QUARKONIUM 2016 Trento, March 1st 2016

J/ψ production in p-A collisions from SPS to LHC

Roberta Arnaldi INFN Torino

QUARKONIUM 2016 Trento, March 1st 2016

Outlook:

pA J/ ψ results as:

- tool to understand cold nuclear matter effects
- reference for AA

from SPS to LHC experiments

Facility	Experiment	System	√s _{NN} (GeV)	Y _{cms} range	Data taking
	NA50	p-Be,Al,Cu,Ag,W,Pb	27	-0.4 <y<0.6< td=""><td>1996-</td></y<0.6<>	1996-
SPS	NA30		29	-0.5 <y<0.5< td=""><td>2000</td></y<0.5<>	2000
373	NA60 p-Be,Al,Cu,In,W,Pb,U	17	0.3 <y<0.8< td=""><td>2004</td></y<0.8<>	2004	
	NAGO	p-Be,Al,Cu,In,W,Pb,U	27	-0.1 <y<0.3< td=""><td>2004</td></y<0.3<>	2004
FNAL	E866	p-Be, Fe, W	39	-0.6 <y<2.5*< td=""><td>~1996</td></y<2.5*<>	~1996
HERA	HERA-B	p-C, Ti, W	42	-1.5 <y<0.8*< td=""><td>2002</td></y<0.8*<>	2002
RHIC	PHENIX,	d-Au	200	-2.2 <y<2.4< td=""><td>>2003</td></y<2.4<>	>2003
ппс	STAR	p-Al, Au	200	1.2< y <2.2	2015
	ALICE			-4.46 <y<3.53< td=""><td></td></y<3.53<>	
	ATLAS	p-Pb	5020	-2.87 <y<1.94< td=""><td rowspan="3">2013</td></y<1.94<>	2013
LHC	CMS			-2.87 <y<1.93< td=""></y<1.93<>	
	LHCb			-5.0 <y<-2.5< td=""></y<-2.5<>	
				1.5 <y<4.0< td=""><td></td></y<4.0<>	

Facility	Experiment	System	√s _{NN} (GeV)	Y _{cms} range	Data taking
	NA50	p-Be,Al,Cu,Ag,W,Pb	27 29	-0.4<γ<0.6 -0.5<γ<0.5	1996- 2000
SPS	NA60	p-Be,Al,Cu,In,W,Pb,U	17 27	0.3 <y<0.8 -0.1<y<0.3< td=""><td>2004</td></y<0.3<></y<0.8 	2004
FNAL	E866	p-Be, Fe, W	39	-0.6 <y<2.5< td=""><td>~1996</td></y<2.5<>	~1996
HERA	HERA-B	p-C, Ti, W	4.2	-1.5 <y<0.8< td=""><td>2002</td></y<0.8<>	2002
RHIC	PHENIX, STAR	d-Au p-Al, Au		-2.2 <v<2.4 ed target exper</v<2.4 	
	ALICE			several A target	S
	ATLAS	p-Pb	5020	-2.87 <y<1.94< td=""><td rowspan="2">2013</td></y<1.94<>	2013
LHC	CMS			-2.87 <y<1.93< td=""></y<1.93<>	
	LHCb			-5.0 <y<-2.5 1.5<y<4.0< td=""><td></td></y<4.0<></y<-2.5 	
	Arpaldi	Quarkonium 201		March 1st	

Roberta Arnaldi

Quarkonium 2016

Facility	Experiment	System	√s _{NN} (GeV)	Y _{cms} range	Data taking
	NA50	p-Be,Al,Cu,Ag,W,Pb	27	-0.4 <y<0.6< td=""><td>1996- 2000</td></y<0.6<>	1996- 2000
SPS			29	-0.5 <y<0.5< td=""><td>2000</td></y<0.5<>	2000
5, 5	NA60	p-Be,Al,Cu,In,W,Pb,U	17	0.3 <y<0.8< td=""><td>2004</td></y<0.8<>	2004
	NACO	p-be,Al,Cu,III,W,Pb,O	27	-0.1 <y<0.3< td=""><td>2004</td></y<0.3<>	2004
FNAL	E866	p-Be, Fe, W	39	-0.23 <y<2.5< td=""><td>~1996</td></y<2.5<>	~1996
HERA	HERA-B	p-C, Ti, W	4 <mark>Co</mark>	llider experimer usually p vs a si	
RHIC	PHENIX,	d-Au	20	beam specie	ingle
RHIC	STAR	p-Al, Au	20	forward and	
	ALICE			backward y rang	ge
	ATLAS			might be covere	ed
LHC	CMS	p-Pb	5020	-2.87 <y<1.93< td=""><td>2013</td></y<1.93<>	2013
	LHCb			-5.0 <y<-2.5 1.5<y<4.0< td=""><td></td></y<4.0<></y<-2.5 	
Roberta Arnaldi Quarkonium 201		6	March 1 st	2016	

Facility	Experiment	System	√s _{NN} (GeV)	Y _{cms} range	Data taking
SPS	NA50	p-Be,Al,Cu,Ag,W,Pb	27 29	Large number target nuclei	of <mark>,</mark>
	NA60	p-Be,Al,Cu,In,W,Pb,U	17 27	0.3 <y<0.8 -0.1<y<0.3< td=""><td>2004</td></y<0.3<></y<0.8 	2004
FNAL	E866	p-Be, Fe, W	39	-0.6 <y<2.5< td=""><td>~1996</td></y<2.5<>	~1996
HERA	HERA-B	p-C, Ti, W	42	-1.5 <y<0.8< td=""><td>2002</td></y<0.8<>	2002
RHIC	PHENIX,	d-Au	200	-2.2 <y<2.4< td=""><td>>2003</td></y<2.4<>	>2003
ппс	STAR	p-Al, Au	200	1.2< y <2.2	2015
	ALICE			-4.46 <y<3.53< td=""><td></td></y<3.53<>	
	ATLAS			-2.87 <y<1.94< td=""><td rowspan="2">2013</td></y<1.94<>	2013
LHC	CMS	p-Pb	5020	-2.87 <y<1.93< td=""></y<1.93<>	
	LHCb			-5.0 <y<-2.5 1.5<y<4.0< td=""><td></td></y<4.0<></y<-2.5 	
Debarte Arrealdi					2010

Roberta Arnaldi

Quarkonium 2016

Facility	Experiment	System	√s _{NN} (GeV)	Y _{cms} range	Data taking
	NA50	p-Be,Al,Cu,Ag,W,Pb	27 29	-0.4 <y<0.6 -0.5<y<0.5< td=""><td>1996- 2000</td></y<0.5<></y<0.6 	1996- 2000
SPS	NA60	p-Be,Al,Cu,In,W,Pb,U	17 27	0.3 <y<0.8 -0.1<y<0.3< td=""><td>2004</td></y<0.3<></y<0.8 	2004
FNAL	E866	p-Be, Fe, W	39	Two energies	in the
HERA	HERA-B	p-C, Ti, W	42	same experim	
RHIC	PHENIX,	d-Au	200	-2.2 <y<2.4< td=""><td>>2003</td></y<2.4<>	>2003
	STAR	p-Al, Au	200	1.2< y <2.2	2015
	ALICE			-4.46 <y<3.53< td=""><td></td></y<3.53<>	
	ATLAS			-2.87 <y<1.94< td=""><td rowspan="2">2013</td></y<1.94<>	2013
LHC	CMS	p-Pb	5020	-2.87 <y<1.93< td=""></y<1.93<>	
	LHCb			-5.0 <y<-2.5 1.5<y<4.0< td=""><td></td></y<4.0<></y<-2.5 	

Roberta Arnaldi

Quarkonium 2016

Facility	Experiment	System	√s _{NN} (GeV)	Y _{cms} range	Data taking
	NA50	p-Be,Al,Cu,Ag,W,Pb	27	-0.4 <y<0.6< td=""><td>1996-</td></y<0.6<>	1996-
SPS	NASO		29	-0.5 <y<0.5< td=""><td>2000</td></y<0.5<>	2000
JFJ	NA60	p-Be,Al,Cu,In,W,Pb,U	17	0.3 <y<0.8< td=""><td>2004</td></y<0.8<>	2004
	117400	p-be,Al,Cu,III,W,Pb,O	27	-0.1 <y<0.3< td=""><td>2004</td></y<0.3<>	2004
FNAL	E866	p-Be, Fe, W	39	-0.6 <y<2.5< td=""><td>~1996</td></y<2.5<>	~1996
HERA	HERA-B	p-C, Ti, W	42	- 1.5<v< b=""><0.8</v<>	2002
RHIC	PHENIX,	d-Au	200	Largest x _F coverage -0.10 <x<sub>F<0.93</x<sub>	
	STAR	p-Al, Au	200		
	ALICE			-4.46 <y<3.53< td=""><td></td></y<3.53<>	
				-4.40 <y<3.55< td=""><td></td></y<3.55<>	
	ATLAS			-4.40 <y<3.53 -2.87<y<1.94< td=""><td></td></y<1.94<></y<3.53 	
LHC		p-Pb	5020	• 	2013
LHC	ATLAS	p-Pb	5020	-2.87 <y<1.94< td=""><td>2013</td></y<1.94<>	2013

Roberta Arnaldi

Quarkonium 2016

Facility	Experiment	System	√s _{NN} (GeV)	Y _{cms} range	Data taking
	NA50	p-Be,Al,Cu,Ag,W,Pb	27 29	-0.4 <y<0.6 -0.5<y<0.5< td=""><td>1996- 2000</td></y<0.5<></y<0.6 	1996- 2000
SPS	NA60		17	0.3 <y<0.8< td=""><td></td></y<0.8<>	
	NAOU	p-Be,Al,Cu,In,W,Pb,U	27	-0.1 <y<0.3< td=""><td>2004</td></y<0.3<>	2004
FNAL	E866	p-Be, Fe, W	39	-0.6 <y<2.5< td=""><td>~1996</td></y<2.5<>	~1996
HERA	HERA-B	p-C, Ti, W	42	-1.5 <y<0.8< td=""><td>2002</td></y<0.8<>	2002
		d-Au			
ршс	PHENIX,	d-Au	200	-2-2 <y<2.4< td=""><td>>2003</td></y<2.4<>	>2003
RHIC	PHENIX, STAR	p-Al, Au 🚽	200	Telvier 2	2015
RHIC		p-Al, Au 🚽	Coverag	e up to negative	2015
	STAR	p-Al, Au 🚽	Coverag	Telvier 2	2015
RHIC	STAR ALICE	p-Al, Au 🚽	Coverag	e up to negative	2015
	STAR ALICE ATLAS	p-Al, Au	Coverag -(e up to negative 0.34 <x<sub>F<0.14</x<sub>	2015 X _F

Roberta Arnaldi

Quarkonium 2016

Facility	Experiment	System	√s _{NN} (GeV)	Y _{cms} range	Data taking	
	NA50	p-Be,Al,Cu,Ag,W,Pb	27 <u>29</u>	-0.4 <y<0.6 -0.5<y<0.5< td=""><td>1996- 2000</td></y<0.5<></y<0.6 	1996- 2000	
SPS	NA60	p-Be,Al,Cu,In,W,Pb,U	 very high energies complementary 			
FNAL	E866	p-Be, Fe, W	KI	nematic ranges		
HERA	HERA-B	p-C, Ti, W	92	-1.5 <y<0.8< td=""><td>2002</td></y<0.8<>	2002	
RHIC	PHENIX,	d-Au	200	-2.2 <y<2.4< td=""><td>>2003</td></y<2.4<>	>2003	
ппіс	STAR	p-Al, Au	200	1.2< y <2.2	2015	
	ALICE			-4.46 <y<3.53< td=""><td></td></y<3.53<>		
	ATLAS	p-Pb		-2.87 <y<1.94< td=""><td rowspan="2">2013</td></y<1.94<>	2013	
LHC	CMS		5020	-2.87 <y<1.93< td=""></y<1.93<>		
	LHCb			-5.0 <y<-2.5 1.5<y<4.0< td=""><td></td></y<4.0<></y<-2.5 		
Roberta Arnaldi Ouarkonium 2016 March 1st 2016						

Roberta Arnaldi

Quarkonium 2016

Quarkonium production in pA₁

The study of the interaction of the cc pair with the nuclei provides:

Constraints to production models The strength of this interaction may depend on the cc̄ quantum states and kinematics (R.Vogt, Nucl.Phys. A700,539 (2002), B.Z. Kopeliovich et al, Phys. Rev.D44, 3466 (1991))

Tool to investigate cold nuclear matter effects
 → complicated issue, interplay of many competing mechanisms as shadowing, energy loss, break-up in the medium...

Reference to disentangle genuine QGP effect in AA collisions \rightarrow Approach followed at SPS, RHIC and LHC

Roberta Arnaldi

Quarkonium 2016

How is J/ψ studied in pA? 12

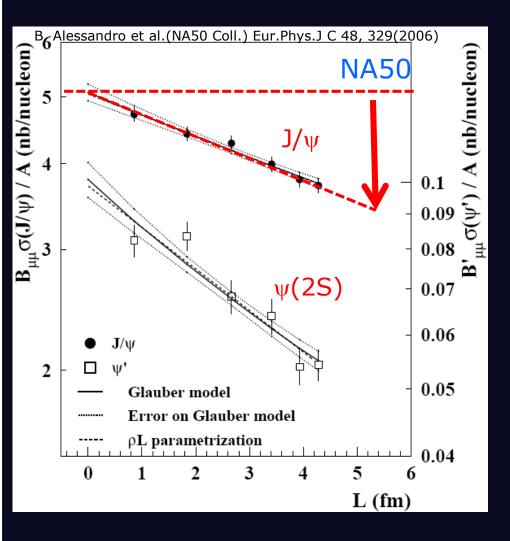
Varying the amount of nuclear matter crossed by cc pair (studying J/ψ production as a function of A or centrality)

Selecting the kinematics of the quarkonium states e.g. selecting events where resonance is formed inside or outside the nucleus

Comparing the behavior of different resonances

"Effective" quantities are defined to evaluate the size of CNM effects

1)
$$\sigma_{J/\psi}^{pA} = \sigma_{J/\psi}^{pp} \cdot A \cdot e^{-\langle \rho L \rangle \sigma} abs$$
 the larger σ_{abs} , the more important the nuclear effects
2) $\sigma_{J/\psi}^{pA} = \sigma_{J/\psi}^{pp} \cdot A^{\alpha} \leftarrow a=1 \Rightarrow \text{ no nuclear effects}$
3) $R_{J/\psi}^{pA} = \frac{\sigma_{J/\psi}^{pA}}{A \cdot \sigma_{J/\psi}^{pp}} \leftarrow R_{pA}=1 \Rightarrow \text{ no nuclear effects}$
 $R_{pA}=1 \Rightarrow \text{ no nuclear effects}$

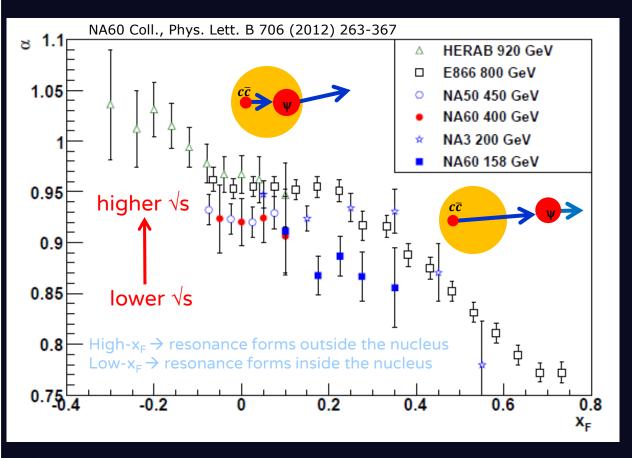

Roberta Arnaldi

Quarkonium 2016

J/ψ in pA at SPS

13

A significant reduction of the yield per NN collision is observed


- Early studies interpreted this reduction as due to "nuclear absorption"
- Stronger absorption for the less bound state $\psi(2S)$ at mid-y
 - → Nucleus crossing time (τ~0.3 fm/c) comparable or larger than charmonium formation time:
 - → fully formed resonances traversing the nucleus

 $\sigma_{abs} J/\psi = 4.5 \pm 0.5 \text{ mb}$ $\sigma_{abs} \psi(2S) = 8.3 \pm 0.9 \text{ mb}$

Roberta Arnaldi

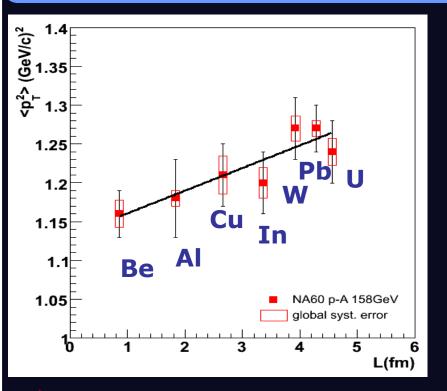
J/ψ production vs x_F

Compilation of fixed target results, collected at different \sqrt{s} and kinematical regions

 J/ψ yield in pA is modified with respect to pp collisions

 α strongly decreases with $x_{\rm F}$

for a fixed x_F, CNM are stronger at lower √s

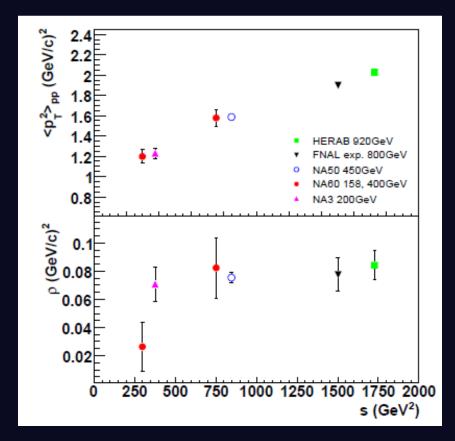

Theoretical description over the full x_F range very complicate!

Given the strong x_F and \sqrt{s} dependence, pA data used as reference for AA collisions should be collected in the same kinematical domain

Roberta Arnaldi

Quarkonium 2016

J/ψ production vs p_T


 \boldsymbol{p}_{T} broadening can be parametrized as

 $< p_T^2 > = < p_T^2 >_{pp} + \rho (A^{1/3}-1)$

slope ρ is almost energy independent (apart from very low \sqrt{s})

 $< p_T^2 >_{pp}$ increases with \sqrt{s}

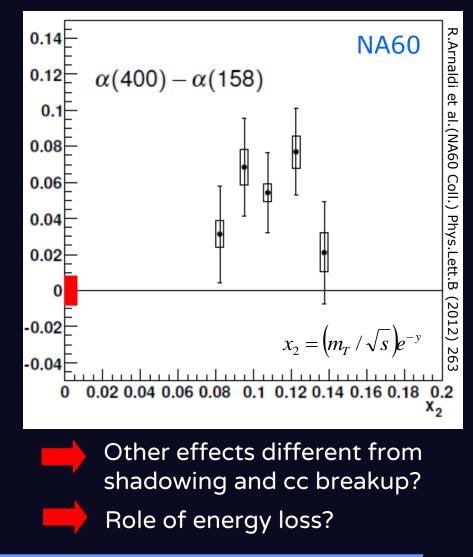
<p²> increasing with the A of the target nuclei → interpreted as Cronin effect

Roberta Arnaldi

Quarkonium 2016

Disentangling CNM effects 16

Assume dominant effects are shadowing and cc breakup at mid-y

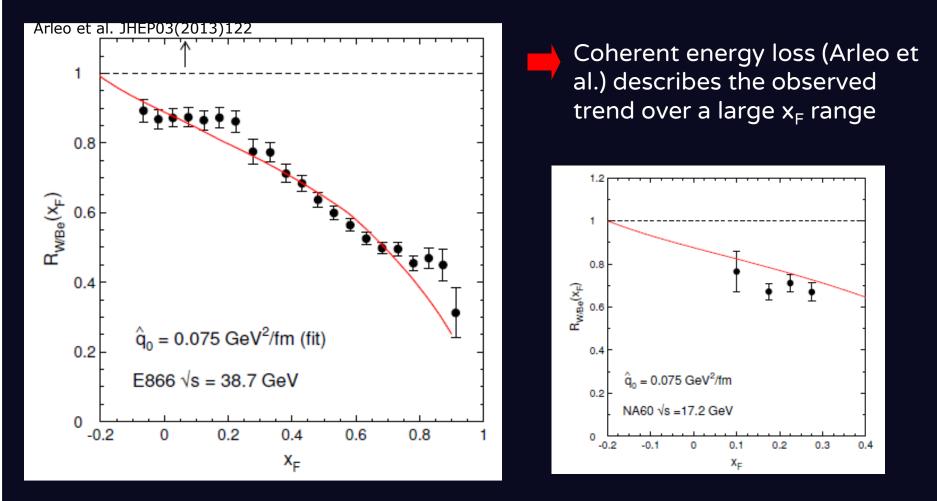

Shadowing in the target nucleus depends only on x_2 (2 \rightarrow 1approach)

J/ ψ break-up depends on $\sqrt{s_{J/\psi-N}}$ which is a function of x_2

$$\sqrt{s_{J/\psi N}} \sim m_{J/\psi} \sqrt{\frac{1+x_2}{x_2}}$$

If parton shadowing and final state absorption were the only relevant mechanisms

α should not depend on √s at constant x₂ ... and this is clearly not the case

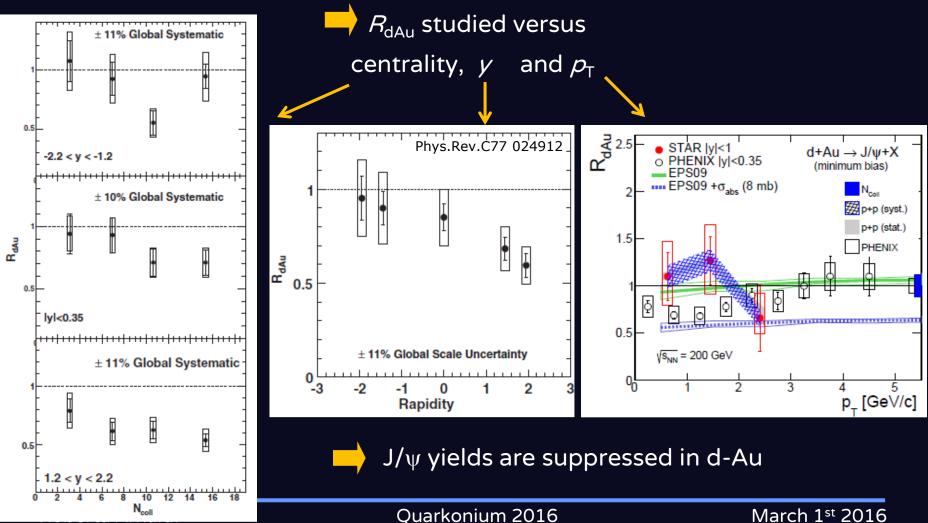


Roberta Arnaldi

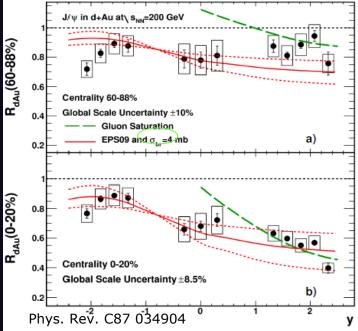
Quarkonium 2016

Disentangling CNM effects 17

The increase of the J/ ψ suppression towards high x_F might be interpreted as due to energy loss

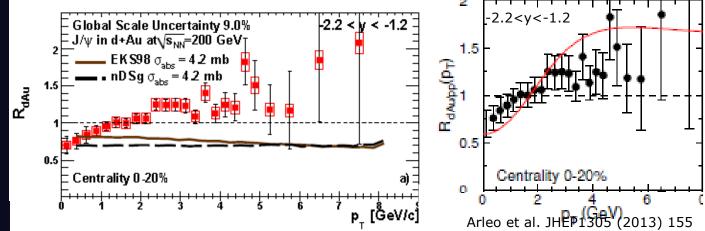


Roberta Arnaldi


Quarkonium 2016

Moving to higher energies: RHIG8

Different approach wrt to fixed target experiments → Proton/deuteron on a single nucleus species and events selected on impact parameter

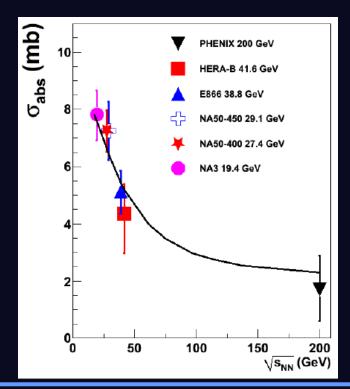

CNM effects at RHIC

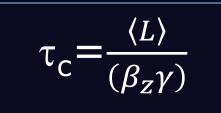
Disentangling CNM mechanisms is challenging

shadowing + cc break-up describe R_{dAu} vs y, but meets some difficulties for R_{dAu} vs p_T

coherent energy loss contribution induces a less flat R_{dAu} dependence on p_T

Roberta Arnaldi


Quarkonium 2016

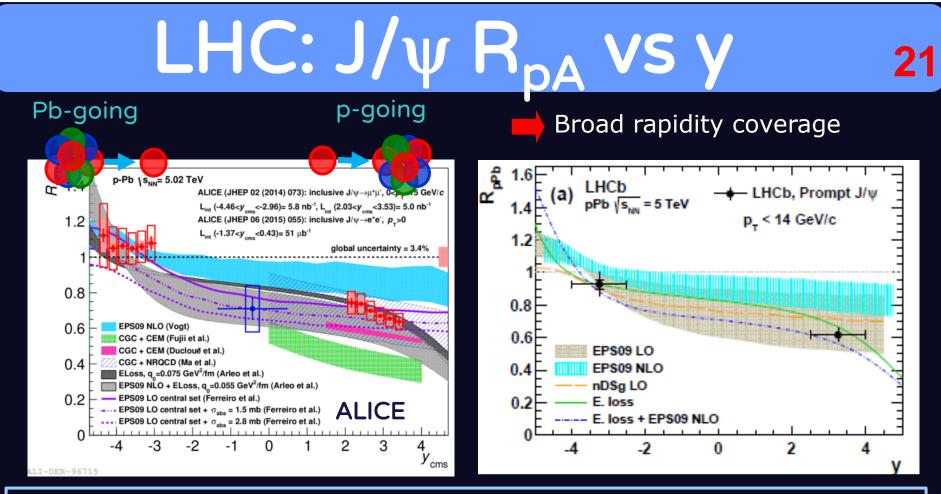

Which CNM effects at LHC?20

Large Lorentz- γ factor \rightarrow short crossing time of the cc in the nuclear matter

 $\rightarrow c\bar{c}$ pair almost point-like after crossing the nuclear matter

→ final state effects (as cc break-up) might be negligible

forward-y: $\tau_c \sim 10^{-4}$ fm/c backward-y: $\tau_c \sim 7.10^{-2}$ fm/c

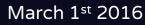

> D. McGlinchey, A. Frawley and R.Vogt, PRC 87,054910 (2013)

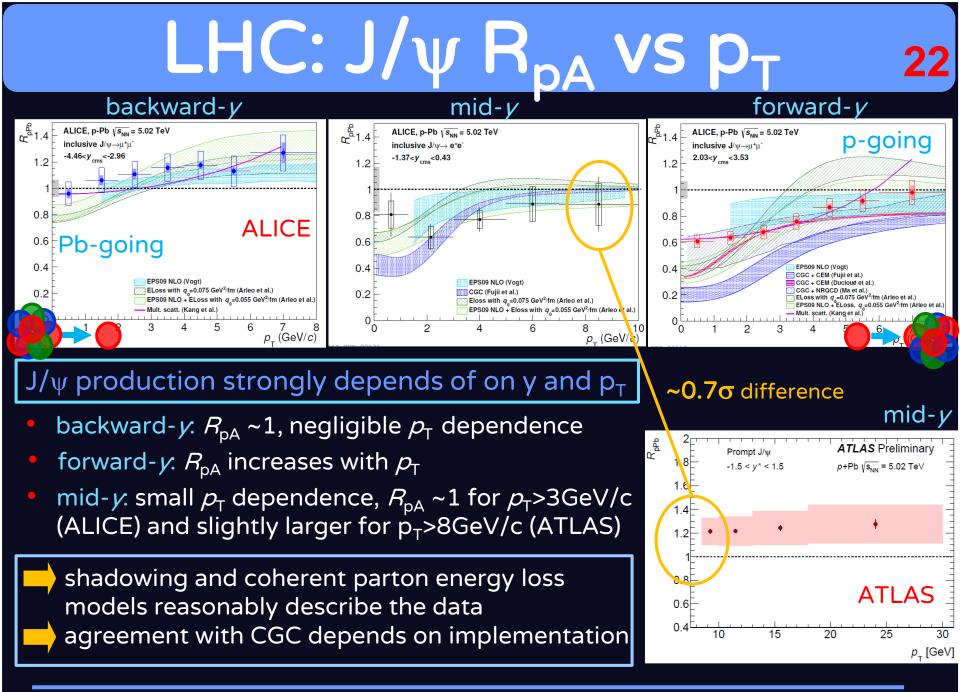
shadowing and/or energy loss might be the dominant effects

parton saturation effects can also be investigated at low-x

Roberta Arnaldi

Quarkonium 2016


J/ ψ production modified by CNM effects $\rightarrow R_{pA}$ decreases at forward y

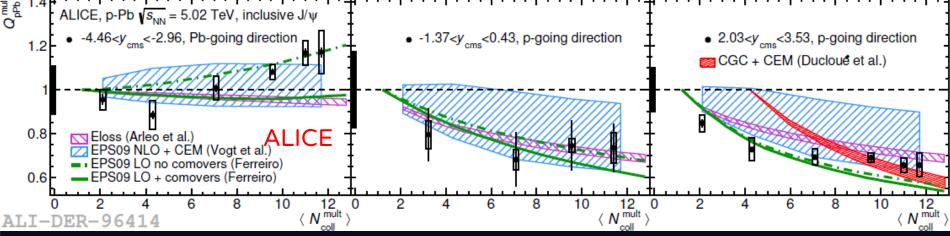

Theoretical predictions:

- shadowing calculations and models including coherent parton energy loss reasonably describe the data
- agreement with CGC depends on the implementation

Roberta Arnaldi

Quarkonium 2016

Roberta Arnaldi

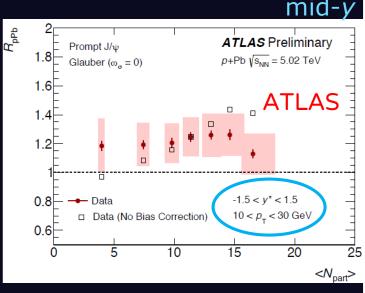

Quarkonium 2016

LHC: $J/\psi R_{pA}$ vs centrality₂₃

backward-y

mid-y

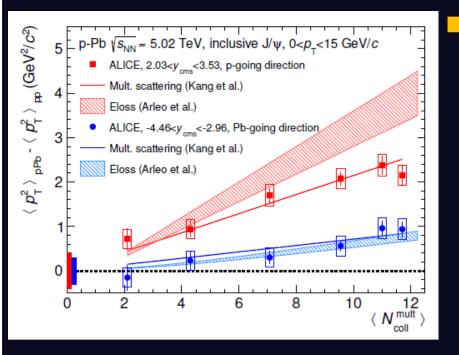
forward-y


ALICE:

mid & fw-y: suppression increases with centrality backward-y: hint for increasing Q_{pA} with centrality

Shadowing and coherent energy loss models in fair agreement with data No strong comovers effect expected for J/ ψ

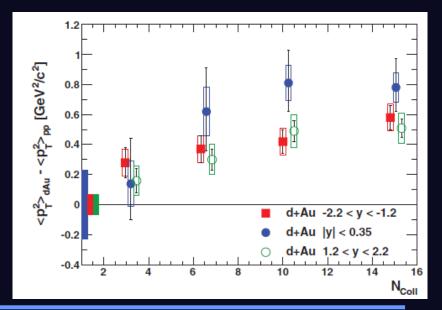
ATLAS


Flat centrality dependence in the high p_T range

Roberta Arnaldi

Quarkonium 2016

$J/\psi < p_T^2 >$



PHENIX:

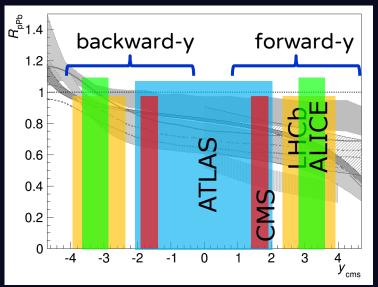
- $p_{\rm T}$ broadening similar as the one observed by ALICE at backward-y
- large uncertainties prevent conclusions on the y dependence

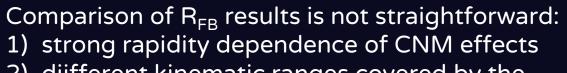
ALICE:

- the p_T broadening $\Delta < p_T^2 >$ increases from peripheral to central collisions
- effect is stronger at forward y
- initial/final state parton multiple scattering model describe the results energy loss describes the bck-y results, but predicts a steeper trend at forward y

Roberta Arnaldi

Quarkonium 2016

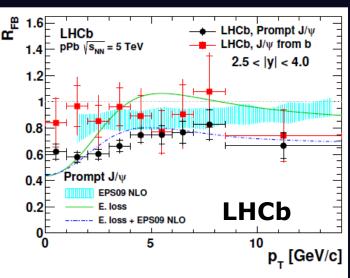

$J/\psi R_{FB}$

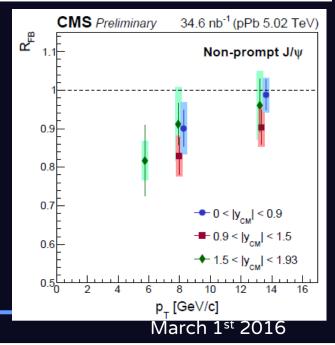


Forw. to backw. ratio in a common y range

$$R_{FB} = \frac{Y_{J/\Psi}^{forward}}{Y_{J/\Psi}^{backward}}$$

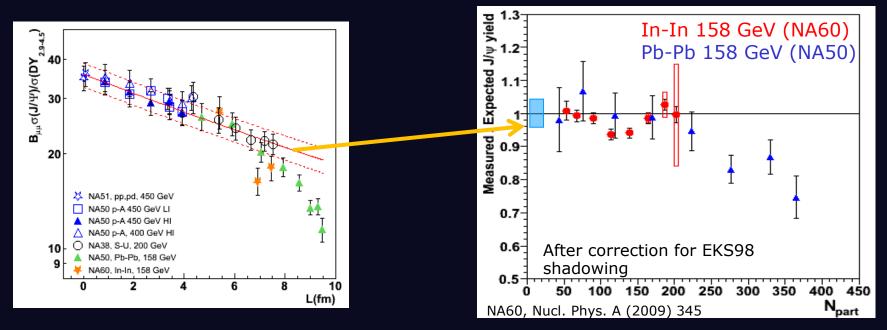
→ no pp reference is needed
→ but less straightforward to interpret





2) diifferent kinematic ranges covered by the experiments

Roberta Arnaldi


Quarkonium 2016

From pA to AA: SPS

Once CNM effects are measured in pA, how can they be extrapolated to AA?

SPS \rightarrow the reference is built

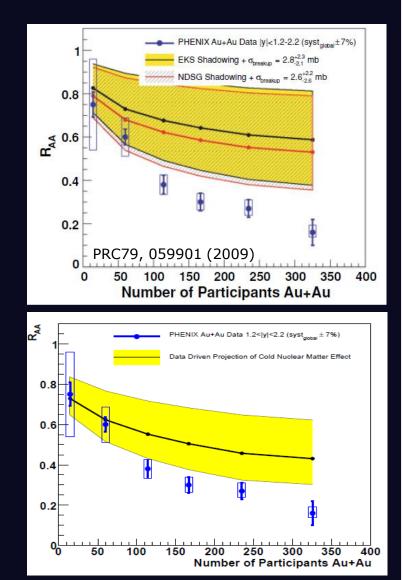
- evaluating σ break-up in pA collisions (in the same kinematic range as AA)
- including project/target (anti)shadowing
- determining the reference centrality dependence through Glauber approach

From pA to AA: RHIC

Same energy for AA and d-Au collisions

Reference evaluated with several approaches as:

 R_{dAu} vs centrality (y) is described with various shadowing + break-up σ


Shadowing scenario + break-up σ (evaluated in pA) are then compared to AA result

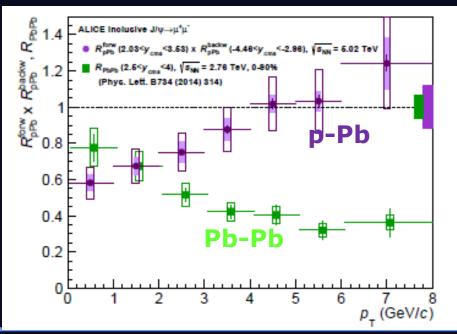
Data-driven approach:

All CNM effects (not disentangled) depend on the radial position in the nucleus

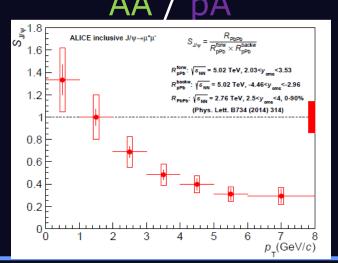
 $R_{AA} \sim R_{dAu}(-y) \times R_{dAu}(y)$

Roberta Arnaldi

Quarkonium 2016


From pA to AA: LHC 28

Different pA and AA \sqrt{s} and y range


Hypothesis: $2 \rightarrow 1$ kinematics for J/ ψ production

- CNM effects (dominated by shadowing) factorize in p-A
- CNM obtained as $R_{pA} \times R_{Ap} (R_{pA}^2)$, similar x-coverage as PbPb

CNM effects are "removed" via

Roberta Arnaldi

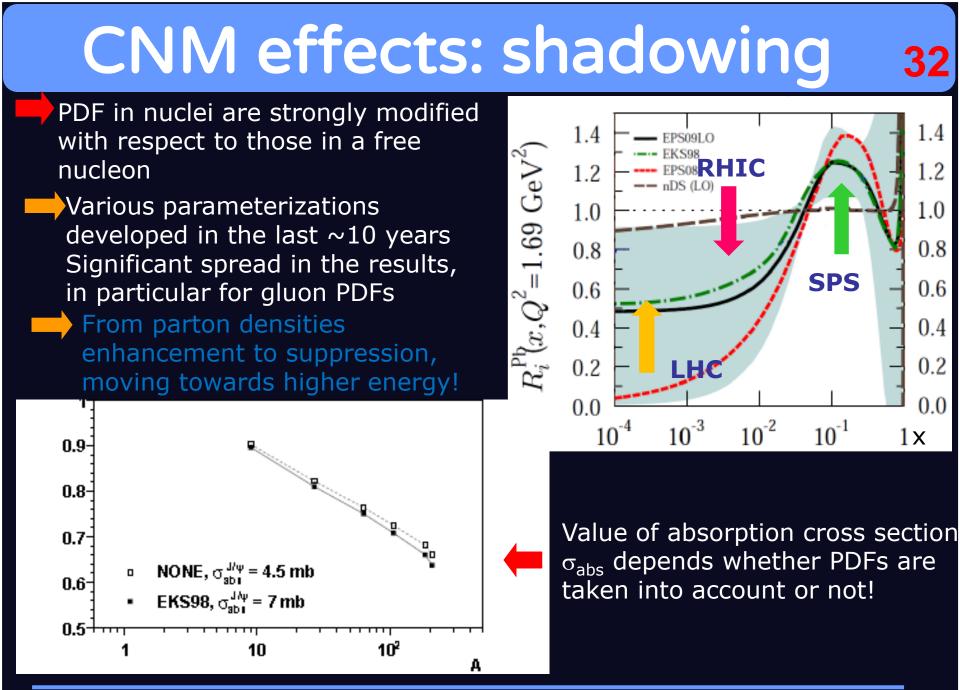
Quarkonium 2016

Conclusions

The production of quarkonia in nuclear matter has been studied since a long time, both at fixed target and at colliders

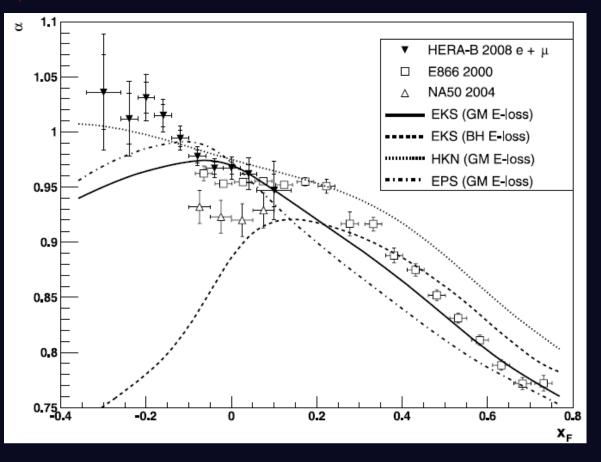
The J/ ψ production is modified in pA (d-Au) with respect to pp, with a strong kinematic dependence

Interplay of many cold nuclear matter effects as shadowing, energy loss and, at low \sqrt{s} , also cc break-up in the nucleus


- \rightarrow Modeling is complicate, but progresses have been done!
- → However, size of uncertainties prevents a clear assessment of the role of the various contributions

J/ψ in pA

31


Facility	Experiment	System	√s _{NN} (GeV)	x _F range	Data taking
	NA50	p-Be,Al,Cu,Ag,W,Pb	27	-0.14 <x<sub>F<0.10</x<sub>	1996-
CDC		₽ = -; <i>,,</i>	29	-0.10 <x<sub>F<0.10</x<sub>	2000
SPS	NA60	p-Be,Al,Cu,In,W,Pb,U	17	0.05 <x<sub>F<0.40</x<sub>	2004
	NAGO	p-be,Al,Cu,III,W,Pb,O	27	-0.07 <x<sub>F<0.12</x<sub>	2004
FNAL	E866	p-Be, Fe, W	39	-0.10 <x<sub>F<0.93</x<sub>	~1996
HERA	HERA-B	p-C, W	42	-0.34 <x<sub>F<0.14</x<sub>	2002
	PHENIX,	d-Au		-0.1 <x<sub>F<0.2</x<sub>	>2003
RHIC	STAR	p-Al, Au	200	0.05 < x _F <0.14	2015
	ALICE			-0.05 <x<sub>F<0.02</x<sub>	
	ATLAS			-0.01 <x<sub>F<-0.004</x<sub>	2013
LHC	CMS	p-Pb	5020	-0.01 <x<sub>F<-0.004</x<sub>	
	LHCb			-0.09 <x<sub>F<-0.007 0.003<x<sub>F<-0.03</x<sub></x<sub>	
Roberta	Arnaldi	Quarkonium 201	6	March 1 st	2016

Roberta Arnaldi

J/ψ production vs xF

Compilation of fixed target results:

High- x_F → resonance forms outside the nucleus Low- x_F → resonance forms inside the nucleus

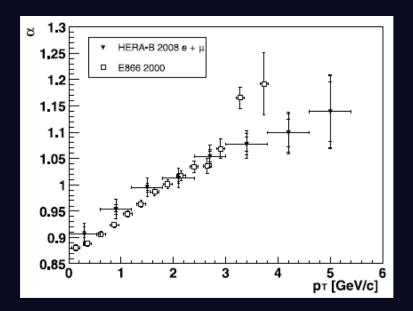
$$\sigma_{J/\psi}^{pA} = \sigma_{J/\psi}^{pp} \cdot A^{\alpha}$$

 J/ψ production is modified by the medium already in pA collisions

 α strongly decreases with xF

for a given x_F , CNM are stronger at lower \sqrt{s}

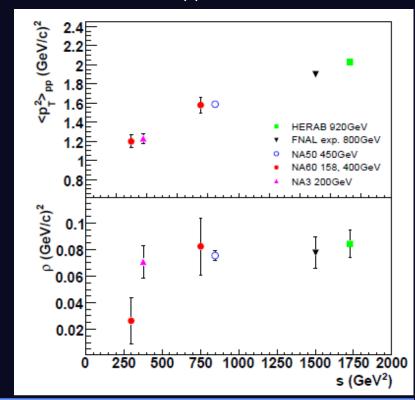
Satisfactory theoretical description still unavailable!


Roberta Arnaldi

Quarkonium 2016

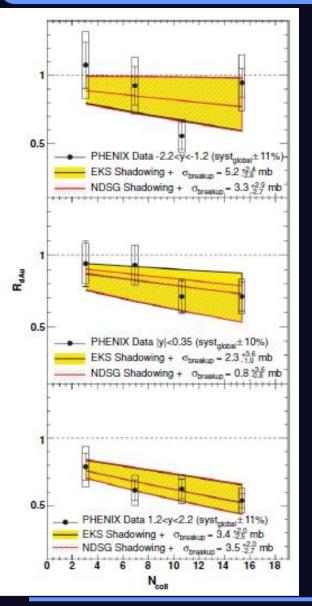
J/ψ production vs p_T

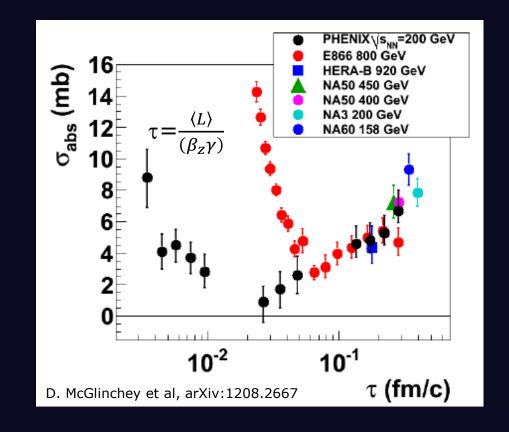
The J/ ψ suppression is stronger at low pT


Increase of α with p_T interpreted in terms of Cronin effect

Slope ρ is almost energy independent (apart from very low \sqrt{s}) while $< p_T^2 > pp$ increases with \sqrt{s}

A broadening of pT as a function of A is observed:

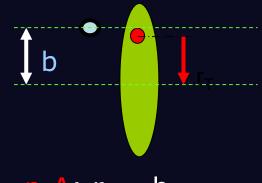

$$< p_T^2 > = < p_T^2 >_{pp} + \rho (A^{1/3} - 1)$$

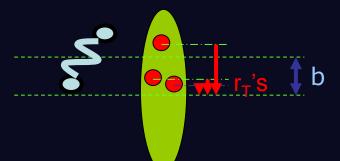

Roberta Arnaldi

Quarkonium 2016

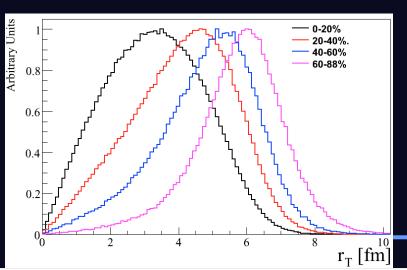
Moving to higher energies: RHIG5

Results might be described including shadowing and a rapidity-dependent σ_{abs}


Roberta Arnaldi


Quarkonium 2016

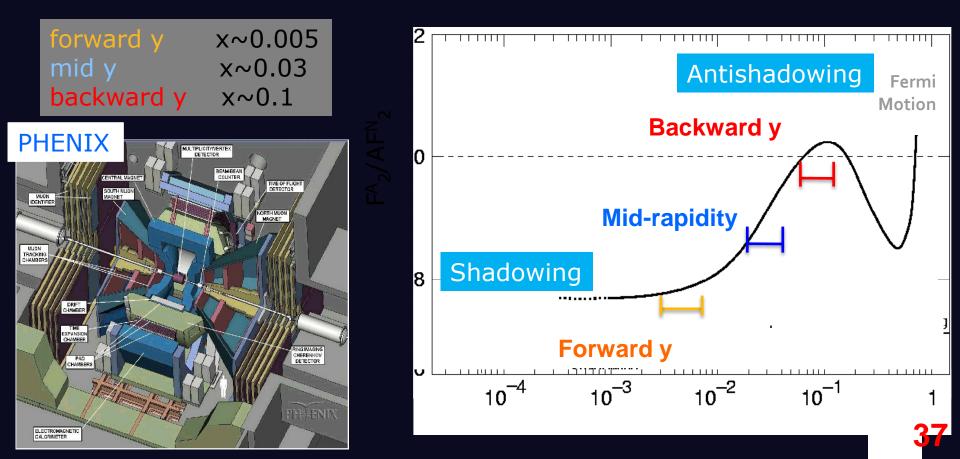
Moving to higher energies: RHIG6


Different approach wrt to fixed target experiments:

Instead of accelerating several different nuclei \rightarrow Use one single nucleus species and select on impact parameter

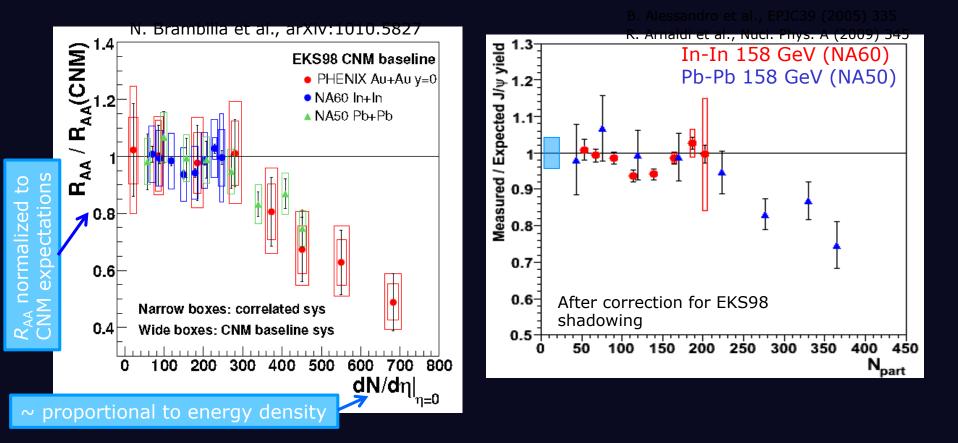
p-A: $r_T \sim b$

d-Au: due to the size of the deuteron (<r>~2.5fm) the distribution of transverse positions of the collisions are not very well represented by impact parameter


 \rightarrow overlap of the centrality classes

Quarkonium 2016

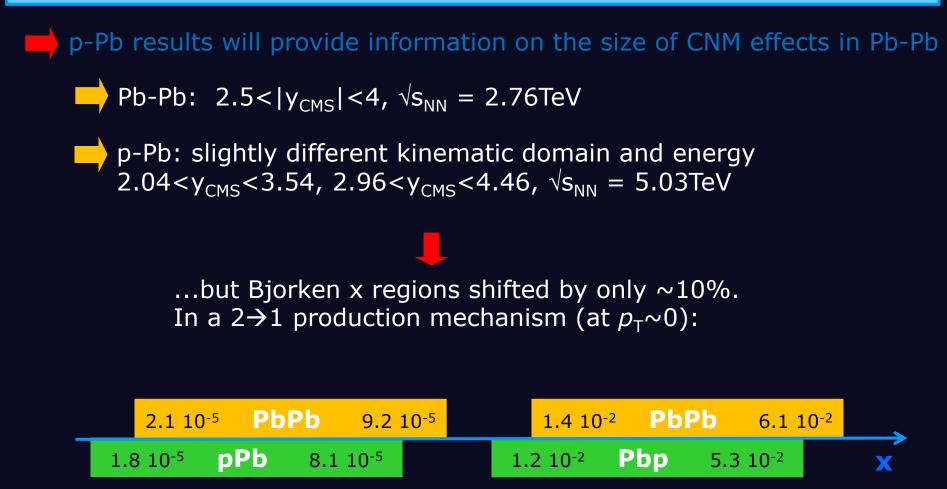
d-Au rapidity range


Regions corresponding to very different strength of shadowing effects have been studied: -2.2 < y < -1.2, |y| < 0.35, 1.2 < y < 2.2

 \rightarrow good test of our understanding of the physics!

From p-A to A-A...

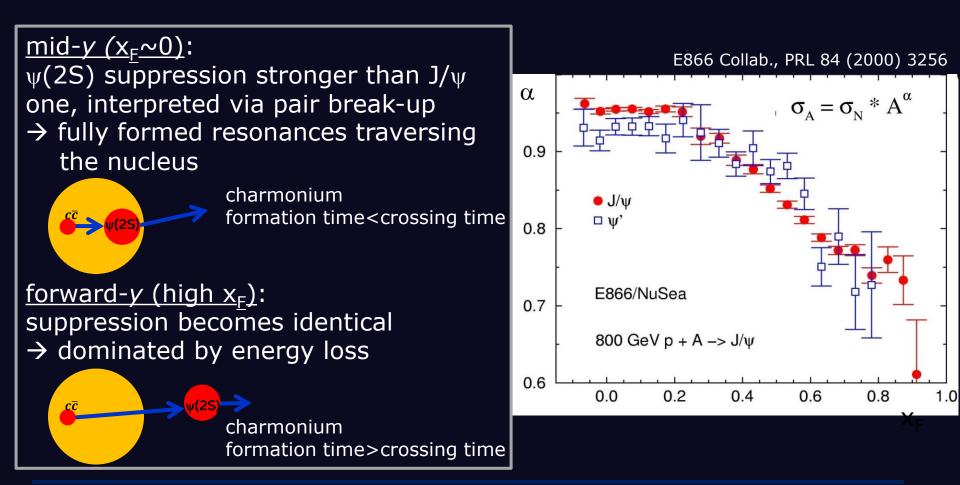
Even if disentangling the different CNM mechanisms is a complicate issue... ...CNM, evaluated in p-A, can be extrapolated to A-A to build a reference for the J/ ψ behaviour in hadronic matter!



Clear suppression is indeed observed on top of CNM effects!

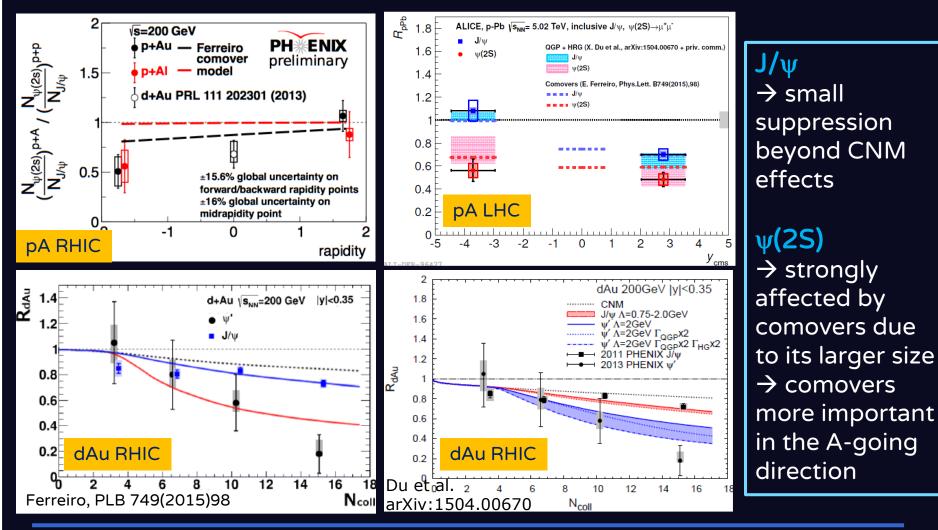
Roberta Arnaldi

Quarkonium 2016


From p-Pb to Pb-Pb...

Work in progress to quantify size of CNM effects in Pb-Pb results!

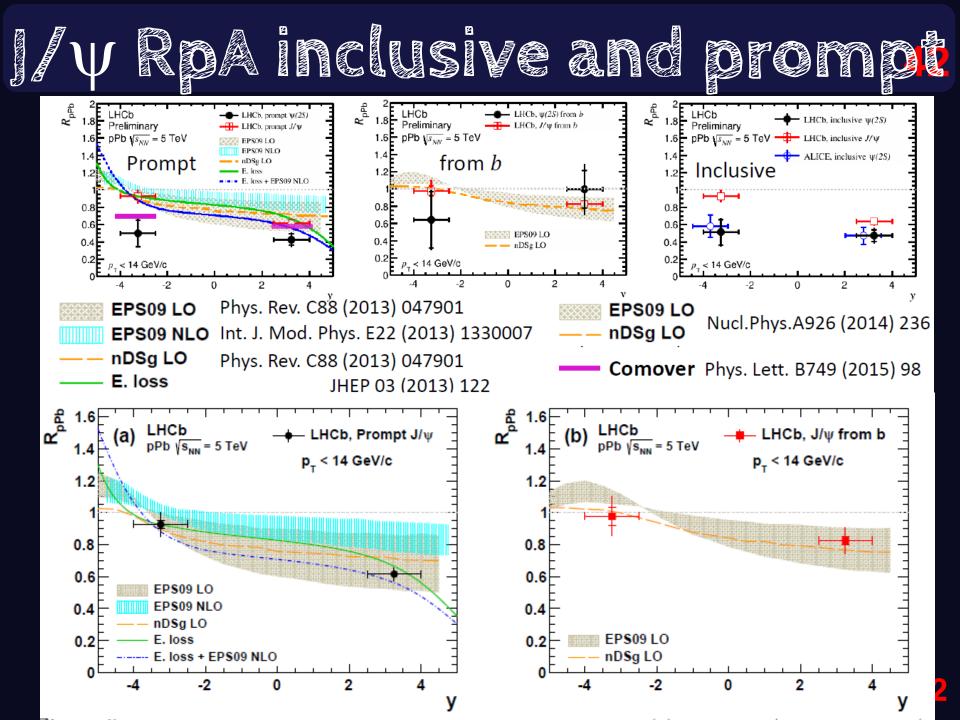
Being more weakly bound than the J/ ψ , the ψ (2S) is an interesting probe to have further insight on the charmonium behaviour in pA Low energy ψ (2S) p-A results from NA50, E866 and HERA-B:

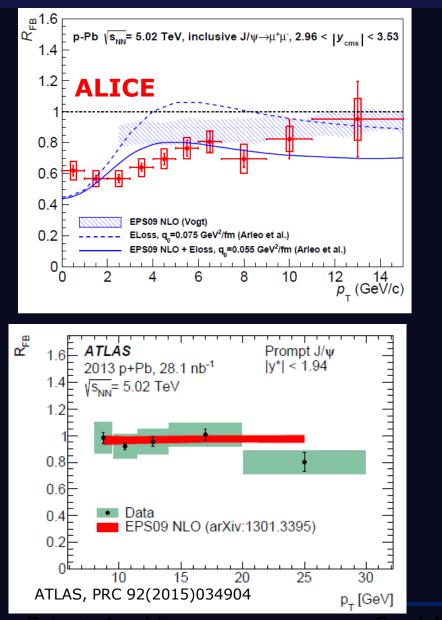

Roberta Arnaldi

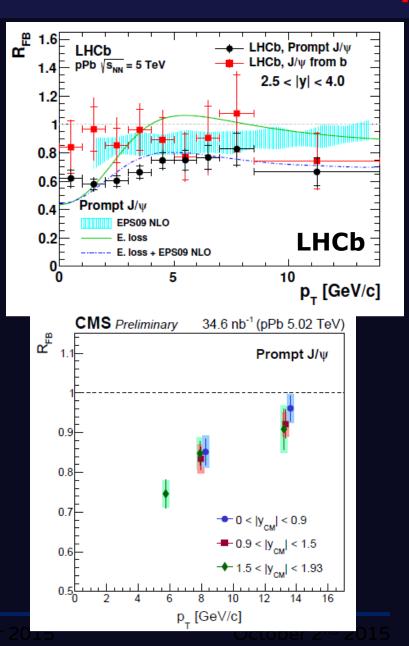
Quark Matter 2015

October 2nd 2015

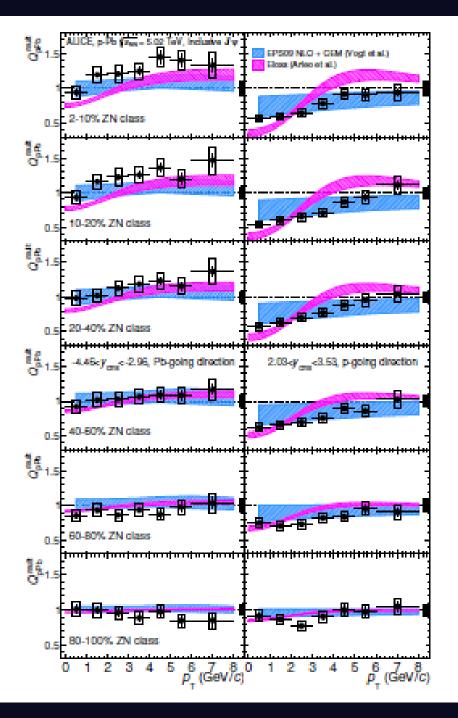
comparison to theoretical models,


QGP+hadron resonance gas (Rapp) or comovers models (Ferreiro) reasonably describe both J/ ψ and ψ (2S) suppression at RHIC and LHC

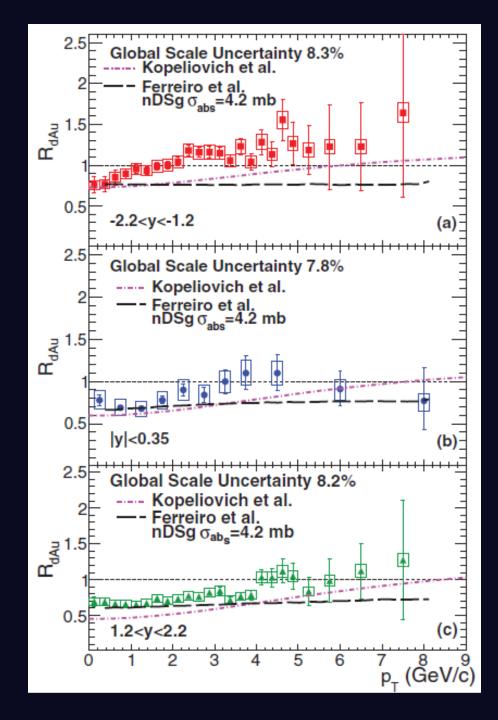

Roberta Arnaldi


Quark Matter 2015

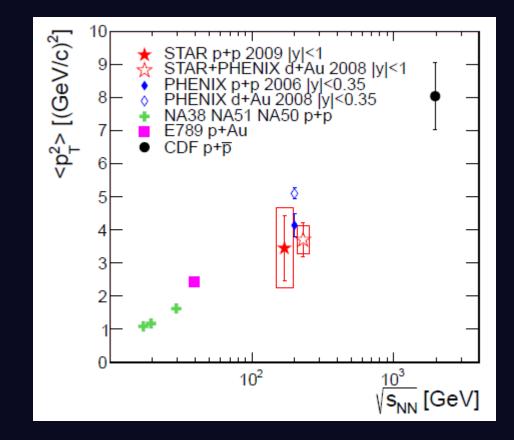
October 2nd 2015

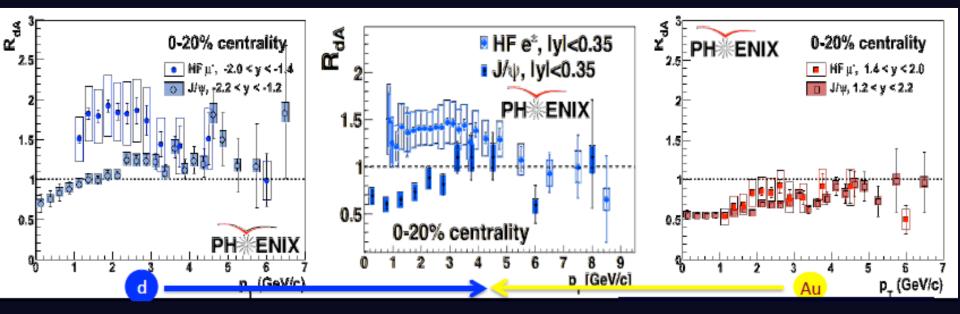


$//\psi$ forward to backward ratio 43



rta Arnaldi




Differential results might provide constraints to theoretical calculations

44

