Profiling Z' bosons using asymmetry observables in top pair production with the lepton-plus-jets final state at the LHC

Lucio Cerrito, Declan Millar, Stefano Moretti, Francesco Spanò

PASCOS, Quy Nhon, Vietnam
12th July 2016
Z' bosons

• Generally any new, heavy, neutral spin-one bosons.

• Arise from residual $U(1)'$ symmetries after GUT breaking:

$$SU(3)_C \times SU(2)_L \times U(1)_Y \times U(1)'$$

• Leads to additional term in low-energy neutral current Lagrangian:

$$L \supset g' Z' \mu \bar{f} \gamma \mu (c_f V - c_f A_{\gamma/5}) f / g' Z' \mu \bar{f} \gamma \mu Q_{Z'} f.$$
\(Z' \) bosons

- \(Z' \) bosons are generally any new, heavy, neutral spin-1 bosons.
Z' bosons

- Z' bosons are generally any new, heavy, neutral spin-1 bosons.

- Arise from residual $U(1)'$ symmetries after GUT breaking:

$$SU(3)_C \times SU(2)_L \times U(1)_Y \times U(1)'.$$
Z' bosons

- Z' bosons are generally any new, heavy, neutral spin-1 bosons.

- Arise from residual $U(1)'$ symmetries after GUT breaking:
 \[SU(3)_C \times SU(2)_L \times U(1)_Y \times U(1)' \]

- Leads to additional term in low-energy neutral current Lagrangian:
 \[\mathcal{L} \supset g' Z'_\mu \bar{f} \gamma^\mu (c^f_V - c^f_A \gamma_5) f = g' Z'_\mu \bar{f} \gamma^\mu Q_{Z'} f. \]
Benchmark Z' models

- Generalised Sequential Models (GSMs):
 \[\text{GSM} / \text{equal.osf cos} \alpha \text{L} / \text{three.osf} \text{R} / \text{plus.osf sin} \alpha \text{Q} \]

- General Left-Right symmetric models (GLRs):
 \[\text{SU}(2) \times \text{SU}(2) \times \text{U}(1) \rightarrow \text{SU}(2) \times \text{U}(1) \text{Y} \]

- E/six.osf inspired models:
 \[\text{E/six.osf} \rightarrow \text{SO}(1/0) \times \text{U}(1) \psi \rightarrow \text{SU}(5) \times \text{U}(1) \chi \rightarrow \text{SU}(3) \times \text{SU}(2) \times \text{U}(1) \text{Y} \]
benchmark Z' models

- Generalised Sequential Models (GSMs):

\[Q_{GSM} = \cos \alpha T^3_L + \sin \alpha Q, \]
Benchmark Z' models

- Generalised Sequential Models (GSMs):
 \[Q_{\text{GSM}} = \cos \alpha T^3_L + \sin \alpha Q, \]

- General Left-Right symmetric models (GLRs):
 \[
 \text{SU}(2)_L \times \text{SU}(2)_R \times \text{U}(1)_{B-L} \rightarrow \text{SU}(2)_L \times \text{U}(1)_Y
 \]
 \[Q_{\text{GLR}} = \cos \phi T^3_R + \sin \phi T_{B-L}, \]
Benchmark Z' models

- Generalised Sequential Models (GSMs):
 \[Q_{GSM} = \cos \alpha T^3_L + \sin \alpha Q, \]

- General Left-Right symmetric models (GLRs):
 \[\text{SU}(2)_L \times \text{SU}(2)_R \times U(1)_{B-L} \rightarrow \text{SU}(2)_L \times U(1)_Y \]
 \[Q_{GLR} = \cos \phi T^3_R + \sin \phi T_{B-L}, \]

- E_6 inspired models:
 \[E_6 \rightarrow \text{SO}(10) \times U(1)_\psi \]
 \[\text{SO}(10) \rightarrow \text{SU}(5) \times U(1)_\chi \]
 \[\text{SU}(5) \rightarrow \text{SU}(3)_C \times \text{SU}(2)_L \times U(1)_Y. \]
 \[Q_{E_6} = \cos \theta T^\chi + \sin \theta T^\psi. \]
Experimental bounds on benchmark model Z' masses

• Lower mass bound in GeV extracted by Accomando et al. based on CMS Drell-Yan results. [arXiv:/one/osf/five/zero/three/zero/two/six/seven/two]
Lower mass bound in GeV extracted by Accomando et al. based on CMS Drell-Yan results. [arXiv:1503.02672]
Experimental bounds on benchmark model Z' masses

- Lower mass bound in GeV extracted by Accomando et al. based on CMS Drell-Yan results. [arXiv:1503.02672]
Experimental bounds on benchmark model Z' masses

- Lower mass bound in GeV extracted by Accomando et al. based on CMS Drell-Yan results. [arXiv:1503.02672]
Experimental bounds on benchmark model Z' masses

- Lower mass bound in GeV extracted by Accomando et al. based on CMS Drell-Yan results. [arXiv:1503.02672]

<table>
<thead>
<tr>
<th>Class</th>
<th>E_6</th>
<th>GLR</th>
<th>GSM</th>
</tr>
</thead>
<tbody>
<tr>
<td>$U(1)'$</td>
<td>χ</td>
<td>ψ</td>
<td>η</td>
</tr>
<tr>
<td>$M_{Z'}$</td>
<td>2700</td>
<td>2560</td>
<td>2620</td>
</tr>
</tbody>
</table>

![Graph showing experimental bounds on Z' masses](image)
Top quark pair production

- $t\bar{t} + q, l + q', \nu W +$ is an alternative search channel to $Z' \to l/\pm osf l$.

- Top mass of $/one.osf/seven.osf/three.osf$ GeV is close to EW symmetry breaking scale.

- $Z' - t$ couplings significant in many BSMs, e.g. composite Higgs.

- Extremely short lifetime: top quarks decay prior to hadronisation.

- Top spin information is transmitted to decay products.

- Allows definition of unique Asymmetry observables.
Top quark pair production

\[Z' \to t\bar{t} \] is an alternative search channel to \[Z' \to l^+l^- \].
Top quark pair production

- \(Z' \rightarrow t\bar{t} \) is an alternative search channel to \(Z' \rightarrow l^+l^- \).
- Top mass of 173 GeV is close to EW symmetry breaking scale.
Top quark pair production

- $Z' \rightarrow t\bar{t}$ is an alternative search channel to $Z' \rightarrow l^+l^-$.
- Top mass of 173 GeV is close to EW symmetry breaking scale.
- $Z' - t$ couplings significant in many BSMs, e.g. composite Higgs.
Top quark pair production

$Z' \rightarrow t\bar{t}$ is an alternative search channel to $Z' \rightarrow l^+l^-$.

Top mass of 173 GeV is close to EW symmetry breaking scale.

Z'-t couplings significant in many BSMs, e.g. composite Higgs.

Extremely short lifetime: top quarks decay prior to hadronisation.
Top quark pair production

- $Z' \rightarrow t\bar{t}$ is an alternative search channel to $Z' \rightarrow l^+l^-$.
- Top mass of 173 GeV is close to EW symmetry breaking scale.
- $Z' - t$ couplings significant in many BSMs, e.g. composite Higgs.
- Extremely short lifetime: top quarks decay prior to hadronisation.
- Top spin information is transmitted to decay products.
Top quark pair production

\[Z' \rightarrow t\bar{t} \] is an alternative search channel to \[Z' \rightarrow l^+l^- \].

- Top mass of 173 GeV is close to EW symmetry breaking scale.
- \[Z' - t \] couplings significant in many BSMs, e.g. composite Higgs.
- Extremely short lifetime: top quarks decay prior to hadronisation.
- Top spin information is transmitted to decay products.
- Allows definition of unique Asymmetry observables.
Generation tools

We generate the parton level final state and include full tree-level Standard Model interference, with all intermediate particles allowed off-shell.

Helicity amplitude calculations based on HELAS subroutines.

Can optionally enforce the narrow width approximation.

PDFs used are by CTEQ at a scale of Q^2/m_t.

VEGAS for multi-dimensional numerical phase-space integration.
We generate the parton level final state and include full tree-level Standard Model interference, with all intermediate particles allowed off-shell.

- Helicity amplitude calculations based on HELAS subroutines.
- PDFs used are by CTEQ at a scale of Q^2/m_t.
- VEGAS for multi-dimensional numerical phase-space integration.
• We generate the parton level 6 fermion final state and include full tree-level Standard Model $t\bar{t}$ interference, with all intermediate particles allowed off-shell.
• We generate the parton level 6 fermion final state and include full tree-level Standard Model $t\bar{t}$ interference, with all intermediate particles allowed off-shell.
• Helicity amplitude calculations based on HELAS subroutines.
• We generate the parton level 6 fermion final state and include full tree-level Standard Model $t\bar{t}$ interference, with all intermediate particles allowed off-shell.
• Helicity amplitude calculations based on HELAS subroutines.
• $m_t = 173$ GeV, $m_b = 4.18$ GeV, all other fermions massless.
• We generate the parton level 6 fermion final state and include full tree-level Standard Model tt interference, with all intermediate particles allowed off-shell.
• Helicity amplitude calculations based on HELAS subroutines.
• $m_t = 173$ GeV, $m_b = 4.18$ GeV, all other fermions massless.
• Can optionally enforce the narrow width approximation.
• We generate the parton level 6 fermion final state and include full tree-level Standard Model $t\bar{t}$ interference, with all intermediate particles allowed off-shell.
• Helicity amplitude calculations based on HELAS subroutines.
• $m_t = 173$ GeV, $m_b = 4.18$ GeV, all other fermions massless.
• Can optionally enforce the narrow width approximation.
• PDFs used are by CTEQ6L1 at a scale of $Q = \mu = 2m_t$.
• We generate the parton level 6 fermion final state and include full tree-level Standard Model $t\bar{t}$ interference, with all intermediate particles allowed off-shell.
• Helicity amplitude calculations based on HELAS subroutines.
• $m_t = 173$ GeV, $m_b = 4.18$ GeV, all other fermions massless.
• Can optionally enforce the narrow width approximation.
• PDFs used are by CTEQ6L1 at a scale of $Q = \mu = 2m_t$.
• VEGAS for multi-dimensional numerical phase-space integration.
Matrix element Calculation and interference

\[|M_{pp \rightarrow t\bar{t}}| \approx \frac{\gamma, Z, Z^{'}}{2},\]

\[|M_{QCD}| \approx \frac{M_{\gamma, Z, Z^{'}}}{2},\]

\[D_{ij} \approx \frac{\hat{s} - m_{i}}{2} \frac{\hat{s} - m_{j}}{2} \Gamma_{i} \Gamma_{j} \left(\frac{\hat{s} - m_{j}}{2} + m_{i} \right) \right(\frac{\hat{s} - m_{i}}{2} + m_{j} \right).\]
Matrix element Calculation and interference

\[|M(\text{pp} \rightarrow t\bar{t})|/two.osf = |M(\text{QCD})|/two.osf + |M(\gamma, Z, Z')|/two.osf,
\]

\[|M(\gamma, Z, Z')|/two.osf = \hat{s}/two.osf \times D_{ij}/one.osf + \delta_{ij} \{ C_{qij} [C_{tij} \cos \theta + B_{tij} (1 - \beta/2)] + A_{qij} A_{tij} \beta \cos \theta \}.
\]

\[A_f = g_i L g_j L - g_i R g_j R,
\]

\[B_f = g_i L g_j R + g_i R g_j L,
\]

\[C_f = g_i L g_j L + g_i R g_j R.
\]

\[D_{ij} = (\hat{s} - m_i/2)(\hat{s} - m_j/2)/m_i m_j \Gamma_i \Gamma_j (\hat{s} - m_j/2)^2/\Gamma_j^2 + (\hat{s} - m_i/2)^2/\Gamma_i^2).
\]
Matrix element Calculation and interference

\begin{align*}
|\mathcal{M}(pp \to t \bar{t})| &= \frac{1}{\text{two.osf}} |\mathcal{M}(QCD)| + \frac{1}{\text{two.osf}} |\mathcal{M}(\gamma, Z, Z')|,
\end{align*}

\begin{align*}
A_{ij} &= \frac{1}{\text{six.osf}} \left(\hat{s} - \frac{m}{2} \right)_{ij} \frac{1}{\text{six.osf}} \left(\hat{s} - \frac{m}{2} \right)_{ij}.
\end{align*}
Matrix element Calculation and interference

\[|M(\gamma, Z, Z')| \sim \frac{1}{\text{six}} |D_{ij}| + \delta_{ij} \left\{ C_{q_{ij}} + C_{t_{ij}} (\beta \cos \theta) \right\} + B_{t_{ij}} (\beta) \sim \frac{1}{\text{six}} \left\{ A_{q_{ij}} + A_{t_{ij}} (\beta \cos \theta) \right\} \]
Matrix element Calculation and interference

\[|M(\gamma, Z, Z')|_{\text{QCD}} + |M(\gamma, Z, Z')|_{\text{QCD}} \]

\[D_{ij} = \delta_{ij} \{ C_{qij} + C_{tij}(1 - \beta \cos \theta) + B_{tij} \} \]

\[A_{f} = g_{iL} g_{jL} - g_{iR} g_{jR}, \quad B_{f} = g_{iL} g_{jR} + g_{iR} g_{jL}, \quad C_{f} = g_{iL} g_{jL} + g_{iR} g_{jR} \]

\[D_{ij} = (\hat{s} - m_i/2)(\hat{s} - m_j/2) \Gamma_i \Gamma_j \]

\[\Gamma_i = (\hat{s} - m_j/2)/(\hat{s} + m_i/2), \quad \Gamma_j = (\hat{s} - m_i/2)/(\hat{s} + m_j/2) \]
Matrix element Calculation and interference

\[
|M_{pp \rightarrow t\bar{t}}|/two.osf = |M_{QCD}|/two.osf + |M_{\gamma, Z, Z'}|/two.osf
\]

\[
A_f = g_{iL}g_{jL} - g_{iR}g_{jR}
\]

\[
B_f = g_{iL}g_{jR} + g_{iR}g_{jL}
\]

\[
C_f = g_{iL}g_{jL} + g_{iR}g_{jR}
\]

\[
D_{ij} = (\hat{s} - m^2_i)(\hat{s} - m^2_j)/m_i m_j \Gamma_i \Gamma_j \left((\hat{s} - m^2_j)/two.osf + m^2_i/\Gamma_i \right) \left((\hat{s} - m^2_j)/two.osf + m^2_j/\Gamma_j \right)
\]
|\mathcal{M}(pp \to t\bar{t})|^2 = |\mathcal{M}(QCD)|^2 + |\mathcal{M}(\gamma, Z, Z')|^2,
Matrix element Calculation and interference

\[
|M(pp \to t\bar{t})|^2 = |M(QCD)|^2 + |M(\gamma, Z, Z')|^2,
\]

\[
|M(\gamma, Z, Z')|^2 = \frac{\hat{s}^2}{6} \frac{D_{ij}}{1 + \delta_{ij}} \left\{ C^q_{ij} \left[C^t_{ij}(1 + \beta^2 \cos^2 \theta) + B^t_{ij}(1 - \beta^2) \right] + 2A^q_{ij}A^t_{ij} \beta \cos \theta \right\}.
\]
Matrix element Calculation and interference

\[|M(pp \rightarrow t\bar{t})|^2 = |M(QCD)|^2 + |M(\gamma, Z, Z')|^2, \]

\[|M(\gamma, Z, Z')|^2 = \frac{\hat{s}^2}{6} \frac{D_{ij}}{1 + \delta_{ij}} \left\{ C^q_i \left[C^t_{ij} \left(1 + \beta^2 \cos^2 \theta \right) + B^t_{ij} \left(1 - \beta^2 \right) \right] + 2A^q_i A^t_{ij} \beta \cos \theta \right\}. \]

\[A^f = g^i_L g^i_L - g^i_R g^i_R. \]
Matrix element Calculation and interference

\[|M(pp \rightarrow t\bar{t})|^2 = |M(QCD)|^2 + |M(\gamma, Z, Z')|^2, \]

\[|M(\gamma, Z, Z')|^2 = \frac{\hat{s}^2}{6} \frac{D_{ij}}{1 + \delta_{ij}} \left\{ C^q_{ij} \left[C^t_{ij}(1 + \beta^2 \cos^2 \theta) + B^t_{ij}(1 - \beta^2) \right] + 2A^q_{ij}A^t_{ij}\beta \cos \theta \right\}. \]

\[A^f = g^i_L g^j_L - g^i_R g^j_R, \quad B^f = g^i_L g^j_R + g^i_R g^j_L, \]
|\mathcal{M}(pp \rightarrow t\bar{t})|^2 = |\mathcal{M}(\text{QCD})|^2 + |\mathcal{M}(\gamma, Z, Z')|^2,

|\mathcal{M}(\gamma, Z, Z')|^2 = \frac{\hat{s}^2}{6} \frac{D_{ij}}{1 + \delta_{ij}} \left\{ C_{ij}^q \left[C_{ij}^t (1 + \beta^2 \cos^2 \theta) + B_{ij}^t (1 - \beta^2) \right] + 2A_{ij}^q A_{ij}^t \beta \cos \theta \right\}.

A^f = g_L^i g_L^j - g_R^i g_R^j, \quad B^f = g_L^i g_R^j + g_R^i g_L^j, \quad C^f = g_L^i g_L^j + g_R^i g_R^j,
Matrix element Calculation and interference

\[|\mathcal{M}(pp \rightarrow t\bar{t})|^2 = |\mathcal{M}(QCD)|^2 + |\mathcal{M}(\gamma, Z, Z')|^2, \]

\[|\mathcal{M}(\gamma, Z, Z')|^2 = \frac{\hat{s}^2}{6} \frac{D_{ij}}{1 + \delta_{ij}} \left\{ C^q_i \left[C^t_{ij}(1 + \beta^2 \cos^2 \theta) + B^t_{ij}(1 - \beta^2) \right] + 2A^q_{ij}A^t_{ij} \beta \cos \theta \right\}. \]

\[A^f = g^i_L g^j_L - g^i_R g^j_R, \quad B^f = g^i_L g^j_R + g^i_R g^j_L, \quad C^f = g^i_L g^j_L + g^i_R g^j_R, \]

\[D^{ij}_{ij} = \frac{(\hat{s} - m_i^2)(\hat{s} - m_j^2) + m_i m_j \Gamma_i \Gamma_j}{(\hat{s} - m_i^2)^2 + m_i^2 \Gamma_i^2} \frac{(\hat{s} - m_j^2)^2 + m_j^2 \Gamma_j^2}{(\hat{s} - m_j^2)^2 + m_j^2 \Gamma_j^2}. \]
Forward-Backward Asymmetry

Forward-backward Asymmetry is defined as:

\[
N_t(\cos \theta > \text{zero}) - N_t(\cos \theta < \text{zero})
\]

This asymmetry demonstrates a different coupling to the cross section \(\sigma\):

\[
\sigma \propto \left(\frac{c_V}{2} + \frac{c_A}{2} \right) \left(\frac{c_A}{2} + \frac{c_V}{2} \left(\frac{1}{4} - \beta/2 \right) \right),
\]

where \(\beta = \sqrt{1 - \frac{4m_t}{\hat{s}}}\).

\(A_{FB}\) is sensitive to the sign of the couplings.

\(pp\) collisions have no preferred \(z\) direction.

However, typically parton momentum fraction:

\[x(q) > x(\bar{q})\]

Use the boost direction to define the \(z\) axis.

\[
\cos \theta \rightarrow \cos \theta^* = y_{tt} |y_{tt}| \cos \theta \Rightarrow A_{FB} \rightarrow A^*_{FB}.
\]
• Forward-backward Asymmetry is defined

\[\frac{N_t(\cos \theta > 0) - N_t(\cos \theta < 0)}{N_t(\cos \theta > 0) + N_t(\cos \theta < 0)} \]

• This asymmetry demonstrates a different couplings to \(Z' \) when compared to the cross section \(\sigma \):

\[\sigma \propto (c_{V_i}^2 + c_{A_i}^2)(c_{V_t}^2 + c_{A_t}^2) \]

\[A_{FB} \propto c_{V_i} c_{A_i} c_{V_t} c_{A_t}. \]

where \(\beta = \sqrt{1 - 4m_t^2/\hat{s}} \).

• \(A_{FB} \) is sensitive to the sign of the couplings.

• \(pp \) collisions have no preferred \(z \) direction.

• However, typically parton momentum fraction:

\[x(q) > x(\bar{q}) \]

• Use the boost direction to define the \(z \) axis.
Forward-Backward Asymmetry

- Forward-backward Asymmetry is defined as:

\[A_{FB} = \frac{N_t(\cos \theta > 0) - N_t(\cos \theta < 0)}{N_t(\cos \theta > 0) + N_t(\cos \theta < 0)} \]
Forward-Backward Asymmetry

- Forward-backward Asymmetry is defined as:

\[A_{FB} = \frac{N_t(\cos \theta > 0) - N_t(\cos \theta < 0)}{N_t(\cos \theta > 0) + N_t(\cos \theta < 0)} \]

- This asymmetry demonstrates a different couplings to \(Z' \)'s when compared to the cross section (\(\sigma \)).
Forward-Backward Asymmetry

- Forward-backward Asymmetry is defined as:

\[A_{FB} = \frac{N_t(\cos \theta > 0) - N_t(\cos \theta < 0)}{N_t(\cos \theta > 0) + N_t(\cos \theta < 0)} \]

- This asymmetry demonstrates a different couplings to \(Z'\)'s when compared to the cross section \(\sigma\):

\[\sigma \propto \left((c_V^i)^2 + (c_A^i)^2 \right) \left((c_A^t)^2 + (c_V^t)^2(4 - \beta^2) \right) \]

- \(A_{FB}\) is sensitive to the sign of the couplings.
- \(pp\) collisions have no preferred \(z\) direction.
- However, typically parton momentum fraction:

\[x(q) > x(\bar{q}) \]

- Use the boost direction to define the \(z\) axis.
Forward-Backward Asymmetry

- Forward-backward Asymmetry is defined

\[A_{FB} = \frac{N_t(\cos \theta > 0) - N_t(\cos \theta < 0)}{N_t(\cos \theta > 0) + N_t(\cos \theta < 0)} \]

- This asymmetry demonstrates a different couplings to \(Z' \)'s when compared to the cross section (\(\sigma \)):

\[\sigma \propto \left((c_V^i)^2 + (c_A^i)^2 \right) \left((c_A^t)^2 + (c_V^t)^2(4 - \beta^2) \right), \]

\[A_{FB} \propto c_V^i c_A^i c_V^t c_A^t. \]
Forward-Backward Asymmetry

- Forward-backward Asymmetry is defined

\[A_{FB} = \frac{N_t(\cos \theta > 0) - N_t(\cos \theta < 0)}{N_t(\cos \theta > 0) + N_t(\cos \theta < 0)} \]

- This asymmetry demonstrates a different couplings to \(Z' \)'s when compared to the cross section (\(\sigma \)):

\[\sigma \propto \left((c_V^i)^2 + (c_A^i)^2 \right) \left((c_A^t)^2 + (c_V^t)^2(4 - \beta^2) \right), \]

\[A_{FB} \propto c_V^i c_A^i c_V^t c_A^t. \]

where \(\beta = \sqrt{1 - 4m_t^2/\hat{S}} \)
Forward-Backward Asymmetry

- Forward-backward Asymmetry is defined

\[
A_{FB} = \frac{N_t(\cos \theta > 0) - N_t(\cos \theta < 0)}{N_t(\cos \theta > 0) + N_t(\cos \theta < 0)}
\]

- This asymmetry demonstrates a different couplings to Z's when compared to the cross section (σ):

\[
\sigma \propto \left((c_V^i)^2 + (c_A^i)^2 \right) \left((c_A^t)^2 + (c_V^t)^2(4 - \beta^2) \right),
\]

\[
A_{FB} \propto c_V^i c_A^i c_V^t c_A^t.
\]

where \(\beta = \sqrt{1 - 4m_t^2/\hat{s}} \)

- A_{FB} is sensitive to the sign of the couplings.
Forward-Backward Asymmetry

- Forward-backward Asymmetry is defined

\[A_{FB} = \frac{N_t(\cos \theta > 0) - N_t(\cos \theta < 0)}{N_t(\cos \theta > 0) + N_t(\cos \theta < 0)} \]

- This asymmetry demonstrates a different couplings to Z's when compared to the cross section (\(\sigma\)):

\[\sigma \propto \left((c_V^i)^2 + (c_A^i)^2 \right) \left((c_A^t)^2 + (c_V^t)^2 (4 - \beta^2) \right), \]

\[A_{FB} \propto c_V^i c_A^i c_V^t c_A^t. \]

where \(\beta = \sqrt{1 - 4m_t^2/\hat{s}}\)

- \(A_{FB}\) is sensitive to the sign of the couplings.
- \(pp\) collisions have no preferred z direction.
Forward-Backward Asymmetry

- Forward-backward Asymmetry is defined as:
 \[
 A_{FB} = \frac{N_t(\cos \theta > 0) - N_t(\cos \theta < 0)}{N_t(\cos \theta > 0) + N_t(\cos \theta < 0)}
 \]

- This asymmetry demonstrates a different couplings to \(Z's\) when compared to the cross section (\(\sigma\)):
 \[
 \sigma \propto \left((c_V i)^2 + (c_A i)^2 \right) \left((c_A t)^2 + (c_V t)^2 (4 - \beta^2) \right),
 \]
 \[
 A_{FB} \propto c_V i c_A i c_V t c_A t.
 \]

 where \(\beta = \sqrt{1 - 4m_t^2/\hat{S}}\)

- \(A_{FB}\) is sensitive to the sign of the couplings.
- \(pp\) collisions have no preferred \(z\) direction.
- However, typically parton momentum fraction: \(x(q) > x(\bar{q})\).
Forward-Backward Asymmetry

- Forward-backward Asymmetry is defined

\[
A_{FB} = \frac{N_t(\cos \theta > 0) - N_t(\cos \theta < 0)}{N_t(\cos \theta > 0) + N_t(\cos \theta < 0)}
\]

- This asymmetry demonstrates a different couplings to \(Z's\) when compared to the cross section (\(\sigma\)):

\[
\sigma \propto \left((c_V^i)^2 + (c_A^i)^2 \right) \left((c_A^t)^2 + (c_V^t)^2(4 - \beta^2) \right),
\]

\[
A_{FB} \propto c_V^i c_A^i c_V^t c_A^t.
\]

where \(\beta = \sqrt{1 - 4m_t^2/\hat{s}}\)

- \(A_{FB}\) is sensitive to the sign of the couplings.
- \(pp\) collisions have no preferred \(z\) direction.
- However, typically parton momentum fraction: \(x(q) > x(\bar{q})\).
- Use the boost direction to define the \(z\) axis.
Forward-Backward Asymmetry

- Forward-backward Asymmetry is defined

\[A_{FB} = \frac{N_t(\cos \theta > 0) - N_t(\cos \theta < 0)}{N_t(\cos \theta > 0) + N_t(\cos \theta < 0)} \]

- This asymmetry demonstrates a different couplings to Z's when compared to the cross section (σ):

\[\sigma \propto \left((c_V^i)^2 + (c_A^i)^2 \right) \left((c_A^t)^2 + (c_V^t)^2(4 - \beta^2) \right), \]

\[A_{FB} \propto c_V^i c_A^i c_V^t c_A^t. \]

where $\beta = \sqrt{1 - 4m_t^2/\hat{s}}$

- A_{FB} is sensitive to the sign of the couplings.
- pp collisions have no preferred z direction.
- However, typically parton momentum fraction: $x(q) > x(\bar{q})$.
- Use the boost direction to define the z axis.

\[\cos \theta \rightarrow \cos \theta^* = \frac{Y_{tt}}{|Y_{tt}|} \cos \theta \quad \Rightarrow \quad A_{FB} \rightarrow A_{FB}^*. \]
Top polarisation Asymmetry

Top polarisation Asymmetry is defined as:

\[A_L = \frac{N(\uparrow, \uparrow) - N(\downarrow, \downarrow)}{N(\uparrow, \downarrow) + N(\downarrow, \uparrow)} \]

This asymmetry demonstrates different couplings to \(Z' \)s compared to the cross section (\(\sigma \)):

\[\sigma \propto (c_V \alpha) (c_A \beta) \]

Information about the top quark polarization is preserved in:

\[\Gamma_f \propto \Gamma_f \cos \theta_f \]

\(\theta_f \) is the angle between the top quark momentum in the partonic rest frame and the decay fermion in the top rest frame.
Top polarisation Asymmetry

- Top polarisation Asymmetry is defined

\[\text{Top polarisation Asymmetry} = \frac{\sigma_{+N}(I_+)}{\sigma_{-N}(I_-)} \]

- This asymmetry demonstrates a different couplings to Z's when compared to the cross section (σ):

\[\sigma \propto \left(c_{Vt} c_{At} \right) \left(c_{Vi} c_{Ai} \right) \]

\[A_L \propto \left(c_{Vi} c_{Ai} \right) c_{Vt} c_{At} \beta. \]

- Information about the top quark polarization is preserved in:

\[\Gamma_f d \Gamma_f d \cos \theta_f = \kappa_f A_L \cos \theta_f \]

- θ_f is the angle between the top quark momentum in the partonic rest frame and the decay fermion in the top rest frame.
Top polarisation Asymmetry

- Top polarisation Asymmetry is defined

\[A_L = \frac{N(+, +) + N(+, -) - N(-, +) - N(-, -)}{N(+, +) + N(+, -) + N(-, +) + N(-, -)} \]
Top polarisation Asymmetry

- Top polarisation Asymmetry is defined

\[A_L = \frac{N(+, +) + N(+, -) - N(-, +) - N(-, -)}{N(+, +) + N(+, -) + N(-, +) + N(-, -)} \]

- This asymmetry demonstrates a different couplings to Z's when compared to the cross section (\(\sigma\)).
Top polarisation Asymmetry

· Top polarisation Asymmetry is defined

\[A_L = \frac{N(+, +) + N(+, -) - N(-, +) - N(-, -)}{N(+, +) + N(+, -) + N(-, +) + N(-, -)} \]

· This asymmetry demonstrates a different couplings to \(Z' \)s when compared to the cross section (\(\sigma \)):

\[\sigma \propto \left((c_V^i)^2 + (c_A^i)^2 \right) \left((c_A^t)^2 + (c_V^t)^2(4 - \beta^2) \right), \]
Top polarisation Asymmetry

- Top polarisation Asymmetry is defined as:

\[A_L = \frac{N(+, +) + N(+, -) - N(-, +) - N(-, -)}{N(+, +) + N(+, -) + N(-, +) + N(-, -)} \]

- This asymmetry demonstrates a different couplings to \(Z' \)s when compared to the cross section (\(\sigma \)):

\[\sigma \propto \left((c_V)^i + (c_A)^i \right) \left((c_A^t)^i + (c_V^t)^i (4 - \beta^2) \right) \]

\[A_L \propto \left((c_V)^i + (c_A)^i \right) c_V^t c_A^t \beta. \]
Top polarisation Asymmetry

- Top polarisation Asymmetry is defined

\[
A_L = \frac{N(+, +) + N(+, -) - N(-, +) - N(-, -)}{N(+, +) + N(+, -) + N(-, +) + N(-, -)}
\]

- This asymmetry demonstrates a different couplings to \(Z'\)'s when compared to the cross section (\(\sigma\)):

\[
\sigma \propto \left((c_V^i)^2 + (c_A^i)^2 \right) \left((c_A^t)^2 + (c_V^t)^2(4 - \beta^2) \right),
\]

\[
A_L \propto \left((c_V^i)^2 + (c_A^i)^2 \right) c_V^t c_A^t \beta.
\]

- Information about the top quark polarization is preserved in:

\[
\frac{1}{\Gamma_f} \frac{d\Gamma_f}{d \cos \theta_f} = \frac{1}{2}(1 + \kappa_f A_L \cos \theta_f)
\]
Top polarisation Asymmetry

- Top polarisation Asymmetry is defined

\[A_L = \frac{N(+, +) + N(+, -) - N(-, +) - N(-, -)}{N(+, +) + N(+, -) + N(-, +) + N(-, -)} \]

- This asymmetry demonstrates a different couplings to \(Z' \)'s when compared to the cross section (\(\sigma \)):

\[\sigma \propto \left((c_V^i)^2 + (c_A^i)^2 \right) \left((c_A^t)^2 + (c_V^t)^2 (4 - \beta^2) \right), \]

\[A_L \propto \left((c_V^i)^2 + (c_A^i)^2 \right) c_V^t c_A^t \beta. \]

- Information about the top quark polarization is preserved in:

\[\frac{1}{\Gamma_f} \frac{d\Gamma_f}{d \cos \theta_f} = \frac{1}{2} (1 + \kappa_f A_L \cos \theta_f) \]

- \(\theta_f \) is the angle between the top quark momentum in the partonic rest frame and the decay fermion in the top rest frame.
Toy top pair reconstruction for lepton-plus jets

• We presently focus on semileptonic decay.
• Allows reasonable reconstruction of $t \bar{t}$ system.
• Enables reconstruction of A^\ast_{FB} and A^\ast_{L}.
• Presently limited to the parton-level.
• Wish to mimic experimental conditions.
• Must resolve combinatorial ambiguity in jet-top assignment.
• Must also reconstruct the longitudinal neutrino momentum in the presence of missing transverse energy.
We presently focus on semileptonic decay.
Toy top pair reconstruction for lepton-plus jets

- We presently focus on semileptonic decay.
- Allows reasonable reconstruction of tt system.
Toy top pair reconstruction for lepton-plus jets

- We presently focus on semileptonic decay.
- Allows reasonable reconstruction of $t\bar{t}$ system.
- Enables reconstruction of A_{FB}^* and A_L.

![Diagram showing the reconstruction of a top quark pair in a semileptonic decay](image)
• We presently focus on semileptonic decay.
• Allows reasonable reconstruction of $t\bar{t}$ system.
• Enables reconstruction of A_{FB}^* and A_L.
• Presently limited to the parton-level.
Toy top pair reconstruction for lepton-plus jets

- We presently focus on semileptonic decay.
- Allows reasonable reconstruction of $t\bar{t}$ system.
- Enables reconstruction of A_{FB}^* and A_L.
- Presently limited to the parton-level.
- Wish to mimic experimental conditions.
Toy top pair reconstruction for lepton-plus jets

- We presently focus on semileptonic decay.
- Allows reasonable reconstruction of $t\bar{t}$ system.
- Enables reconstruction of A_{FB}^* and A_L.
- Presently limited to the parton-level.
- Wish to mimic experimental conditions.
- Must resolve combinatorial ambiguity in jet-top assignment.
We presently focus on semileptonic decay.

- Allows reasonable reconstruction of $t\bar{t}$ system.
- Enables reconstruction of A_{FB}^* and A_L.
- Presently limited to the parton-level.
- Wish to mimic experimental conditions.
- Must resolve combinatorial ambiguity in jet-top assignment.
- Must also reconstruct the longitudinal neutrino momentum in the presence of missing transverse energy.
Solving for the neutrino momentum

\[p_{\nu} \]

\[p_{\text{miss}} \]

\[W \]

\[p_e \]

\[p_{\nu} Z \]

\[k \]

\[m_W \]

\[\chi^2 \]

\[m_{b\nu} - m_t \Gamma_t \]

\[m_{bq} - m_t \Gamma_t \]

\[\chi^2 = \left(m_{b\nu} - m_t \Gamma_t \right)^2 + \left(m_{bq} - m_t \Gamma_t \right)^2 \]
Solving for the neutrino momentum

- Assume \(p_T^\nu = p_T^{miss} \) and on-shell \(W \):

\[
p_T^{e2} p_Z^\nu{}^2 - 2kp_Z^e p_Z^\nu + p_T^\nu{}^2 |p_e|^2 - k^2 = 0,
\]

where \(k = \frac{m_w^2}{2} + p_T^e p_T^\nu \).
Solving for the neutrino momentum

• Assume $p_T^\nu = p_T^{miss}$ and on-shell W:

$$p_T^{e2} p_Z^{\nu 2} - 2k p_z^e p_Z^\nu + p_T^{\nu 2} |p^e|^2 - k^2 = 0,$$

where $k = \frac{m_W^2}{2} + p_T^e p_T^\nu$.

• Select solution by minimising chi-square:

$$\chi^2 = \left(\frac{m_{bl\nu} - m_t}{\Gamma_t} \right)^2 + \left(\frac{m_{bqq} - m_t}{\Gamma_t} \right)^2$$
Solving for the neutrino momentum

- Assume $p_T^\nu = p_T^{miss}$ and on-shell W:

$$p_T^{e2} p_T^{\nu2} - 2k p_Z^e p_Z^\nu + p_T^{\nu2} |p^e|^2 - k^2 = 0,$$

where $k = \frac{m_W^2}{2} + p_T^e p_T^\nu$.

- Select solution by minimising chi-square:

$$\chi^2 = \left(\frac{m_{bl\nu} - m_t}{\Gamma_t} \right)^2 + \left(\frac{m_{bqq} - m_t}{\Gamma_t} \right)^2.$$
Solving for the neutrino momentum

• Assume $p_T^\nu = p_T^{miss}$ and on-shell W:

\[p_T^{\nu} p_{Z}^{\nu} - 2k p_{Z}^{\nu} p_{Z}^{\nu} + p_T^{\nu} |p_e|^2 - k^2 = 0, \]

where $k = \frac{m_W^2}{2} + p_T^e p_T^{\nu}$.

• Select solution by minimising chi-square:

\[\chi^2 = \left(\frac{m_{bl\nu} - m_t}{\Gamma_t} \right)^2 + \left(\frac{m_{bqq} - m_t}{\Gamma_t} \right)^2 \]
Uncertainty, significance and cuts on $|y_{tt}|$

- Account only for dominant statistical uncertainty of the expected events in data and assume $\delta N/\sqrt{N}$.
- Propagate error: $\delta A^*FB/\sqrt{\delta A^*/\text{one.osf} - \delta A^*/\text{two.osf}}$.
- Therefore, define Significance for observable as:
 $$S^*/\text{one.osf}O_{SM}^{\text{BSM}} - O_{SM}^{\text{BSM}}\delta O_{stat}/\text{two.osf}$$
- Combine significance by adding in quadrature (ad-hoc).
Uncertainty, significance and cuts on $|ytt|$

- Account only for dominant statistical uncertainty of the expected events in data and assume $\delta N = \sqrt{N}$.
• Account only for dominant statistical uncertainty of the expected events in data and assume $\delta N = \sqrt{N}$.
• Propagate error:

$$\delta A_{FB}^* = \frac{1 - A_{FB}^2}{N}$$

(Shown as colored bands)
• Account only for dominant statistical uncertainty of the expected events in data and assume \(\delta N = \sqrt{N} \).
• Propagate error:

\[
\delta A^*_{FB} = \frac{1 - A^*_{FB}^2}{N}
\]

(Shown as colored bands)
• Therefore, define Significance for observable as:

\[
S = \frac{O_{SM+BSM} - O_{SM}}{\delta O_{SM+BSM}^{stat}}
\]
Uncertainty, significance and cuts on $|y_{tt}|$

- Account only for dominant statistical uncertainty of the expected events in data and assume $\delta N = \sqrt{N}$.
- Propagate error:
 \[\delta A_{FB}^* = \frac{1 - A_{FB}^2}{N} \]
 (Shown as colored bands)
- Therefore, define Significance for observable as:
 \[S = \frac{O_{SM+BSM} - O_{SM}}{\delta O_{SM+BSM}^{stat}} \]
- Combine significance by adding in quadrature (ad-hoc).
Uncertainty, significance and cuts on $|y_{tt}|$

- Account only for dominant statistical uncertainty of the expected events in data and assume $\delta N = \sqrt{N}$.
- Propagate error:

 $$\delta A_{FB}^* = \frac{1 - A_{FB}^*}{N}$$ \hspace{1cm} (1)

 (Shown as colored bands)

- Therefore, define Significance for observable as:

 $$S = \frac{O_{SM+BSM} - O_{SM}}{\delta O_{SM+BSM}^{stat}}$$ \hspace{1cm} (2)

- Combine significance by adding in quadrature (ad-hoc).
Uncertainty, significance and cuts on $|y_{tt}|$

- Account only for dominant statistical uncertainty of the expected events in data and assume $\delta N = \sqrt{N}$.
- Propagate error:

$$\delta A_{FB}^* = \frac{1 - A_{FB}^*}{N}$$ \hspace{1cm} (1)

(Shown as colored bands)
- Therefore, define Significance for observable as:

$$S = \frac{O_{SM+BSM} - O_{SM}}{\delta O_{SM+BSM}^{stat}}$$ \hspace{1cm} (2)

- Combine significance by adding in quadrature (ad-hoc).
Expected m_{tt} distribution and A^*_FB with $L = 100 \text{ fb}^{-1}$
Expected m_{tt} distribution and A_{FB}^* with $L = 100$ fb$^{-1}$
Expected m_{tt} distribution and A^*_FB with $L = 100 \text{ fb}^{-1}$
Expected m_{tt} distribution and A_{FB}^* with $L = 100 \text{ fb}^{-1}$.
Expected m_{tt} distribution and A_{FB}^* with $L = 100 \text{ fb}^{-1}$
Expected significance with $L = 100 \text{ fb}^{-1}$
Expected significance with $L = 100$ fb$^{-1}$
Expected significance with $L = 100$ fb$^{-1}$

- **Model: GSM-SM**
 - Significance expected with $L = 100$ fb$^{-1}$
 - $m_{\text{reconstructed}}$ [TeV]

- **Model: GSM-T3L**
 - Significance expected with $L = 100$ fb$^{-1}$
 - $m_{\text{reconstructed}}$ [TeV]
Expected significance with $L = 100 \text{ fb}^{-1}$

Model: GSM-SM

Model: GS-M-T3L

Model: GLR-LR

Model: GLR-R
Expected significance with $L = 100 \text{ fb}^{-1}$
Calculating A_L in m_{tt} bins using decay products
Calculating A_L in m_{tt} bins using decay products

- Create a 2D distribution in m_{tt} and $\cos \theta_l$
Calculating A_L in m_{tt} bins using decay products

- Create a 2D distribution in m_{tt} and $\cos\theta_l$
- Bin the expected number of events with $L = 100$ fb$^{-1}$.
Calculating A_L in m_{tt} bins using decay products

- Create a 2D distribution in m_{tt} and $\cos \theta_l$
- Bin the expected number of events with $L = 100$ fb$^{-1}$.
Calculating A_L in m_{tt} bins using decay products

- Create a 2D distribution in m_{tt} and $\cos \theta_l$
- Bin the expected number of events with $L = 100$ fb$^{-1}$.
- Normalise each mass slice by the integral of the slice.
Calculating A_L in m_{tt} bins using decay products

- Create a 2D distribution in m_{tt} and $\cos \theta_l$
- Bin the expected number of events with $L = 100$ fb$^{-1}$.
- Normalise each mass slice by the integral of the slice.
- Fit a straight line to the $\cos \theta_l$ distribution for each mass slice.
Calculating A_L in m_{tt} bins using decay products

- Create a 2D distribution in m_{tt} and $\cos \theta_l$
- Bin the expected number of events with $L = 100$ fb$^{-1}$.
- Normalise each mass slice by the integral of the slice.
- Fit a straight line to the $\cos \theta_l$ distribution for each mass slice.
- Extract A_L as the fitted gradient.
Expected A_L with $L = 100 \text{ fb}^{-1}$
Expected A_L with $L = 100 \text{ fb}^{-1}$

- A_L clearly distinguishes between GSM and GLR model Z'.
- $E_{\text{six.osf}}Z'$ universally feature c_uV.
- Asymmetries only manifest through interference term: are negligible for these models.
- Can be used to profile a discovered Z'.
Expected A_L with $L = 100 \text{ fb}^{-1}$

• A_L clearly distinguishes between GSM and GLR models.
• E/A_{six} universally feature c_u.
• Asymmetries only manifest through interference term: are negligible for these models.
• Can be used to profile a discovered Z'.
Expected A_L with $L = 100$ fb$^{-1}$

- A_L clearly distinguishes between GSM and GLR model Z'.
Expected A_L with $L = 100$ fb$^{-1}$

- A_L clearly distinguishes between GSM and GLR model Z'.
- E_6 Z's universally feature $c^u_V = 0$.

Expected A_L with $L = 100 \text{ fb}^{-1}$

- A_L clearly distinguishes between GSM and GLR model Z'.
- $E_6 Z'$s universally feature $c^u_V = 0$.
- Asymmetries only manifest through interference term: are negligible for these models.
Expected A_L with $L = 100$ fb$^{-1}$

- A_L clearly distinguishes between GSM and GLR model Z'.
- E_6 Z's universally feature $c_V^u = 0$.
- Asymmetries only manifest through interference term: are negligible for these models.
- Can be used to profile a discovered Z'.
Summary

• Written tool to generate top pair production with all intermediates bosons allowed off-shell.
• We have simulated event reconstruction for the semi-leptonic channel, at parton-level.
• Reconstructed A^*_{FB} and A_L retain sensitivity to new gauge bosons.
• These asymmetries can be used to profile Z' in top quark pair production.
• Additionally the asymmetry can be used as a complementary discovery observable to a standard bump hunt.
• In reality this process would fall in the boosted regime: we could not resolve individual jets.
Summary

- Written tool to generate top pair production with all intermediates bosons allowed off-shell.
 - We have simulated event reconstruction for the semi-leptonic channel, at parton-level.
 - Reconstructed A^{\ast} and A_L retain sensitivity to new gauge bosons.
 - These asymmetries can be used to profile Z' in top quark pair production.
 - Additionally the asymmetry can be used as a complementary discovery observable to a standard bump hunt.
 - In reality this process would fall in the boosted regime: we could not resolve individual jets.
· Written tool to generate top pair production fermion final state with all intermediates bosons allowed off-shell.

· We have simulated event reconstruction for the semi-leptonic channel, at parton-level.
Summary

- Written tool to generate top pair production 6 fermion final state with all intermediates bosons allowed off-shell.

- We have simulated event reconstruction for the semi-leptonic channel, at parton-level.

- Reconstructed A^*_FB and A_L retain sensitivity to new gauge bosons.
Summary

- Written tool to generate top pair production \(6 \) fermion final state with all intermediates bosons allowed off-shell.

- We have simulated event reconstruction for the semi-leptonic channel, at parton-level.

- Reconstructed \(A_{FB}^* \) and \(A_L \) retain sensitivity to new gauge bosons.

- These asymmetries can be used to profile \(Z' \) in top quark pair production.
Summary

- Written tool to generate top pair production 6 fermion final state with all intermediates bosons allowed off-shell.

- We have simulated event reconstruction for the semi-leptonic channel, at parton-level.

- Reconstructed A_{FB}^* and A_L retain sensitivity to new gauge bosons.

- These asymmetries can be used to profile Z' in top quark pair production.

- Additionally the asymmetry can be used as a complementary discovery observable to a standard bump hunt.
Summary

- Written tool to generate top pair production 6 fermion final state with all intermediates bosons allowed off-shell.

- We have simulated event reconstruction for the semi-leptonic channel, at parton-level.

- Reconstructed A_{FB}^* and A_L retain sensitivity to new gauge bosons.

- These asymmetries can be used to profile Z' in top quark pair production.

- Additionally the asymmetry can be used as a complementary discovery observable to a standard bump hunt.

- In reality this process would fall in the boosted regime: we could not resolve individual jets.
Future work

• Use more rigorous assessment of significance and combination (in progress).
• Interface with parton-shower, hadronisation, detector reconstruction tools, e.g. Pythia/plus.osfDelphes (in progress).
• Investigate models featuring multiple interfering, non-universal, top-philic Z's, e.g. Composite Higgs.
• Include full irreducible background.
• Investigate other angularly dependent variables that may be constructed for di-leptonic $t\bar{t}$ events.
Future work

- Use more rigorous assessment of significance and combination (in progress).

- Interface with parton-shower, hadronisation, detector reconstruction tools, e.g. Pythia/Plus.osfDelphes (in progress).

- Investigate models featuring multiple interfering, non-universal, top-philic Z's, e.g. Composite Higgs.

- Include full irreducible background.

- Investigate other angularly dependent variables that may be constructed for di-leptonic $t\bar{t}$ events.
Future work

• Use more rigorous assessment of significance and combination (in progress).

• Interface with parton-shower, hadronisation, detector reconstruction tools, e.g. Pythia+Delphes (in progress).
Future work

- Use more rigorous assessment of significance and combination (in progress).

- Interface with parton-shower, hadronisation, detector reconstruction tools, e.g. Pythia+Delphes (in progress).

- Investigate models featuring multiple interfering, non-universal, top-philic Z's, e.g. Composite Higgs.
Future work

- Use more rigorous assessment of significance and combination (in progress).

- Interface with parton-shower, hadronisation, detector reconstruction tools, e.g. Pythia+Delphes (in progress).

- Investigate models featuring multiple interfering, non-universal, top-philic Z's, e.g. Composite Higgs.

- Include full irreducible background.
Future work

• Use more rigorous assessment of significance and combination (in progress).

• Interface with parton-shower, hadronisation, detector reconstruction tools, e.g. Pythia+Delphes (in progress).

• Investigate models featuring multiple interfering, non-universal, top-philic Z's, e.g. Composite Higgs.

• Include full irreducible background.

• Investigate other angularly dependent variables that may be constructed for di-leptonic $t\bar{t}$ events.
Thanks for listening!
Backup slides
Z' boson parameters

- Width determined by

\[
\Gamma(Z' \rightarrow f\bar{f}) = N_c \frac{g^2_Z m_{Z'}}{48\pi} \beta \left[\frac{3 - \beta^2}{2} c_V^2 + \beta^2 c_A^2 \right],
\]

- where

\[
\beta = \sqrt{1 - 4 \frac{m_f^2}{m_{Z'}^2}}.
\]
Experimental bounds from ATLAS - lepton plus jets

\(\sqrt{s} = 8 \text{ TeV}, 20.3 \text{ fb}^{-1} \)

- Obs. 95% CL upper limit
- Exp. 95% CL upper limit
- Exp. 1 \(\sigma \) uncertainty
- Exp. 2 \(\sigma \) uncertainty
- Leptophobic Z' (1.2%) (LO x 1.3)
- Leptophobic Z' (2%) (LO x 1.3)
- Leptophobic Z' (3%) (LO x 1.3)
Benchmark model Z' parameters and couplings

<table>
<thead>
<tr>
<th>$U(1)'$ Parameters</th>
<th>E_6 ($g'=0.462$)</th>
<th>$U(1)_\chi$</th>
<th>0</th>
<th>0</th>
<th>-0.316</th>
<th>-0.632</th>
<th>0.316</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$U(1)_\psi$</td>
<td>0.5π</td>
<td>0</td>
<td>0.408</td>
<td>0</td>
<td>0.408</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$U(1)_\eta$</td>
<td>-0.29π</td>
<td>0</td>
<td>-0.516</td>
<td>-0.387</td>
<td>0.129</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$U(1)_S$</td>
<td>0.129π</td>
<td>0</td>
<td>-0.129</td>
<td>-0.581</td>
<td>0.452</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$U(1)_N$</td>
<td>0.42π</td>
<td>0</td>
<td>-0.316</td>
<td>-0.158</td>
<td>0.474</td>
<td></td>
</tr>
<tr>
<td>G_{LR} ($g'=0.595$)</td>
<td>ϕ</td>
<td>$U(1)_R$</td>
<td>0</td>
<td>0.5</td>
<td>-0.5</td>
<td>-0.5</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$U(1)_{B-L}$</td>
<td>0.5π</td>
<td>0.333</td>
<td>0</td>
<td>-0.333</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$U(1)_{LR}$</td>
<td>-0.128π</td>
<td>0.329</td>
<td>-0.46</td>
<td>-0.591</td>
<td>0.46</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$U(1)_Y$</td>
<td>0.25π</td>
<td>0.589</td>
<td>-0.353</td>
<td>-0.118</td>
<td>0.354</td>
</tr>
<tr>
<td>G_{SM} ($g'=0.760$)</td>
<td>α</td>
<td>$U(1)_{SM}$</td>
<td>-0.072π</td>
<td>0.193</td>
<td>0.5</td>
<td>-0.347</td>
<td>-0.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$U(1){T{3L}}$</td>
<td>0</td>
<td>0.5</td>
<td>0.5</td>
<td>-0.5</td>
<td>-0.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$U(1)_{Q}$</td>
<td>0.5π</td>
<td>1.333</td>
<td>0</td>
<td>-0.666</td>
<td>0</td>
</tr>
</tbody>
</table>
Asymmetries with polarized stable tops

- Spatial/spin asymmetries categorize events:

 \[A = \frac{N_A - N_B}{N_A + N_B} \]

- At the polarised top level we can define a number of variables, e.g.

 \[A_{FB} = \frac{N(\cos \theta > 0) - N(\cos \theta < 0)}{N(\cos \theta > 0) + N(\cos \theta < 0)} \]

 \[A_{LL} = \frac{N(+, +) + N(-, -) - N(+, -) - N(-, +)}{N(+, +) + N(-, -) + N(+, -) + N(-, +)} \]

 \[A_L = \frac{N(+, +) + N(+, -) - N(-, +) - N(-, -)}{N(+, +) + N(+, -) + N(-, +) + N(-, -)} \]
Significance

- Construct likelihood:

\[
L(\mu, \theta) = \sum_{j=1}^{N} \frac{(\mu s_j + b_j)^{n_j}}{n_j} e^{-(\mu s_j + b_j)} \sum_{k=1}^{M} \frac{u_k^{m_k}}{m_k!} e^{-u_k}
\]

- Find profile likelihood ratio:

\[
\lambda(\mu) = \frac{L(\mu, \hat{\theta})}{L(\hat{\mu}, \hat{\theta})}
\]

- Set \(\mu = 0 \) hypothesis - set \(\mu = 0 \), i.e. assume that there is no new physics contribution, derive distribution with toys/asymptotic

- Code is available in RootStats.

Likelihood for asymmetry and m_{tt}

- Mean expected number of events in a given m_{tt} (i) and $\cos \theta^* (j)$ bin.

$$\nu(i, j)(\mu, \sigma_{tt}, \sigma_{Z'}, \theta) = L[\epsilon_{tt}(i, j, \theta)\sigma_{tt} + \alpha_{Z',\bar{t}t}(i, j, \theta)\mu(\sigma_{Z'} + \sigma_{int(Z',\bar{t}t)})]$$ (5)

- L for the above is the luminosity. ϵ and α represent the efficiencies for SM background and for signal to fall in the given bin: asymmetry*detector.

- Observed number of events

$$\mathcal{L}(N(i, j)|\mu, \sigma_{tt}, \sigma_{Z'}) = \sum_{i,j} e^{\nu(i, j)} \frac{\nu N(i, j)}{N(i, j)!}$$ (6)

- We only use statistical uncertainty.
- We can possibly add theoretical uncertainties.