

Established by the European Commission

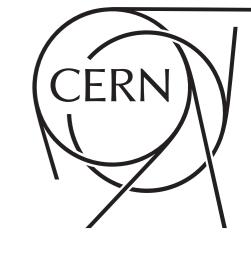
OVERVIEW OF $\eta_{c,b}, \chi_{c,b}, h_{c,b} \text{ and } X(3872)$ Production

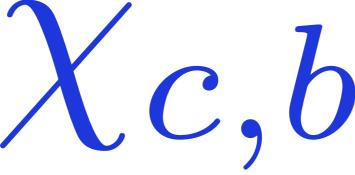
HUA-SHENG SHAO
THEORETICAL PHYSICS DEPARTMENT, CERN

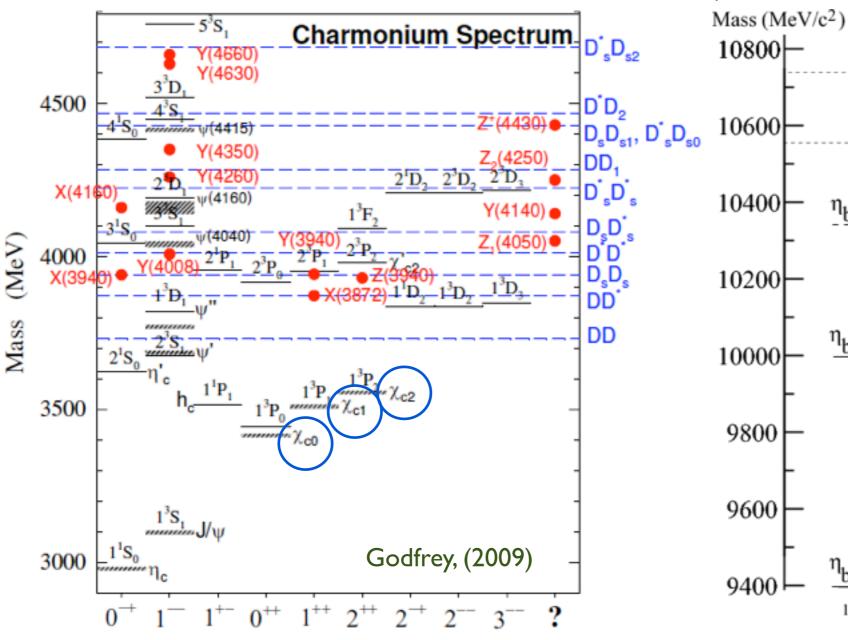
NEW OBSERVABLES IN QUARKONIUM PRODUCTION

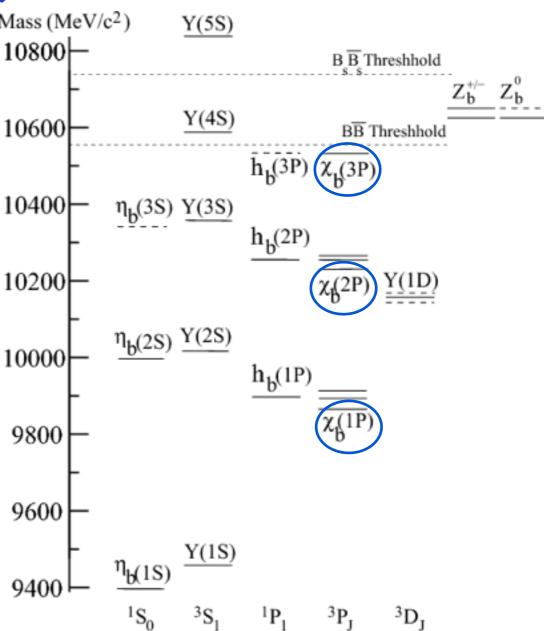
ECT*, TRENTO 29 FEBRUARY 2016

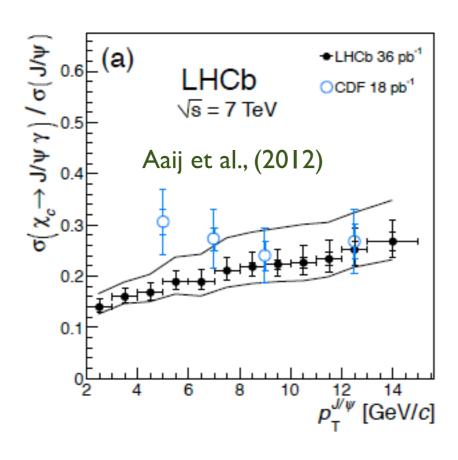
PLAN OF THE TALK

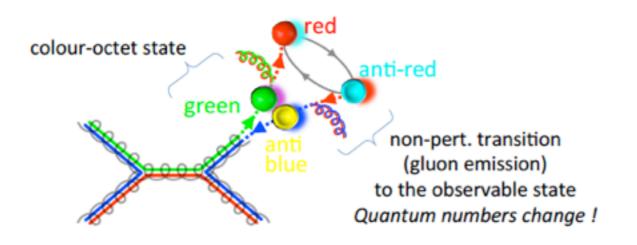



· I will focus on the review of the following quarkonium production


$$\chi_{c,b}$$
 $\eta_{c,b}$ $h_{c,b}$ $X(3872)$


- Disclaimer:
 - · by no means this talk is fully comprehensive
 - · the choice of presented results is biased
 - apologies if I have left out some of your results
 - I will not talk on the theory development (See Jian-Wei Qiu's first talk)
 - I will only talk on proton-(anti-)proton collisions (nucleus-nucleus or proton-nucleus collisions, see the sessions this afternoon or on Tuesday)
 - I will skip ψ and Υ production (Covered by Jian-Wei Qiu's first talk)




- Significant fraction of prompt J/ψ and Υ production

20%-30%

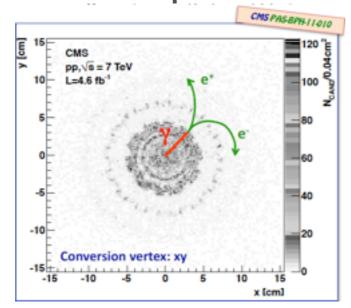
- Significant fraction of prompt J/ψ and Υ production
- Only one color-octet long distance matrix element

Power counting	η_c,η_b	$J/\psi, \psi(2S), \Upsilon$	h_c, h_b	χ_{cJ}, χ_{bJ}
v^3	${}^{1}\!S_{0}^{[1]}$	${}^{3}\!S_{1}^{[1]}$	_	_
v^{5}	_	_	${}^{1}\!P_{1}^{[1]}, {}^{1}\!S_{0}^{[8]}$	${}^{3}P_{J}^{[1]}, {}^{3}S_{1}^{[8]}$
v^7	${}^{1}S_{0}^{[8]}, {}^{3}S_{1}^{[8]}, {}^{1}P_{1}^{[8]}$	${}^{1}S_{0}^{[8]}, {}^{3}S_{1}^{[8]}, {}^{3}P_{J}^{[8]}$	_	_

- Significant fraction of prompt J/ψ and Υ production
- Only one color-octet long distance matrix element

- Significant fraction of prompt J/ψ and Υ production
- Only one color-octet long distance matrix element

- · No pain of suffering from too many freedom to be determined
- A good candidate to test NRQCD velocity scaling rule

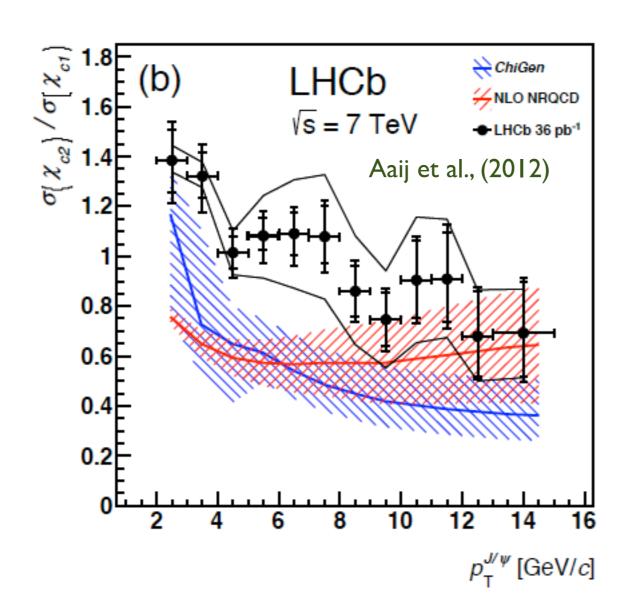


- Significant fraction of prompt J/ψ and Υ production
- Only one color-octet long distance matrix element

- · No pain of suffering from too many freedom to be determined
- · A good candidate to test NRQCD velocity scaling rule
- · However, it is a little bit challenge to measure via

$$\chi_{cJ} \rightarrow J/\psi + \gamma$$
 and $\chi_{bJ}(nP) \rightarrow \Upsilon(mS) + \gamma$

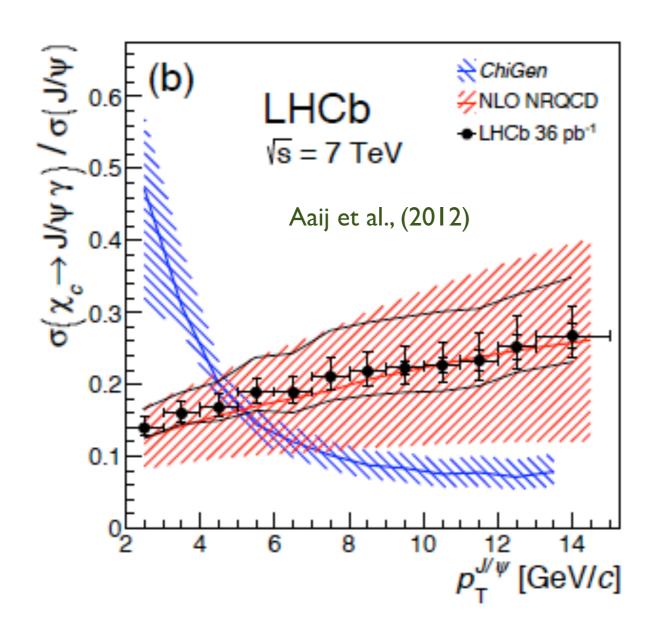
- · The trigger of photon is high in order to suppress background
- The photon is detected via photon conversion



• State of the art theoretical computation is NLO NRQCD Ma, Wang, Chao, (2011)

- State of the art theoretical computation is NLO NRQCD Ma, Wang, Chao, (2011)
- Better agreement between theory and data

Naive spin counting:


$$rac{\sigma(\chi_{c2})}{\sigma(\chi_{c1})} \sim rac{5}{3}$$

Data:

$$\frac{\sigma(\chi_{c2})}{\sigma(\chi_{c1})} \sim 1$$

- State of the art theoretical computation is NLO NRQCD Ma, Wang, Chao, (2011)
- Better agreement between theory and data

Correct fraction!

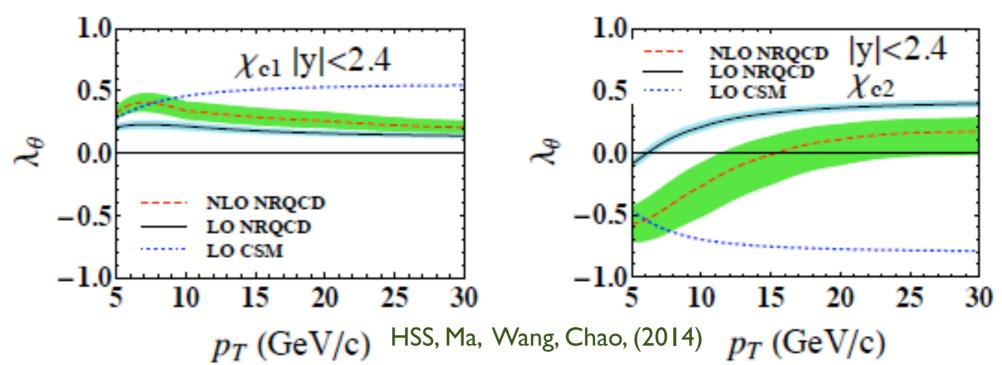
Correct trend!

- State of the art theoretical computation is NLO NRQCD Ma, Wang, Chao, (2011)
- Better agreement between theory and data

- State of the art theoretical computation is NLO NRQCD Ma, Wang, Chao, (2011)
- Better agreement between theory and data
- Comparisons were restricted to the yields only

- State of the art theoretical computation is NLO NRQCD Ma, Wang, Chao, (2011)
- Better agreement between theory and data
- Comparisons were restricted to the yields only
- Polarization would be a smoking gun?

See next talk/discussion



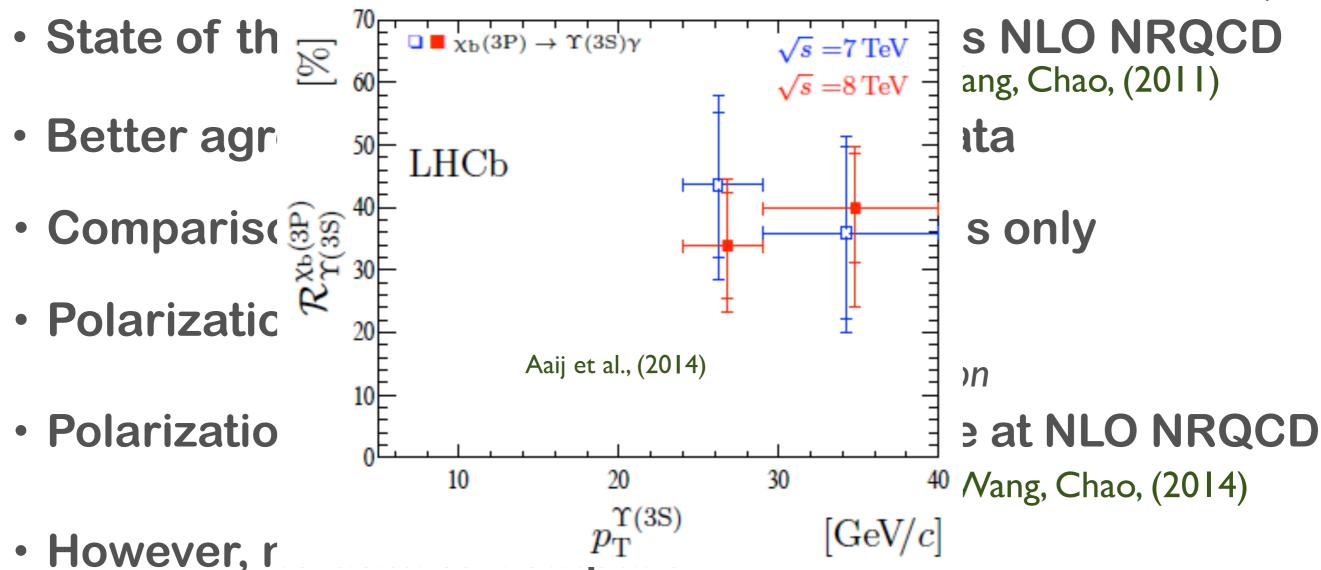
- State of the art theoretical computation is NLO NRQCD Ma, Wang, Chao, (2011)
- Better agreement between theory and data
- Comparisons were restricted to the yields only
- Polarization would be a smoking gun?

See next talk/discussion

Polarization observables are also available at NLO NRQCD

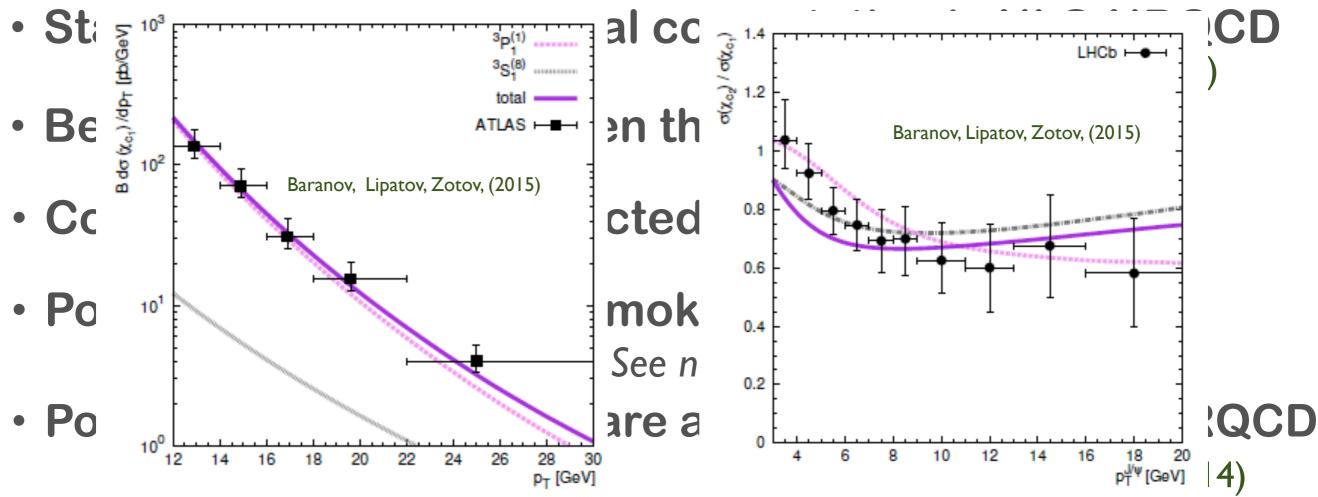
HSS, Ma, Wang, Chao, (2014)

- State of the art theoretical computation is NLO NRQCD Ma, Wang, Chao, (2011)
- Better agreement between theory and data
- Comparisons were restricted to the yields only
- Polarization would be a smoking gun?


See next talk/discussion

Polarization observables are also available at NLO NRQCD

HSS, Ma, Wang, Chao, (2014)


However, no data to compare!

• Keep in mind: feeddown from $\chi_b(3P)$ is not negligible!

- However, no data to compare!
- Keep in mind: feeddown from $\chi_b(3P)$ is not negligible!
- Studies in kt-factorization also appear

Baranov, Lipatov, Zotov, (2015)

 State of t 		$ \mathcal{R}_{\chi_{c1}}^{\prime(1)}(0) ^2/{\rm GeV^5}$	$ \mathcal{R}_{\chi_{c2}}^{\prime(1)}(0) ^2/{\rm GeV^5}$	$\langle \mathcal{O}^{\chi_{c0}} \left[{}^3S_1^{(8)} \right] \rangle / \mathrm{GeV}^3$
• Better ag	A0	3.85×10^{-1}	6.18×10^{-2}	8.28×10^{-5}
 Comparis 	JH	5.23×10^{-1}	9.05×10^{-2}	4.78×10^{-5}
 Polarizati 	KMR	3.07×10^{-1}	6.16×10^{-2}	1.40×10^{-4}
	[9]	7.50×10^{-2}	7.50×10^{-2}	2.01×10^{-3}
• Polarizati	[10]	3.50×10^{-1}	3.50×10^{-1}	4.40×10^{-4}
				, , , _O ,

) NRQCD 10, (2011)

V

LO NRQCD

hao, (2014)

However, no

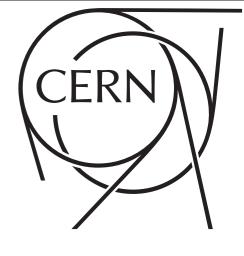
Non-identical WF@Orig

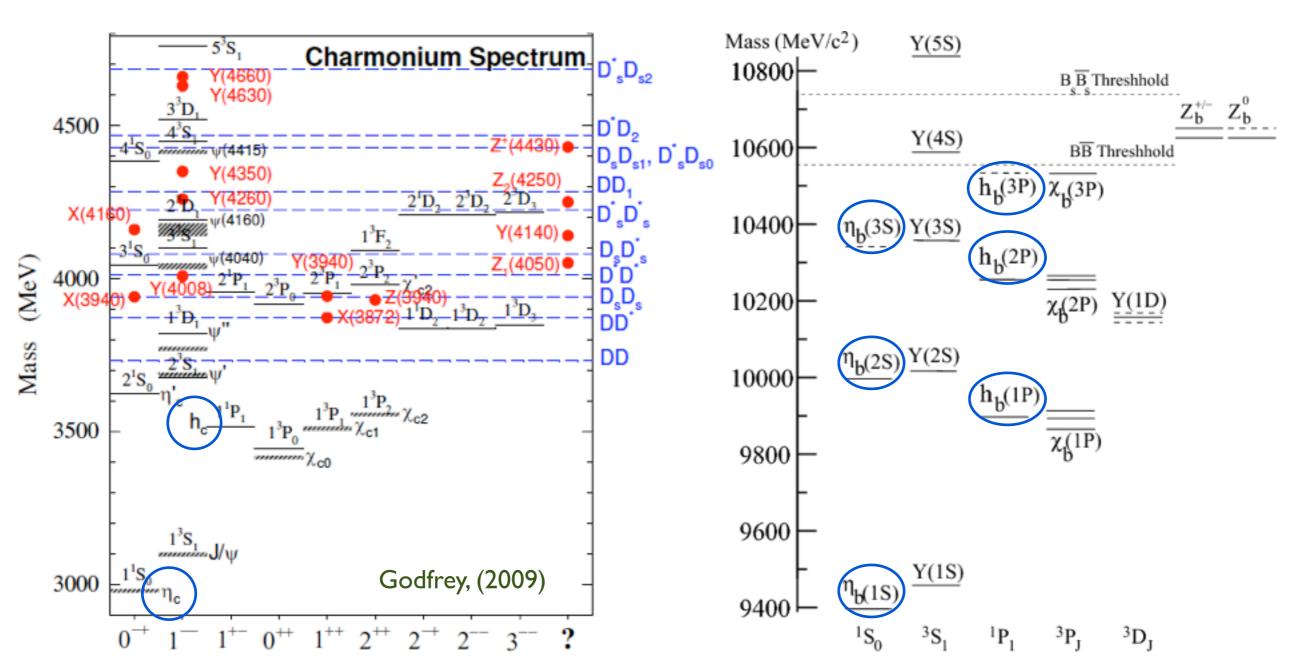
Big violation of HQSS?

- Keep in mina: $teeaaown\ trom\ \chi_b(\mathfrak{I})$ is not negligible!
- Studies in kt-factorization also appear

Baranov, Lipatov, Zotov, (2015)

- State of the art theoretical computation is NLO NRQCD Ma, Wang, Chao, (2011)
- Better agreement between theory and data
- Comparisons were restricted to the yields only
- Polarization would be a smoking gun?

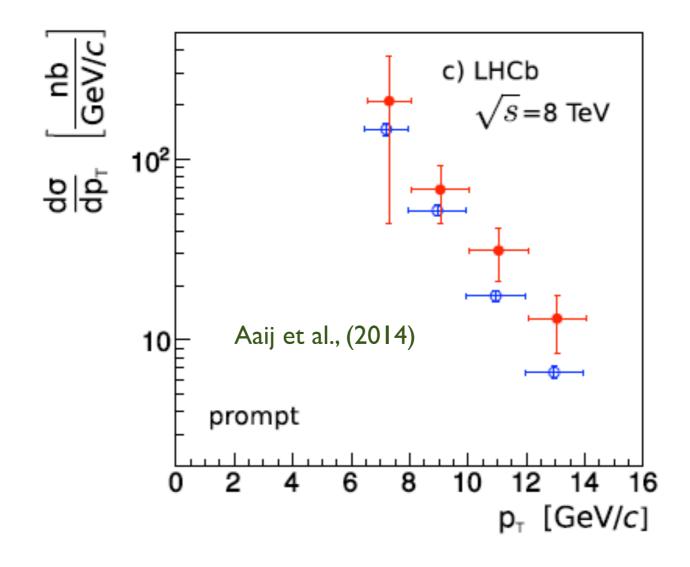

See next talk/discussion


- Polarization observables are also available at NLO NRQCD
 HSS, Ma, Wang, Chao, (2014)
- However, no data to compare!
- Keep in mind: feeddown from $\chi_b(3P)$ is not negligible!
- Studies in kt-factorization also appear

Baranov, Lipatov, Zotov, (2015)

η_c, b, h_c, b

• Why we are interested in $\eta_{c,b}$ and $h_{c,b}$?


- Why we are interested in $\eta_{c,b}$ and $h_{c,b}$?
- Test heavy quark spin symmetry Bodwin, Braaten, Lepage, (1995)

$$\eta_{c} \leftrightarrow J/\psi \qquad h_{c} \leftrightarrow \chi_{c}
\langle \mathcal{O}^{\eta_{c}}({}^{1}S_{0}^{[1,8]}) \rangle = \langle \mathcal{O}^{J/\psi}({}^{3}S_{1}^{[1,8]}) \rangle / 3 \qquad \langle \mathcal{O}^{h_{c}}({}^{1}S_{0}^{[8]}) \rangle = 3\langle \mathcal{O}^{\chi_{c0}}({}^{3}S_{1}^{[8]}) \rangle
\langle \mathcal{O}^{\eta_{c}}({}^{1}P_{1}^{[8]}) \rangle = 3\langle \mathcal{O}^{J/\psi}({}^{3}P_{0}^{[8]}) \rangle \qquad \langle \mathcal{O}^{h_{c}}({}^{1}P_{1}^{[1]}) \rangle = 3\langle \mathcal{O}^{\chi_{c0}}({}^{3}P_{0}^{[1]}) \rangle
\langle \mathcal{O}^{\eta_{c}}({}^{3}S_{1}^{[8]}) \rangle = \langle \mathcal{O}^{J/\psi}({}^{1}S_{0}^{[8]}) \rangle$$

Power counting	η_c,η_b	$J/\psi, \psi(2S), \Upsilon$	h_c, h_b	χ_{cJ}, χ_{bJ}
v^3	${}^{1}\!S_{0}^{[1]}$	${}^{3}\!S_{1}^{[1]}$	_	_
v^5	_	_	${}^{1}\!P_{1}^{[1]}, {}^{1}\!S_{0}^{[8]}$	${}^{3}P_{J}^{[1]}, {}^{3}S_{1}^{[8]}$
v^7	${}^{1}S_{0}^{[8]}, {}^{3}S_{1}^{[8]}, {}^{1}P_{1}^{[8]}$	${}^{1}\!S_{0}^{[8]}, {}^{3}\!S_{1}^{[8]}, {}^{3}\!P_{J}^{[8]}$	_	_

- Why we are interested in $\eta_{c,b}$ and $h_{c,b}$?
- Test heavy quark spin symmetry Bodwin, Braaten, Lepage, (1995)
- LHCb has measured $\eta_c o par p$ Aaij et al., (2014)

- Why we are interested in $\eta_{c,b}$ and $h_{c,b}$?
- Test heavy quark spin symmetry Bodwin, Braaten, Lepage, (1995)
- LHCb has measured $\eta_c o par p$ Aaij et al., (2014)
- Would it be possible to measure

$$h_c \to \eta_c + \gamma$$

- Why we are interested in $\eta_{c,b}$ and $h_{c,b}$?
- Test heavy quark spin symmetry Bodwin, Braaten, Lepage, (1995)
- LHCb has measured $\eta_c o par p$ Aaij et al., (2014)
- Would it be possible to measure

$$h_c \to \eta_c + \gamma$$

- No promising channel for searching η_b at the LHC ?
 - Looking at it decaying into $D^*D^{(*)}$? Maltoni, Polosa, (2004)

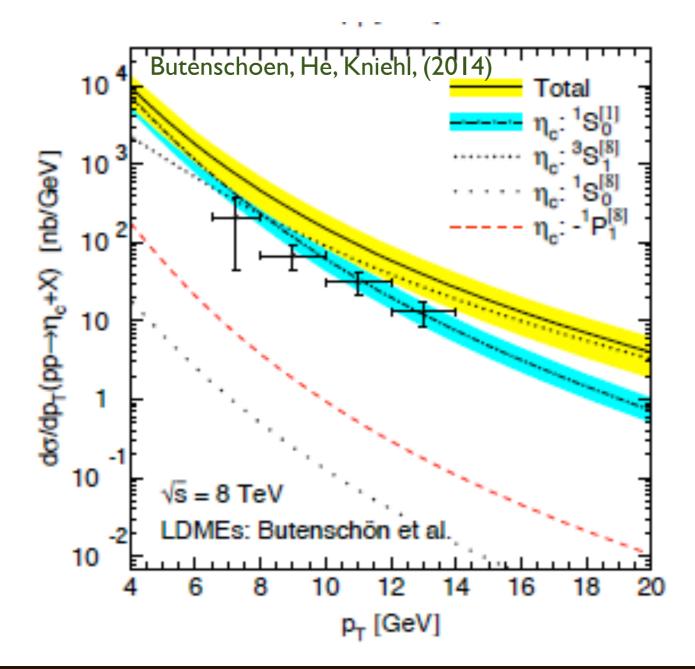
- Why we are interested in $\eta_{c,b}$ and $h_{c,b}$?
- Test heavy quark spin symmetry Bodwin, Braaten, Lepage, (1995)
- LHCb has measured $\eta_c o par p$ Aaij et al., (2014)
- Would it be possible to measure

$$h_c \to \eta_c + \gamma$$

- No promising channel for searching η_b at the LHC ?
 - Looking at it decaying into $D^*D^{(*)}$? Maltoni, Polosa, (2004)
- h_b is more challenging

The LHCb measurement inspires theoretical studies

Butenschoen, He, Kniehl, (2014); Han et al., (2014); Zhang et al., (2014)



The LHCb measurement inspires theoretical studies

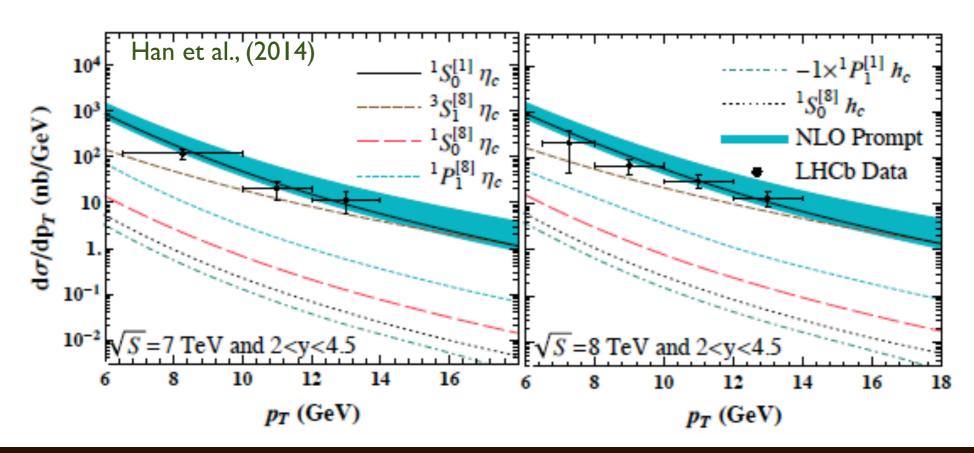
Butenschoen, He, Kniehl, (2014); Han et al., (2014); Zhang et al., (2014)

Global fit + HQSS greatly overshoot the LHCb data

Butenschoen, He, Kniehl, (2014)

The LHCb measurement inspires theoretical studies

Butenschoen, He, Kniehl, (2014); Han et al., (2014); Zhang et al., (2014)


Global fit + HQSS greatly overshoot the LHCb data

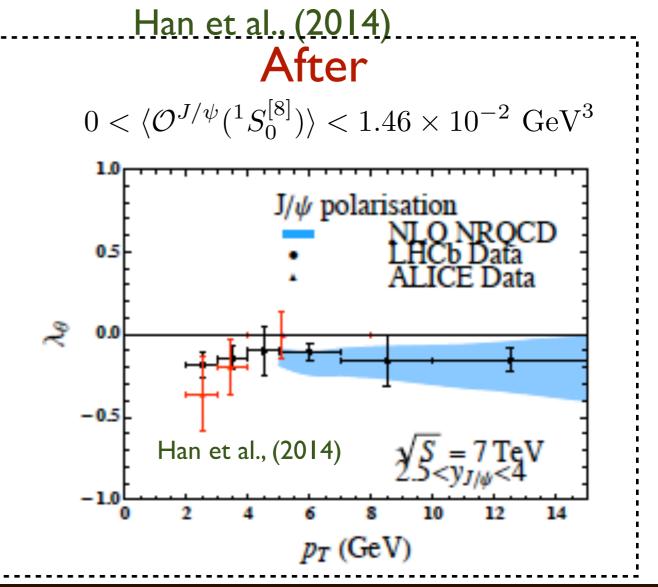
Butenschoen, He, Kniehl, (2014)

• LHCb data + HQSS helps to constrain $\langle \mathcal{O}^{J/\psi}(^1S_0^{[8]}) \rangle$

Han et al., (2014)

$$0 < \langle \mathcal{O}^{\eta_c}(^3S_1^{[8]}) \rangle < 1.46 \times 10^{-2} \text{ GeV}^3$$

The LHCb measurement inspires theoretical studies


Butenschoen, He, Kniehl, (2014); Han et al., (2014); Zhang et al., (2014)

Global fit + HQSS greatly overshoot the LHCb data

Butenschoen, He, Kniehl, (2014)

• LHCb data + HQSS helps to constrain $\langle \mathcal{O}^{J/\psi}(^1S_0^{[8]}) \rangle$

Before $0 < \langle \mathcal{O}^{J/\psi}(^{1}S_{0}^{[8]}) \rangle < 9.3 \times 10^{-2} \text{ GeV}^{3}$ J/ψ polarisation 0.5 0.0-0.5Shao et al., (2014) $p_T \, (\text{GeV})$

The LHCb measurement inspires theoretical studies

Butenschoen, He, Kniehl, (2014); Han et al., (2014); Zhang et al., (2014)

Global fit + HQSS greatly overshoot the LHCb data

Butenschoen, He, Kniehl, (2014)

• LHCb data + HQSS helps to constrain $\langle \mathcal{O}^{J/\psi}(^1S_0^{[8]}) \rangle$

Han et al., (2014)

• HQSS holds up to $\mathcal{O}(v^2)$

Charmonium: $v^2 \approx 0.3$ Bottomonium: $v^2 \approx 0.1$

The LHCb measurement inspires theoretical studies

Butenschoen, He, Kniehl, (2014); Han et al., (2014); Zhang et al., (2014)

Global fit + HQSS greatly overshoot the LHCb data

Butenschoen, He, Kniehl, (2014)

- LHCb data + HQSS helps to constrain $\langle \mathcal{O}^{J/\psi}(^1S_0^{[8]})\rangle$ Han et al., (2014)
- HQSS holds up to $\mathcal{O}(v^2)$

Charmonium: $v^2 \approx 0.3$ Bottomonium: $v^2 \approx 0.1$

• Does HQSS hold also for P-wave: h_{c} ?

The LHCb measurement inspires theoretical studies

Butenschoen, He, Kniehl, (2014); Han et al., (2014); Zhang et al., (2014)

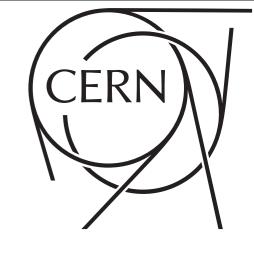
Global fit + HQSS greatly overshoot the LHCb data

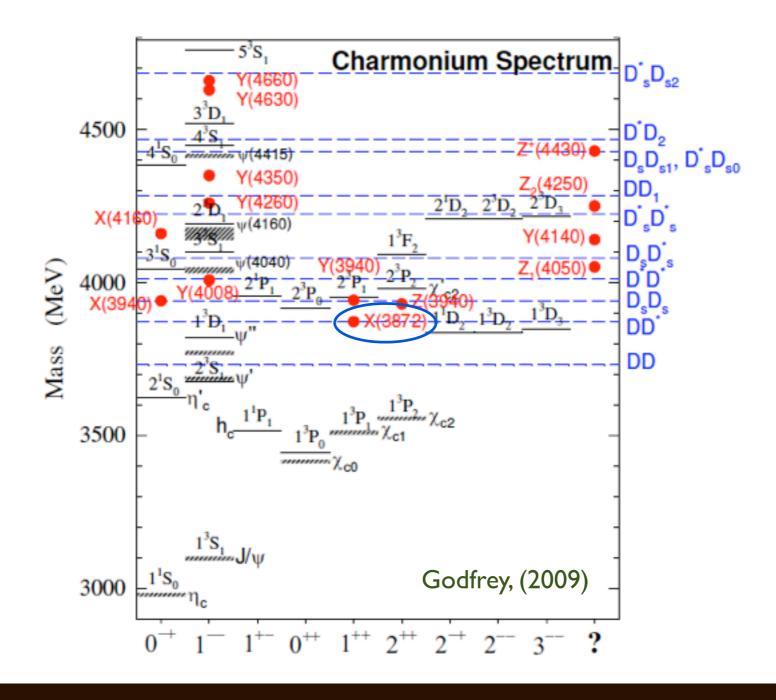
Butenschoen, He, Kniehl, (2014)

• LHCb data + HQSS helps to constrain $\langle \mathcal{O}^{J/\psi}(^1S_0^{[8]}) \rangle$

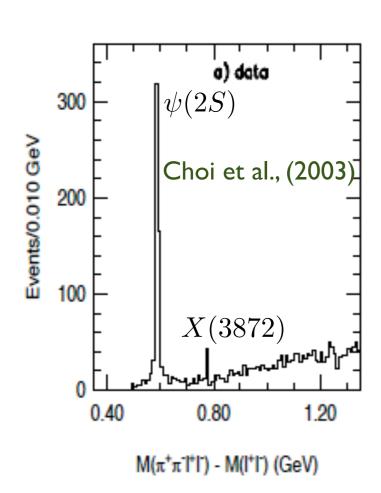
Han et al., (2014)

• HQSS holds up to $\mathcal{O}(v^2)$

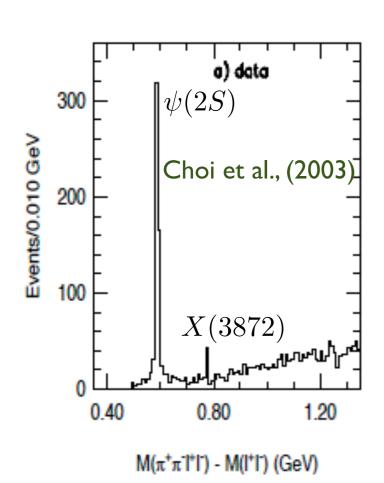

Charmonium: $v^2 \approx 0.3$ Bottomonium: $v^2 \approx 0.1$


- Does HQSS hold also for P-wave: h_c ?
- NLO NRQCD result is available for h_c production

Wang, Zhang, (2014)



- First observed by the Belle Collaboration Choi et al., (2003)
- A meson close to open charm pair threshold
- LHCb measurement determines its quantum numbers


$$J^{PC} = 1^{++}$$
 Aaij et al., (2013)

- First observed by the Belle Collaboration Choi et al., (2003)
- · A meson close to open charm pair threshold
- LHCb measurement determines its quantum numbers

$$J^{PC} = 1^{++}$$
 Aaij et al., (2013)

- How to interpret it?
 - tetraquark?
 - charmonium, $\chi_{c1}(2P)$?
 - hadronic molecule?

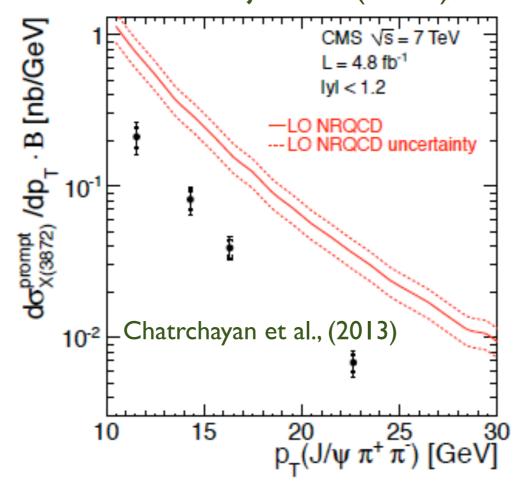
Understanding it from prompt yields at hadron colliders?

• hadronic molecule interpretation normally has lower yields than data $\sigma(p\bar{p}\to X)\times {\rm Br}(X\to J/\psi\pi^+\pi^-)$ Suzuki, (2005); Bignamini et al., (2009)

theory vs CDF

0.085 nb

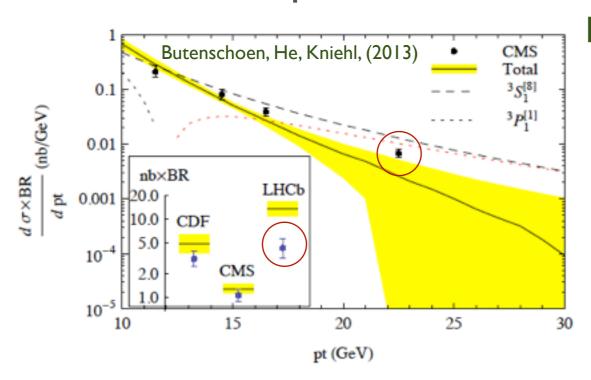
 $3.1 \pm 0.7 \text{ nb}$



- hadronic molecule interpretation normally has lower yields than data
 Suzuki, (2005); Bignamini et al., (2009)
- rescattering effects could enhance the molecule production rate Artoisenet, Braaten (2010)

- hadronic molecule interpretation normally has lower yields than data
 Suzuki, (2005); Bignamini et al., (2009)
- rescattering effects could enhance the molecule production rate Artoisenet, Braaten (2010)
- However, it overshots the LHCb and CMS data

 Aaij et al., (2012); Chatrchayan et al., (2013)


- hadronic molecule interpretation normally has lower yields than data
 Suzuki, (2005); Bignamini et al., (2009)
- rescattering effects could enhance the molecule production rate Artoisenet, Braaten (2010)
- However, it overshots the LHCb and CMS data
 Aaij et al., (2012); Chatrchayan et al., (2013)
- Is it a charmonium?

Understanding it from prompt yields at hadron colliders?

- hadronic molecule interpretation normally has lower yields than data
 Suzuki, (2005); Bignamini et al., (2009)
- rescattering effects could enhance the molecule production rate Artoisenet, Braaten (2010)
- However, it overshots the LHCb and CMS data

 Aaij et al., (2012); Chatrchayan et al., (2013)
- Is it a charmonium?
- It disfavors a pure charmonium based on NLO NRQCD fit

Butenschoen, He, Kniehl, (2013)

Understandir

- hadronic mole
- rescattering ef
- However, it ov
- Is it a charmor

adron colliders?

ver yields than data gnamini et al., (2009) coduction rate ten (2010)

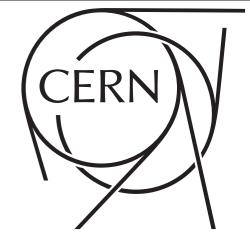
chayan et al., (2013)

• It disfavors a pure charmonium pased on the takQCD fit

Butenschoen, He, Kniehl, (2013)

• NLO NRQCD fit works by interpreting it as a mixing of $\dot{\chi}_{c1}(2P)-D^0\bar{D}^{*0}$ Meng, Gao, Chao, (2005); Meng, Han, Chao, (2013)

- hadronic molecule interpretation normally has lower yields than data
 Suzuki, (2005); Bignamini et al., (2009)
- rescattering effects could enhance the molecule production rate Artoisenet, Braaten (2010)
- However, it overshots the LHCb and CMS data


 Aaij et al., (2012); Chatrchayan et al., (2013)
- Is it a charmonium?
- It disfavors a pure charmonium based on NLO NRQCD fit Butenschoen, He, Kniehl, (2013)
- NLO NRQCD fit works by interpreting it as a mixing of $\dot{\chi}_{c1}(2P)-D^0\bar{D}^{*0}$ Meng, Gao, Chao, (2005); Meng, Han, Chao, (2013)
- However, it introduces an extra parameter to fit (fraction of charmonium)

- hadronic molecule interpretation normally has lower yields than data
 Suzuki, (2005); Bignamini et al., (2009)
- rescattering effects could enhance the molecule production rate Artoisenet, Braaten (2010)
- However, it overshots the LHCb and CMS data

 Aaij et al., (2012); Chatrchayan et al., (2013)
- Is it a charmonium?
- It disfavors a pure charmonium based on NLO NRQCD fit Butenschoen, He, Kniehl, (2013)
- NLO NRQCD fit works by interpreting it as a mixing of $\dot{\chi}_{c1}(2P)-D^0\bar{D}^{*0}$ Meng, Gao, Chao, (2005); Meng, Han, Chao, (2013)
- · However, it introduces an extra parameter to fit (fraction of charmonium)
- · More comparisons are needed to confirm its ingredient

CONCLUSIONS

CONCLUSIONS

- We have a lot of quarkonium production data
 - Most of them are for ψ and Υ production, because of easy reconstruction
- We should not overlook other quarkonium
 - Some of them are more clean "theoretically" though difficult "experimentally".
 - Some tell us new complementary information
 - Some help us to explore the new pieces of physics/QCD
- The theoretical calculations are already at NLO in NRQCD

CONCLUSIONS

- We have a lot of quarkonium production data
 - Most of them are for ψ and Υ production, because of easy reconstruction
- We should not overlook other quarkonium
 - Some of them are more clean "theoretically" though difficult "experimentally".
 - Some tell us new complementary information
 - Some help us to explore the new pieces of physics/QCD
- The theoretical calculations are already at NLO in NRQCD

Thank you for your attention !