cache
 - tick2 HP ProLiant BL280c G6, Intel Xeon E5506, 2.13 GHz, 4 MB L3 cache

Shanghai CPU

- > AMD quad core Opteron
- New K10 architecture
- > Hypertransport Interconnect
- DDR2 memory with 800 MHz clock speed
- Available Hardware: shanghai Dell PowerEdge R805, Opteron 2384, 2.7 GHz, 6 MB L3 cache

Harpertown CPU

Older hardware for reference:

- hpbl2: HP ProLiant BL460c, Intel Harpertown (Xeon E5440 2.83 GHz)
- > 2x 6 MB L2 Cache
- > 1333 MHz FSB

FORM Benchmark

- > Symbolic Manipulation System
- Developed by Jos Vermaseren of NIKHEF
- > Benchmark based on multi-threaded FORM TFORM
- > Used by theoretical particle physicists

- > Benchmark calculates Feynman diagram 8th momentum
- > Dependence on disk performance
- > Measurements taken by Peter Wegner

FORM Benchmark II

FORM Benchmark III

Lattice Quantum Chromodynamics

- > Theory of quarks and gluons formulated on a space-time lattice
- Discrete space-time simplified model
- > Higher accuracy means huge computation costs

- Code small and well parallellised
- Simulation at DESY on APE machines and parallel Linux clusters
- Blue Gene/L
- > QPACE (IBM Cell processor)

Lattice Quantum Chromodynamics II

- > Overall performance typically dominated by a single kernel
- Mainly (sparse) matrix-vector multiplication:

$$\psi_{\it i} = M_{\it ij}\phi_{\it j}$$

- Consider particular version of M: Wilson-Dirac hopping matrix. For each i:
 - 1320 floating point operations
 - 336 loads of floats or doubles
 - 24 stores of floats or doubles
 - ⇒ 3.7 Flops per load or store of 1 float or double

Chroma Benchmark

- > Lattice QCD community code called *Chroma*
- Developed and maintained at JLAB
- > C++ code with hand-optimized kernel (using SSE)
- Parallel Application using Shared Memory
- > Hybrid Monte-Carlo application

Measurements taken by F.Winter, D.Pleiter and C.Külker

Weak scaling

- Investigate performance for fixed number of cores as function of the problem size
 - Measured performance of Conjugate Gradient inverter:

- Application parallelized on 2 × 4 cores using openMPI
- Disclaimer: No additional optimization done

Observations and comments

- Maximum sustained performance:
 - Nehalem E5520 60% faster than Shanghai 2384
 - Nehalem E5520 27% faster than Nehalem L5506
- Sustained performance for large problem size:
 - Nehalem E5520 2.7 times faster than Shanghai 2384
 - Nehalem E5520 33% faster than Nehalem L5506
- Caveat: Measured performance on single node only
 - Less realistic
 - Smallest lattice: $V = 2 \times 4^3 \Rightarrow 16$ sites per core
 - Largest lattice: $V = 16^3 \times 32 \Rightarrow 16384$ sites per core
- > More realistic scenario: $V = 32^3 \times 64$ on 16-32 nodes
 - 8192-16384 sites per core
 - Interconnect via XDR IB
 - ⇒ Performance impact not measured (yet)

May 26, 2009

Summary

- > Nehalem shows significant performance increase
- Higher Memory Bandwidth
- Well-suited for QCD simulations

- Outlook
 - Run other QCD benchmarks
 - Run QCD Benchmark on Nehalem Cluster with QDR Infiniband
 - Benchmark 4-Way Nehalem (TFORM)

References

M. Tentyukov, J.A.M. Vermaseren.

The Multithreaded version of FORM

http://arxiv.org/abs/hep-ph/0702279v1

R.G. Edwards (LHPC Collaboration), B. Joó (UKQCD Collaboration).

The Chroma Soft ware System for Lattice QCD

http://arxiv.org/abs/hep-lat/0409003

C. McClendon.

Optimized Lattice QCD Kernels for a Pentium 4 Cluster

http://www.jlab.org/~edwards/qcdapi/reports/dslash_p4.pdf

The End

Questions?

