

Quarkonia and open heavy flavours in event generators

OUTLINE

- > Why event generators are needed for new observables ?
- > Event generators on the market (pp to AA)
- > Quarkonia and HF production in PYTHIA
- > Quarkonia and HF production in EPOS
- > Quarkonia and HF production vs. multiplicity
- Conclusions

New observables in quarkonium production workshop ECT*, Trento, 29/02 - 04/03

Event generators

Goal (dream ?):

- > To reproduce entirely an event : particles in final state with all properties
- Should give access to exclusive observables
- ► Different from a calculation/computation usually inclusive and for one observable (for example p_T spectrum in pp -> J/Ψ + X)

<u>Strategy :</u>

- Initial state
- Elementary interactions : soft, hard, both?
- Radiation
- Remnants
- Multiple interactions
- Underlying events
- Particle production (string picture)

Why to use them ?

- Simulate events for detector/analysis purpose
 - Generate events for corrections
 - Test an analysis process on MC data prior to real data
 - Test your comprehension of your detector
 (MC = Event generation + Geant simulation of detector)

Model Comparison

- If you look at inclusive observables, maybe there is a model on the market that will be more adapted
- If you start looking at exclusive staff : particle correlations, soft vs. hard, ... Event generators trying to reproduce all aspects of the event could be of interest

→New observables in quarkonium production

sarah@clermont.in2p3.fr

Non-exhaustive overview of event generators

- ➢ pp event generators
 - PYTHIA HERWIG
- Based on pQCD approach : the hard interaction is the basis of the framework
- EPOS

SHERPA

- Based on Gribov-Regge approach, multiple interactions are the basis of the framework
- Specialization, complement for pp event generators
 - ALPGEN: hard multiparton processes in hadronic collisions, to be coupled to HERWIG or PHYTIA
 - Jimmy: multiparton Interactions in HERWIG
 - Cascade: hard processes with parton evolution (unintegrated PDFs), hadronization by PYTHIA
 - MadGraph5_aMC@NLO automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations

https://karman.physics.purdue.edu/OSCAR-old/models/list.html

http://en.wikipedia.org/wiki/Event_generator

Non-exhaustive overview of event generators

Heavier systems : from pp to AA

- Hijing Based on PYTHIA, with emphasize on minijet, include nuclear shadowing
- AMPT Hijing for initial condition, add final state scattering to generate elliptic flow
- EPOS Picture of elementary parton-parton interactions viewed as color flux tube extended to all system, with shadowing and hydro evolution
- Hydjet++ Hydro evolution (only AA?)

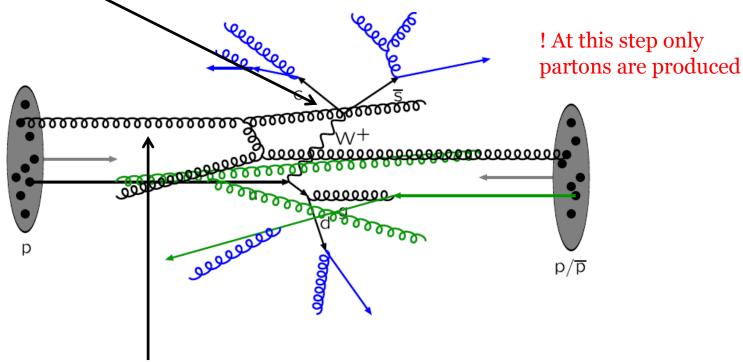
Specialization, complement for heavier systems

- JEWEL in-medium jet energy loss, jet quenching
- Q-PYTHIA in-medium jet energy loss, jet quenching
- MC@sHQ+EPOS2 heavy-quark propagation in a realistic fluid dynamical medium

In the following, focus on two : generalist event generators that include heavy flavour and quarkonia and extension for heavy-ion physics

≻ PYTHIA≻ EPOS

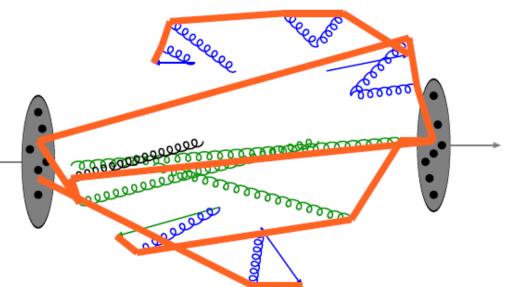
Model ingredients


model	EPOS	PYTHIA	Hijing	AMPT	
systems	pp, pA, AA	рр	pp, pA, AA	pp?, pA, AA	
Baseline	Multiple Interaction	Hard process	PYTHIA 5,3? + minijet + nuclear structure	HIJING + transport model (ZPC parton cascade)	
MPI	Parton-based Gribov-Regge Theory	Reconstructed after the hard process. Interaction ordered in hardness. In the new model : color reconnection	modeled by excitation of quark-diquark strings with gluon links + multiple low-p _T exchange		
Hard process	Hard and semi-hard ladder with soft pre- evolution u, d, s, g, gamma, c	Based on inclusive cross section Almost everything, if not in the code, can couple with extra code	PYTHIA 5,3		
HF Quarkonia	Open charm and open beauty J/Ψ in progress	Yes			

Model ingredients

model	EPOS	PYTHIA	Hijing	AMPT
Initial and Final state radiation	Iterative procedure from partons in hadrons to 2->2 process	A posteriori reconstruction Available for MPI in the new model (6.4)	PYTHIA 5,3	
Collectivity	Yes, string density, eg. for all systems if energy density high enough. Event by event hydro in EPOS2	No	Simple model for jet- quenching (jet- medium interaction in AA)	transport model
Hadroniz ation	String model with area law, diquark for baryon production	String model with fragmentation function popcorn for baryon production	PYTHIA 5,3	
Remnant	Yes Off-shell treatment	Yes	PYTHIA 5,3	
Connection between hard processes and MPI	Total by construction : several ladders soft or hard, energy conservation and color connection	With color reconnection (6,4), final state effect	modeled by excitation of quark-diquark strings with gluon links + multiple low-p _T exchange	?

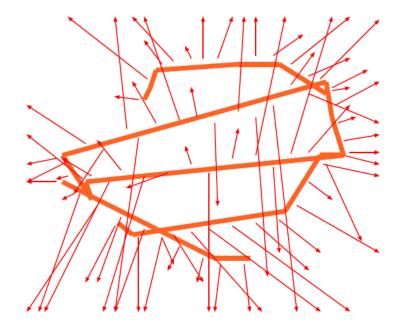
PYTHIA Physics : ref 6.4 Manual


1) The first hard interaction is the first step of event machinery : Computed in pQDC framework with factorization, possibility to select hard process : charm, bottom, jets, photon -> can tune this step

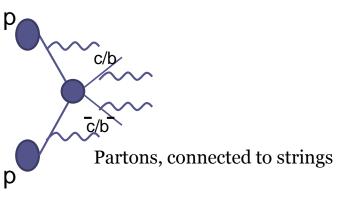
sarah@clermont.in2p3.fr

2) MPI (Multiple Parton Interaction) : other processes (soft or hard) can happen in parallel: PYTHIA model : the first hard interaction is particular, other are reconstructed afterward, ordered in hardness, in PYTHIA 6, only g,u,d,s available in other interactions. In PYTHIA 8 : second hard processes can include charm and bottom

sarah@clermont.in2p3.fr

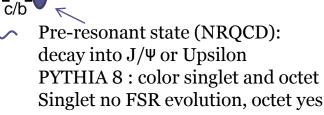


All produced partons:

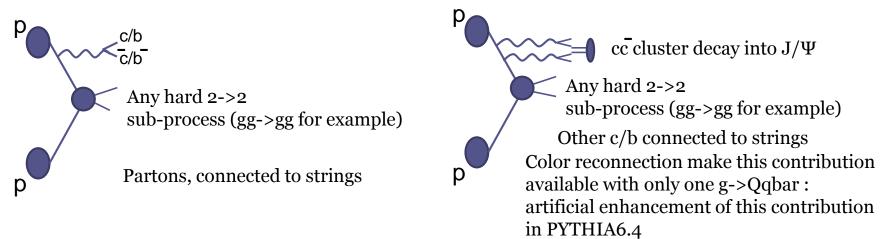

- hard process,
- ISR/FSR (Initial/Final State Radiation),
- MPI,
- Remnants

are connected via strings: the LUND procedure. Resonances let out of the machinery

Formed strings decay into hadrons. Fragmentation via qqbar pairs, pop-corn to produce baryons. qqbar = u,d,s,c (c is suppressed but available), heavier not implemented

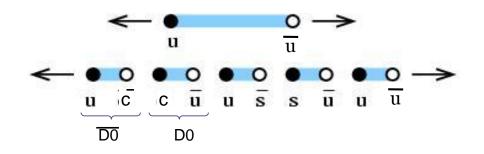


- ✤ In the 2->2 hard sub-process
 - 1) Open heavy-flavour



2) Resonance production

sarah@clermont.in2p3.fr



♦ Gluon splitting (g->Q \overline{Q} , gluon originated from ISR/FSR)

(N.B: Cluster: small peace of string: decay directly into hadrons)

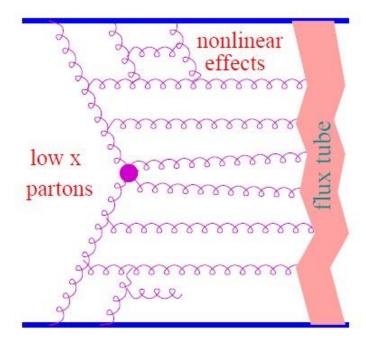
String fragmentation

An event can still produce J/Ψ and D mesons via string fragmentation

 $c\bar{c}$ pair production suppressed as compared to u, d, s.

Higher states not available

sarah@clermont.in2p3.fr

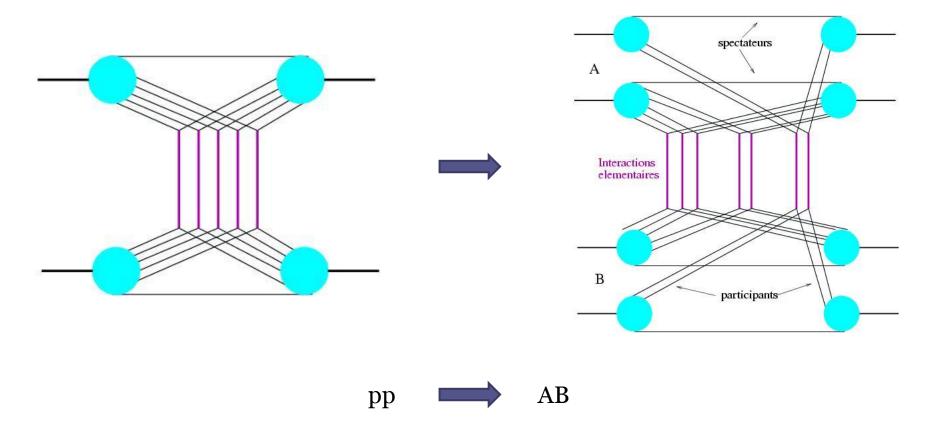

Origin of heavy flavours in PYTHIA 8.157

Origin of c and b quark content	D mes	ons	B mesons	
First hard process	11%		36%	
gluon fusion		2%		15%
c/b sea		9%		21%
Hard process in MPI	21%		24%	
Gluon splitting from hard process	6%		included in ISR/FSR	
ISR/FSR	62%		40%	
Remnant	< 0.2%		< 0.4%	
JHEP 1509 (2015) 148			I	

sarah@clermont.in2p3.fr

Quarkonia and HF in EPOS

Elementary scattering - flux tube

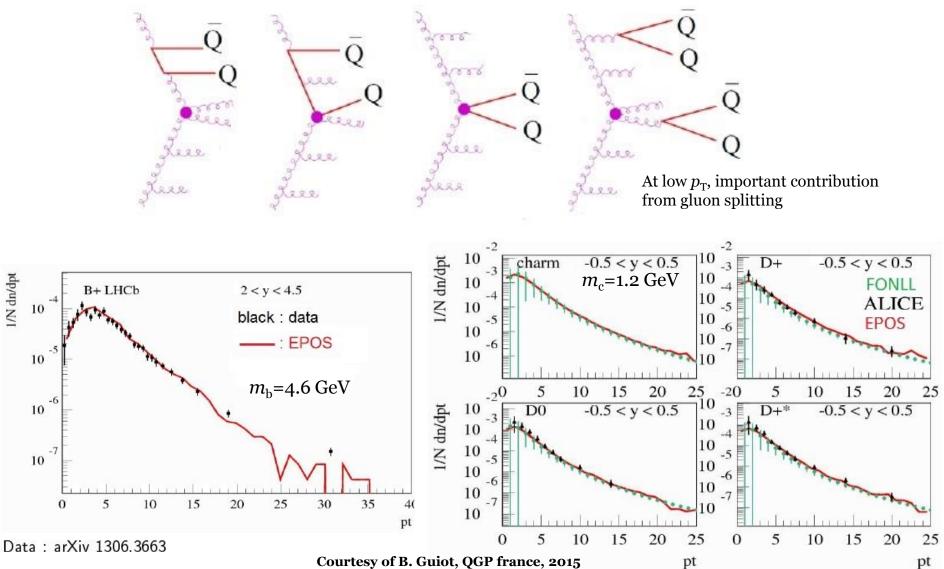


- □ Parton evolutions from the projectile and the target side towards the center (small x)
- Evolution is governed by an evolution equation, in the simplest case according to DGLAP.
- Parton ladder may be considered as a quasi-longitudinal color field, a so-called flux tube, conveniently treated as a relativistic string.
- □ Intermediate gluons are treated as kink singularities in the language of relativistic strings, providing a transversely moving portion of the object.
- flux tubes decay via the production of quarkantiquark pairs, creating in this way fragments
 which are identified with hadrons

Quarkonia and HF in EPOS

sarah@clermont.in2p3.fr

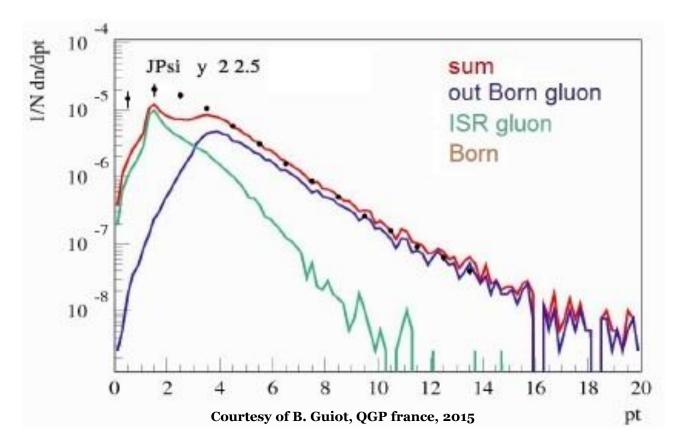
Same framework extended



14

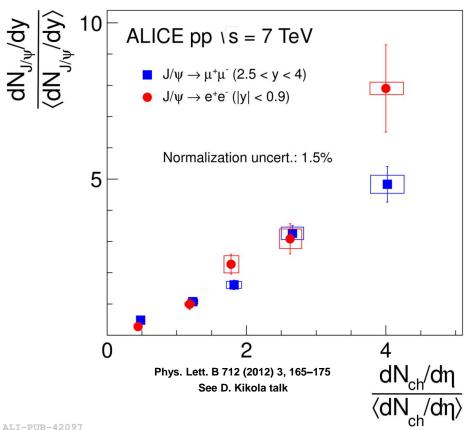
Quarkonia and HF in EPOS

sarah@clermont.in2p3.fr

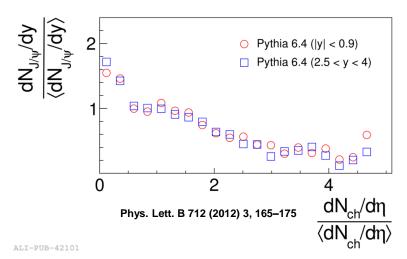

 $Q\bar{Q}$ production

Quarkonia and HF in EPOS

J/ Ψ production within the CEM model

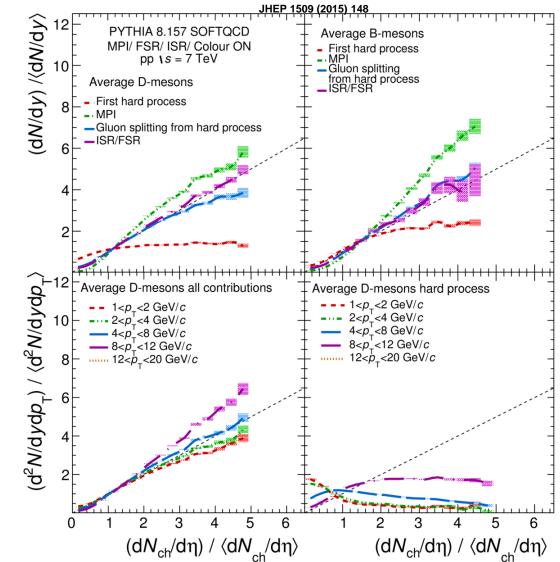

A parameter for the fraction of $c\overline{c}$ that hadronize into J/Ψ

sarah@clermont.in2p3.fr


Work in progress

Quarkonia and HF sarah@clermont.in2p3.fr vs. charged particle multiplicity

- Comparison with PYTHIA 6.4
 - Tune PERUGIA 2011
 - Direct J/Ψ production only J/Ψ produced in initial hard interactions


Trend not reproduced by PYTHIA 6.4 MPI without charm in subsequent interactions MPI ordered in hardness

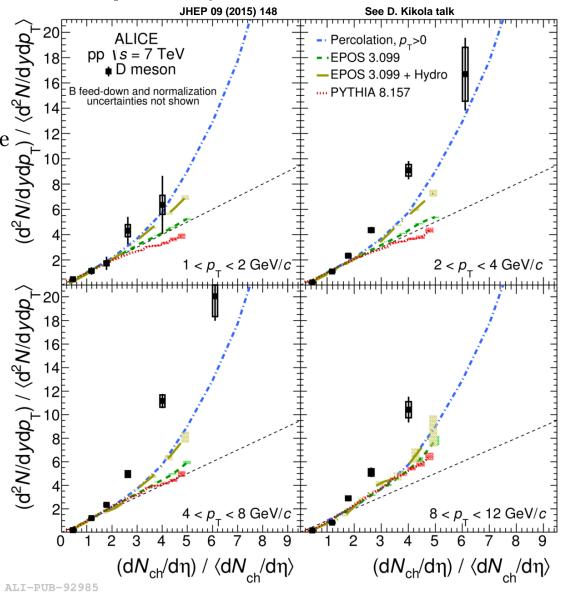
Quarkonia and HF vs. charged particle multiplicity

PYTHIA 8.157

- Top left : average D-mesons from different sources
- Top right : average B-mesons from different sources
- Bottom left : average D-mesons, all contributions, slices in $p_{\rm T}$
- Bottom right : average D-mesons, slices in p_T for first hard contribution only

ALI-PUB-92978

Quarkonia and HF surah@clermont.in2p3.fr vs. charged particle multiplicity


PYTHIA and EPOS wo hydro

Linear behavior fails to reproduce the data for the highest multiplicities

➢ EPOS w hydro and percolation

Departure from linearity help to describe the data. Reduction of the number of charged particles

- hydro evolution for EPOS arXiv:1602.03414
- string percolation for the percolation model

19

Quarkonia and HF sarah@clermont.in2p3.fr vs. charged particle multiplicity

Rongrong Ma, Hard probes 2015 p+p collisions @ 500 GeV **¥** STAR: J/ψ→μ⁺μ⁻, |y|<0.5, p₋>0 GeV/c **PYTHIA 8.183 ×** STAR: $J/\psi \rightarrow e^+e^-$, |y| < 1, $p_- > 4$ GeV/c 10 PYTHIA8.183 default: p _>0 GeV/c All contributions for J/Ψ PYTHIA8.183 default: p _>4 GeV/c production Percolation model: p _>0 GeV/c Works pretty well STAR preliminary Up to Event activity = 3 only STAR data points +15% one-sided error along both x- and y- direction 2.5 4.5 1.5 2 35 Event activity

20

Conclusions

- Event generators are of interest for new observables in quarkonium production : prospective and model comparison
- Many event generators available, few with quarkonia and underlying events, for light and heavy systems
- ➤ Heavy-flavours and quarkonia production in PYTHIA
 - Contribution from hard process, first and MPI, (D 38%, B 60%) and ISR/FSR radiation (D 62%, B 40%)

sarah@clermont.in2p3.fr

- HF : ISR/FSR contribution scales with multiplicity
- HF : MPI with hard processes scale with multiplicity
- J/Ψ : total production reproduce STAR Data
- ➢ Heavy-flavours in EPOS, quarkonia in progress
 - Only event generator with hydro evolution for all systems
 - Contribution from ladder evolution, gluon fusion in hard process, gluon splitting
 - HF : MPI scale with multiplicity
 - HF : hydro evolution helps to describe the data by reducing the number of charged particles

Monte Carlo event generators can play a role in understanding HF and onia production in (dense) hadronic environment