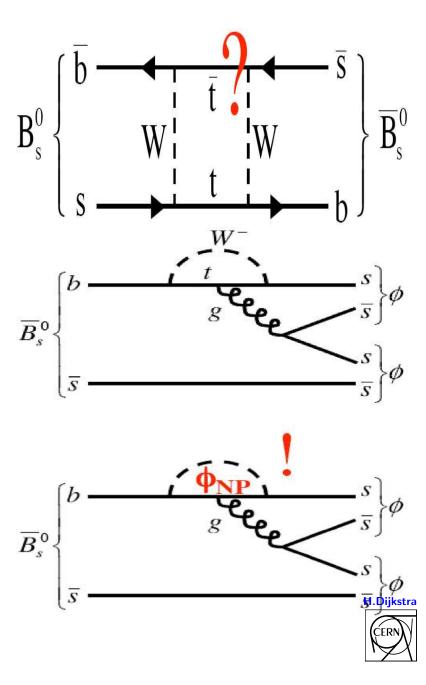


The LHCb Upgrade

- Physics motivation.
- The luminosity upgrade.
- Higher luminosity implications for LHCb.
- Two phase upgrade scenario:
- I Full software trigger.
- II Adapt detectors to larger occupancy/radiation environment.
- Time schedule.
- LHCb and the LHC machine.
- Summary.


Physics Motivation

LHCb strategy:

- Look for NP in processes mediated by loop diagrams.
- Look for processes with small error in SM prediction.
- If NP found:

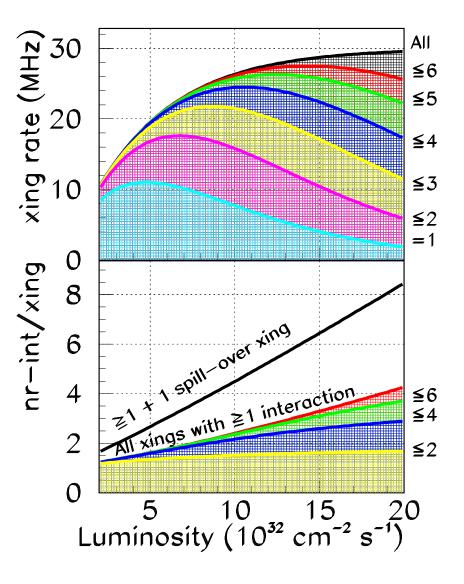
this allows (statistics!) studying their couplings. Development of statistics:

- LHCb: collect 10 ${\rm fb}^{-1}$
- Upgrade-I: 4-5×LHCb in hadron-yield.
- Upgrade-II: collect $>20(10)\times$ LHCb in h(μ) channels.

Example channels

NP Measurement	$10 { m ~fb^{-1}}$	$100 { m ~fb^{-1}}$	σ (theory)
$\sigma(\phi_s) \ (\mathbf{B}_{\mathbf{s}} \to \psi \phi)$	0.01	.003	0.002
$\sigma(\beta_s) \ (B_s \to \phi \phi)$	0.05	.015	< 0.002
$\operatorname{Pol}(\gamma) \ (\mathrm{B}_{\mathrm{s}} \to \phi \gamma)$	0.09	0.02	< 0.01
$\sigma(s0_{\mu\mu}) \ (B^0 \to K^* \mu \mu)$	$0.3 \mathrm{GeV^2}$	0.07	<exp?< td=""></exp?<>
$BR(B_s \rightarrow \mu\mu)$	$>5\sigma$ in SM	<10% of BR	<exp< td=""></exp<>

- Mixing and CPV in charm decays.
- LFV: $\tau \rightarrow \mu \mu \mu$
- Search for (low) mass exotics: Hidden Valley models.
- Trigger requirement: able to adapt to flavour physics needs in 2nd half next decade.


LHCb and Luminosity

- LHC: we (will..) have the machine!
 - $L_{\rm LHC}^{\rm peak} \approx 10^{34} \ {\rm cm}^{-2} {\rm s}^{-1}$
 - Assume $\sigma_{\text{visible}} = 63 \text{ mb.}$
 - $@2.10^{32}$: ~ 10 MHz xings with ≥ 1 int.
 - $@10^{33}$: ~ 26 MHz xings with ≥ 1 int.
 - nr-int/xings: only factor 2 increase up to @10³³!

What is limiting LHCb to use larger L?

- L0 Hadron trigger: ''designed/works'' till $\sim 2.10^{32}.$
- Efficient tracking "works" till $\sim 10.10^{32}.$
- > 10.10^{32} :

radiation damage starts to kick in too.

First Upgrade Step: the Trigger?

Several (MC) studies done, conclusions:

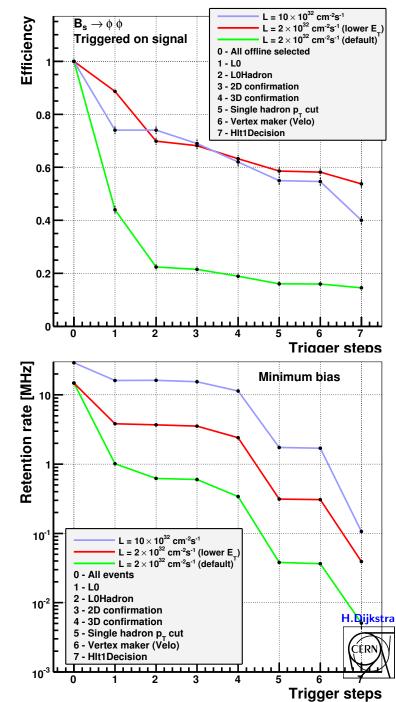
- First level trigger: cut on $p_{\rm T}$.AND.IP/track simultaneously.
- Hence: need to reconstruct all primary vertexes (PV) per bunch crossing.

Solution: software trigger on a large CPU farm with an input rate \leq 30 MHz. This gives the additional flexibility to adapt to the physics landscape in the next decade.

Note:

- All present FE are limited to 1 MHz read-out rate.
- 2.5 μ s is maximum time for a trigger reconstruction+decision, far too short for a CPU farm to return the trigger decision.

As a consequence, first step in our upgrade scenario:


• All FE electronics has to be able to read-out at 40 MHz.

Upgraded Hadron Trigger and $B_s \rightarrow \phi \phi$

Preliminary Algorithm:

- \bullet as "now", i.e. High-E_{\rm T}-seeds+VELO+tracking.
- Phase-I@2.10³²: get $> 2 \times$ efficiency:
- Hard \rightarrow Soft trigger: 1 \rightarrow 4 MHz rate.
- $B_s \rightarrow \phi \phi$ efficiency $16\% \rightarrow \sim 55\%$.
- Output rate: $5 \rightarrow 40$ kHz.
- Increase luminosity: $10^{33} \text{ cm}^{-2} \text{s}^{-1}$
- Input rate 15 MHz
- +some high-L tuning to reduce rate.
- $> 10 \times$ better signal yield for $5 \times$ increase in L.
- Minimum Bias rate: 100 kHz.
- Next: study to reduce to 10-20 kHz with additional tracking.

Time Schedule

LHCb will have to upgrade synchronized with LHC and GPD schedule:

- 8 months shutdown 10/2012-6/2013 to install new IR in GPDs.
- 18 months shutdown 2017-6/2018 to replace GPD Inner Detectors.

Exploit the above two windows for a two phase upgrade scenario:

- Up till 10/2012: collect $\sim 9 fb^{-1}$: data-doubling-time (DDT): 3 years.
- PHASE-I:
- 10/2012-3/2014, of which 12 months access, to upgrade all FE to 40 MHz.
- Run at lumi $< L^{\rm peak} \sim 10^{33}$ till 2017.
- $\int L^{2017} = 25$ fb⁻¹ most with doubled hadron trigger efficiency!
- 25% above the radiation limit for all detectors (but VELO).
- DDT: 3 years in 2017.
- PHASE-II
- 2017-6/2018 to upgrade detectors for high lumi and radiation.
- Run at lumi $< L^{\rm peak} > \sim 3 \times 10^{33}$ till 2022.
- collect $\int L^{2022} \sim 110 \text{fb}^{-1}$. (DDT: 5 years.)

LHCb and LHC-machine

- Now: run at $2 5.10^{32}$: limitation hadron-trigger.
- PHASE-I: run at $\approx 10.10^{32}$: limitation tracking efficiency (radiation)
- PHASE-II: run at $\leq 50.10^{32}$: limitation probably (R&D..) upgraded tracking.

LHCb happy with LHC (without Super), needs (has $\beta^* = 1$ m) optics to run at above lumies.

- PHASE-I/II lumi-limits due to number of pp-int/xing!!
- Needed: 25 ns! (50 ns will half our integrated luminosity!), and like
- luminosity leveling for $L > 10^{33}$
- long(er) luminous region

SLHC: LHCb does not need it but we like very much one of the discussed schemes:

- 25 ns bunches, but:
- 50 ns $I^{\mathrm{high}} \leftrightarrow I^{\mathrm{high}}$ bunches
- Interleave with 50 ns $I_{\rm low} \leftrightarrow I_{\rm low}$ bunches
- GDP xings: $I^{\rm h} imes I^{\rm h}, \ I_{\rm l} imes I_{\rm l}, I^{\rm h} imes I^{\rm h}$
- LHCb xing: $I^{\rm h} \times I_{\rm l}, \ I_{\rm l} \times I^{\rm h}, I^{\rm h} \times I_{\rm l}$ etc..

Note: no tune shift limitation for I^{h} bunches due interactions with I_{1} bunches.

Upgrade Summary

- -2013: ramp to $L \leq 5.10^{32}$, $\int L = \sim 9~{
 m fb}^{-1}$
- PHASE-I: 2013-2017 upgrade trigger: $L\sim 10^{33}$, $\int L=\sim 25~{\rm fb}^{-1}$
- PHASE-II: 2017-2022: upgrade detectors: $L \leq 5.10^{33}$, $\int L = \sim 110 \ {\rm fb}^{-1}$

- LHCb PHASE-I/II lumi-limits due to number of pp-int/xing!.
- Hence: we want as many xings/s (25 ns?) as possible. Doubling the bunch spacing (50 ns) will half our integrated luminosity.
- Second order "requests":
- Luminosity leveling for larger ($L > 10 \times 10^{32}$) luminosity.
- Long(er) luminous region = better.

