Constraints on non-universal gaugino mass scenario using the latest LHC data

PTEP 2013 (2013) 013B02
PRD 93 (2016) no.5, 055019

Junichiro Kawamura
Waseda Univ.

with
Y.Omura (KMI, Nagoya Univ.)
little hierarchy problem

Higgs mass and SUSY search indicate high-scale SUSY

hierarchy between SUSY scale and EW scale

minimization condition of the Higgs potential

\[m_Z^2 \approx -2 |\mu|^2 + 2|m_{h_u}^2| \]

EW scale \quad SUSY scale

✓ fine-tuning is required if \(m_Z \ll \mu, m_{h_u} \)

✓ at least \(\mu(m_Z) \) must be small since it’s unique SUSY parameter

✓ small \(\mu(m_Z) \) means small \(m_{H_u}(m_Z) \)
Higgs mass vs little hierarchy

little hierarchy problem relates to the Higgs mass

RGE of m_{h_u}

$$16\pi^2 \frac{d m_{h_u}^2}{dt} \approx 6 y_t^2 (m_{h_u}^2 + m_{\tilde{t}_L}^2 + m_{\tilde{t}_R}^2 + A_t^2) - 6 g_2^2 |M_2|^2 - \frac{6}{5} g_1^2 |M_1|^2$$

- top squark parameters $m_{\tilde{t}_L}^2, m_{\tilde{t}_R}^2, A_t$ appear
- heavier top squark leads severer fine-tuning
- top squark mass is crucial for the Higgs mass

✔ 10 TeV top squark forces 10^{-3} % tuning
maximal mixing

- MSSM Higgs boson mass

\[m_h^2 \approx m_Z^2 \cos^2 2\beta + \frac{3m_t^4}{8\pi^2 v_u^2} \left[\log \frac{M_{\text{stop}}^2}{m_t^2} + \frac{2A_t^2}{M_{\text{stop}}^2} \left(1 - \frac{A_t^2}{12M_{\text{stop}}^2} \right) \right] \]

- \(M_{\text{stop}} \approx 10 \text{ TeV} \) if \(A_t/M_{\text{stop}} \ll 1 \)

- Higgs mass requires severer bound than direct SUSY search

- maximal mixing scenario

 the last term is maximized at

 \[\frac{2A_t^2}{M_{\text{stop}}^2} \left(1 - \frac{A_t^2}{12M_{\text{stop}}^2} \right) \]

 \(A_t/M_{\text{stop}} \sim \sqrt{6} \)

 “maximal mixing”
Higgs boson mass in NUGM

we assume universal soft masses m_0 and A-term A_0 at the GUT scale

- top squark parameters

 $m_{\tilde{t}_L}^2 (m_Z) \approx +0.38M_2^2 + 5.63M_3^2 + 0.58m_0^2$

 $m_{\tilde{t}_R}^2 (m_Z) \approx -0.21M_2^2 + 4.61M_3^2 + 0.19m_0^2$

 $A_t (m_Z) \approx -0.21M_2 - 1.90M_3 + 0.18A_0$

- universal gaugino masses

 $M_2 = M_3 \gg m_0 \quad \Rightarrow \quad \frac{A_t}{M_{stop}} \approx \frac{2.11^2 \times M_3^2}{\sqrt{6.01 \times 4.40 \times M_3^2}} \approx 0.87$

 $125 \text{ GeV Higgs boson requires heavy top squark } \gtrsim \text{ sub TeV}$
Higgs boson mass in NUGM

- top squark parameters

\[m_{\tilde{t}_L}^2 (m_Z) \approx +0.38M_2^2 + 5.63M_3^2 + 0.58m_0^2 \]
\[m_{\tilde{t}_R}^2 (m_Z) \approx -0.21M_2^2 + 4.61M_3^2 + 0.19m_0^2 \]

\[A_t (m_Z) \approx -0.21M_2 - 1.90M_3 + 0.18A_0 \]

- Non-Universal Gaugino Masses (NUGM)

- \(m_{\tilde{t}_R} (m_Z) \) decreases, \(|A_t (m_Z)| \) increases as \(M_2 \) increases

\[A_t / M_{stop} \lesssim \sqrt{6} \]

- upper bound is \(M_2 / M_3 \lesssim 5 \) for \(m_{\tilde{t}_R}^2 (m_Z) > 0 \)

- In other words, \(A_t / M_{stop} \) is maximized at \(M_2 / M_3 \sim 5 \)
brief summary

✓ large wino mass enhances the Higgs boson mass

✓ A_t/M_{stop} is maximized at $M_2/M_3 \approx 5$

What happen for naturalness?
naturalness in NUGM

- RG-running of m_{H_u}

$$m_{h_u}^2 (m_Z) \simeq +0.17M_2^2 - 0.20M_2M_3 - 3.09M_3^2 - 0.23m_0^2$$

GUT scale

$\rightarrow M_2 \simeq 5 \times M_3 \rightarrow m_{h_u}^2 (m_Z) \simeq 0$

- μ-parameter is minimized at $M_2/M_3 \simeq 5$

- Higgs mass is also maximized at $M_2/M_3 \simeq 5$!

suitably large wino reconcile the Higgs mass and naturalness
our tuning measure

□ our tuning measure (BG-type)

\[\Delta_\mu \equiv \left| \frac{d \ln m_Z^2}{d \ln \mu (\Lambda_{GUT})^2} \right| \]

□ minimization condition of the Higgs potential

\[m_Z^2 \simeq -2 |\mu|^2 + 2|m_{h_u}^2| \]

✓ we focus on tuning between \(\mu \)-parameter and SUSY breaking parameters

✓ \(\mu \)-parameter is unique SUSY dimensionful parameter in MSSM

✓ we expect some relations (e.g. gaugino mass ratio) among SUSY breaking parameters since these have same origin i.e. SUSY breaking mediation
NUGM from SUSY breaking mediation

- possibilities of NUGM (large wino)

 - mixed moduli/anomaly mediation (mirage mediation)

 $$M_a = \frac{F^T}{T + \overline{T}} + \frac{g_0^2}{16\pi^2} b_a \frac{F^C}{C}$$

 where,
 $$b_a = \left(\frac{33}{5}, 1, -3 \right)$$
 $$a = U(1)_Y, SU(2)_L, SU(3)_C$$

 - moduli-mixing gauge kinetic function

 $$\mathcal{L} \ni \int d^2 \theta \ f_a(T) W^a W^a \ni f_a(T) F^{a\mu\nu} F_{\mu\nu}$$

 $$f_a(T) = k^i_a T_i \quad \rightarrow \quad M_a = k^i_a \frac{F^{Ti}}{T_i + \overline{T_i}}$$
the Higgs boson mass and degree of tuning

\[M_3 = 385\text{GeV} \]
\[A_0 = -400\text{GeV} \]
\[(m_0)_{3\text{rd}} = 200\text{GeV} \]
brief summary

✓ large wino mass enhances the Higgs boson mass

✓ A_t/M_{stop} is maximized at $M_2/M_3 \approx 5$

✓ μ-parameter is also minimized at $M_2/M_3 \approx 5$

✓ Higgs mass can reach 125 GeV even when $\Delta_\mu \lesssim 10$

✓ SUSY particles can be lighter than TeV scale

How to probe NUGM ?
typical mass spectrum

- higgsinos are light
- right-handed stop can be lighter than others
- most of sparticles are heavy
 - these are determined by gluino mass M_3
 - as a result of large wino mass
- higgsinos are light
decays of higgsinos

- higgsinos are light and degenerate \(\Delta m_{\tilde{\chi}} \lesssim 2.0 \text{ GeV} \)

 - decay products are too soft to be reconstructed
 - no charged tracks unlike pure wino

higgsino searches are not efficient
typical mass spectrum

- Higgsinos are light, but degenerate.
 - Right-handed stop is lighter than others.
 - Most of sparticles are heavy:
 - These are determined by gluino mass M_3.

- Stop / gluino searches are important.
top squark decays

- right-handed top squark is light in NUGM

\[W_{\text{MSSM}} \ni y_t (t_L \tilde{h}_u^0 - b_L \tilde{h}_u^+) \tilde{t}_R \]

- top squark decays to \(t + \tilde{\chi}_{1,2}^0 \) or \(b + \tilde{\chi}_1^\pm \)

- right-handed top squark couples to quark/higgsinos universally

- \[\text{Br}(\tilde{t}_1 \to b \tilde{\chi}_1^\pm) = 1 - \text{Br}(\tilde{t}_1 \to t \tilde{\chi}_{1,2}^0) \approx 0.5 \text{ unless } m_{\tilde{t}_1} \approx m_{\tilde{\chi}_1}^\pm \]
top squark search

- signals are $\text{tt} (25\%) / \text{tb} (50\%) / \text{bb} (25\%) + \text{MET}$
- bb+MET channel gives the severer bound than tt+MET in run-1 result [1]
- 13TeV data [2] has already given the severest bound

\[
\begin{align*}
\tan\beta &= 15 \\
\mu &= M_3 = 1 \text{ TeV}
\end{align*}
\]

softsusy+sdecay+MG5+
pythia6+delphes3

gluino search

- gluino decays to top and stop: $\tilde{g} \rightarrow t \tilde{t}_1 \rightarrow t + t\tilde{\chi}_{1,2}^0 / b \tilde{\chi}_1^\pm$

- signals are characterized by 4 bottoms and large MET

- **13TeV data** [3] has already given the severest bound

\[
\begin{align*}
\tan\beta &= 15 \\
m_0 &= 1 \text{ TeV} \\
M_1 &= 12 \text{ TeV}
\end{align*}
\]

softsusy+sdecay+MG5 +pythia6+delphes3

bounds on boundary conditions

✓ right-handed sbottom can also be light for large $\tan\beta$

✓ sbottom pair production gives same signal as stop

✓ stop tends to be tachyonic for small M_1 and M_3

$tan\beta = 15$

$tan\beta = 50$

$m_0 = 1$ TeV
$\mu = 150$ GeV

softsusy+sdecay+MG5
+pythia6+delphes3
conclusion

- NUGM can realize 125 GeV Higgs and small μ-parameter
- right-handed top squark tends to be light
- stop/gluino search are important for NUGM scenario
- $m_{\tilde{t}_1} \lesssim 700$ GeV, $m_{\tilde{g}} \lesssim 1.6$ TeV is excluded by the latest data

thank you for your attention
backups
boundary conditions

- universal soft mass $m_0 = 1 \text{ TeV}$, $\tan\beta = 15, 50$
- wino mass M_2, universal A-term A_0 are tuned to realize $\mu = 150 \text{ GeV}$ and $125.5 \leq m_h < 126.1 \text{ GeV}$
- Higgs mass is slightly heavier than the latest LHC result, but it will not affect to our results of stop/gluino search
degenerate higgsinos

- higgsinos are light and degenerate

heavy bino, wino $M_{1,2} \gg \mu$ leads $\Delta m_{\tilde{\chi}} = O(1\,\text{GeV})$

\[
\Delta m_{\tilde{\chi}} \equiv m_{\tilde{\chi}_1^\pm} - m_{\tilde{\chi}_1^0} \approx \frac{m_Z^2}{M_2(m_Z)}
\]

$M_{1,2} \approx 2 - 4 \, \text{TeV}$

$\Rightarrow \Delta m_{\tilde{\chi}} \lesssim 2.0 \, \text{GeV}$

$m_0 = 1 \, \text{TeV}$
\[\tan \beta = 15\]
\[\mu = 150 \, \text{GeV}\]
\[125.5 \leq m_h \leq 125.8 \, \text{GeV}\]
\[M_2, A_t: \text{tuned}\]
Higgs boson mass in NUGM

\[r_a \equiv \frac{A_t}{M_{st}} \]

\[M_{stop} / m_{\tilde{t}_L} \]

\[M_3 = 385 \text{GeV} \]
\[A_0 = -400 \text{GeV} \]
\[(m_0)_{3\text{rd}} = 200 \text{GeV} \]