

VM CPU Benchmarking the HEPiX Way

Manfred Alef, Ian Gable

FZK Karlsruhe University of Victoria

May 28, 2009

Overview

- Motivation
- Benchmark Testbed
- Benchmarking Technique
- Results: Xen, KVM, Amazon EC2
- Conclusion
- Other Virtualization Activities at the University of Victoria

Motivation

- Measure Virtual Machines as they would be used on HEP Worker nodes
- There are plenty of VM benchmarks out there, but none of the them had been setup specifically for HEP
 - Multiple 100% CPU Loaded VMs running on a single box
 - Scientific Linux used
- Now possible to create your own Amazon like cloud infrastructure.
 - Open Nebula (seen at HEPiX), Nimbus (Globus project, UVic involved)
 - Does turning you cluster into a Cloud IaaS service cost you in lost CPU performance?
- Focus on CPU benchmarking because it's less dependent on specific setups.
- From working with the HEPiX CPU working group we were well positioned to get results quickly.

Benchmark Testbed

Selected to form a representative set of CPUs commonly used at HEP Sites:

CPU Model	$\begin{array}{c} \mathrm{Mem} \\ \mathrm{(GB)} \end{array}$	nCores	Mainboard	Year
AMD Opteron				
246 (2.0 GHz SC)	4	2	MSI-9145	2003
270 (2.0 GHz DC)	8	4	MSI-9145	2005
2376 (2.3 GHz, QC, Shanghai)	16	8	Supermicro H8DMU+	2009
Intel Xeon				
Intel Xeon 3.00 GHz, SC (Nocona)	2	2	HP ProLiant DL360 G4, HT off	2004
5160 (3.0 GHz, DC, Woodcrest)	6	4	Intel Server Board S5000VCL	2006
E5345 (2.33 GHz, QC, Clovertown)	16	8	Supermicro CSE-812L-520CB	2007
E5405 (2.0 GHz, QC, Harpertown)	16	8	Dell PowerEdge 2950	2007
L5420 (2.5 GHz, QC, Harpertown)	16	8	Supermicro X7DCT	2008

Selection of OS and Virtual Machine Monitors

- Use HEP-SPEC06 as the benchmark. Obvious choice.
- Selected Scientific Linux 5.2 with the distribution provided Xen
 - Obvious choice for ease of use within the HEP community because of distribution integration
 - Had been running Xen in production mode at UVic for 3 years: lots of experience.
 - Test could be easily put together with 'yum install kernel-xen'
- Limited KVM testing
 - Selected one box at UVic for further examination with KVM
 - Not a lot of experience with KVM
 - More work to get operational on SL (not a lot more)
 - Important to test because it appears to be RedHats new favorite

Benchmark Technique

- We wish to simulate the fully loaded HEP worker node used with virtualization
- Two scenarios we are most interested in:
 - 1 VM per core: n VMs are booted where n is the number of cores. Each VM has 1 VCPU
 - **1 VM per box:** 1 VM is booted with VCPUs equal to the number of physical cores on the Box

VM Memory Allocation

VM Type	Hy Ver	pervisor sion	Kernel Version		Disk Access
i386 x86_64	Xe	n 3.0.3	2.6.18-92 2.6.18-92	.1.13.el5xen i686 .1.13.el5xen x86_64	tap:aio
		Hardwa Type	re	VM Memory Allocation	
		All AM Quad C	D and ore Intels	$n \times 1900 \text{ MB}$	
		Intel No Intel We	ocona podcrest	$\frac{n \times 870 \text{ MB}}{n \times 870 \text{ MB}}$	

Where *n* is the number of cores

Xen Results i386 VMs

Ian Gable

Distribution of HEP-SPEC06 Results

Xen i386 VM Relative performance

Ian Gable

Xen Results x86_64 VMs

Ian Gable

Xen per core variability

Xen Results Wrap Up

- Insignificant performance degradation in both 1 VM per core, and 1 VM per box cases.
- Some counter intuitive performance gains in the 1 VM per core case.
 - Could be associated with pinning of each VM to a core, hence fewer cache misses
 - Could be associated with the Xen Borrowed Virtual Time (BVT) scheduler vs the regular SMP kernel.
- Zero CPU Performance impediment to running 1 VM per job on a multiprocessor worker node.

A first look at KVM

- Selected Xeon E5405 (Harpertown) for further study
- Replaced host kernel with vanilla Kernel 2.6.29.2 x86_64
 - includes kvm modules as a part of mainline
 - SL 5.3 uses 2.6.18 (no kvm modules)
- Tested i386 KVM-84 SL 5.3 VM with virtio
- Exactly the same benchmark Technique.
- Results not strictly comparable with earlier Xen results.

Preliminary KVM Results

- KVM appears to out perform earlier Xen setup in the 1 VM per core case.
- KVM underperforms in the 1 VM per box case.
- Looking for an explanation

Amazon EC2 Benchmark

• Simply run HEP-SPEC06 on three different Amazon instance types

- Small Instance (\$0.10/ hour) – 1.7 GB Memory, 1 VCPU, 32-bit Large Instance(\$0.40/hour) – 7.5 GB Memory, 2 VCPUs, 64-bit
- Extra large Instance (\$0.80/hour)
 - 15 GB Memory, 4 VCPUs, 64-bit
- All test done with SL5.3 Amazon Machine Images (AMI) produced at UVic using the 2.6.18 RHEL Xen kernels from Amazon.

Utility Computing Thruput measurement

HEP-SPEC06 $\cdot \frac{h}{\$}$

	Average (HEP-		
Туре	SPEC06)	Cost (\$/hour)	HEP-SPEC06*(h/\$)
small instance	3.66	0.10	36.63
large instance	13.11	0.40	32.77
extra large instance	24.68	0.80	30.85

Based on 3 runs on each instance type.

To get same thruput as Xeon L5420: \$1.84/h

Conclusion

- In terms of CPU performance, it is indeed very feasible to run highly CPU loaded virtual machines on current generation multi-core CPUs
- Established this using the HEP-SPEC06 benchmark which has been proven to map to real HEP application performance.
- No benchmark suffered more then 5% decrease in performance, save for preliminary KVM results.
- Useful measure of utility computing cost effectiveness:

HEP-SPEC06 $\cdot \frac{h}{\$}$

Other Virtualization Activities at UVic

- Developing BaBar Legacy Data Analysis system at UVic using a Nimbus Cloud deployed to a full blade chassis.
 - Nimbus is an Open Source laaS software like Open Nebula (seen at HEPiX already)
- Google Summer of Code
 Student
 - develop code for for Nimbus project in Cloud Scheduling
 - Student gets \$4500 stipend paid by Google
 - Ian to act as Google 'Project Mentor'.

Acknowledgements

- HEPiX CPU Benchmarking working group.
- Matt Vliet (UVic Undergraduate)

