

Quarkonium production and polarisation

at Tevatron and LHC

Vato Kartvelishvili

<u>New observables in quarkonium production</u> <u>ECT* Trento, 29 February – 4 March 2016</u>

These "highlights" are personal, apologies for any omissions and biases!

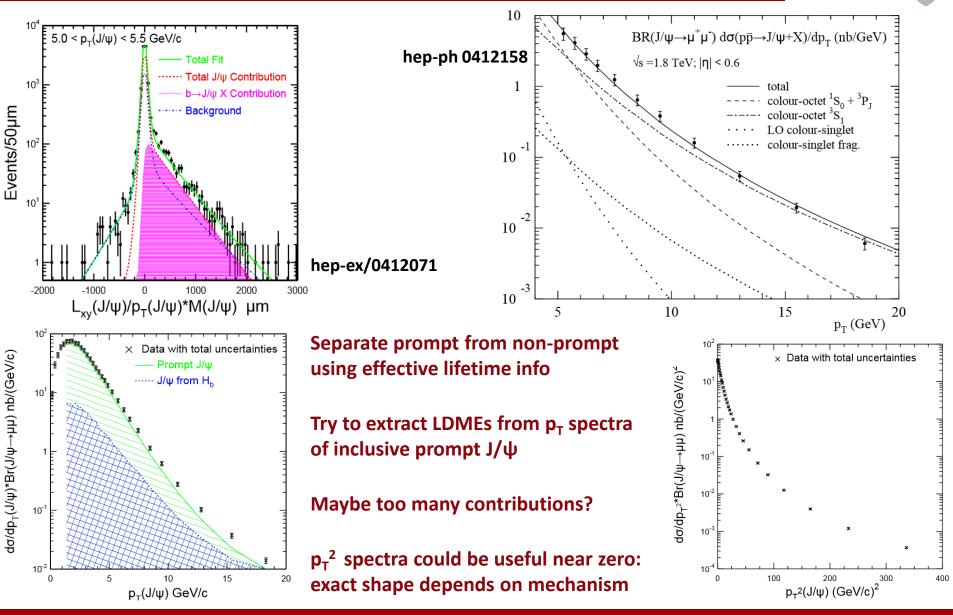
Talk includes: Overview of experimental results on quarkonium production in ppbar/pp collisions (cross section and polarisation) at the Tevatron and the LHC

Does NOT include: production of χ_c , χ_b , η_c etc quarkonium production in pA or AA collisions quarkonium production in association with another quarkonium quarkonium production in association with vector bosons

Essentially, I was asked to exclude all the fun stuff -- "new observables" -- and present the results on J/ψ , $\psi(2S)$ and Υ production and polarisation

Happy to do just that, since these are the baseline measurements for anything else

Still A LOT to cover, so let's get started...

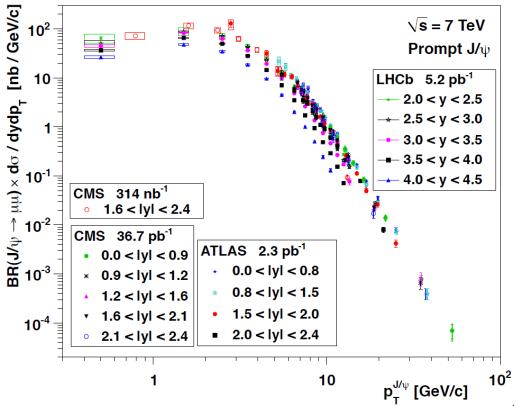

J/ψ production: references

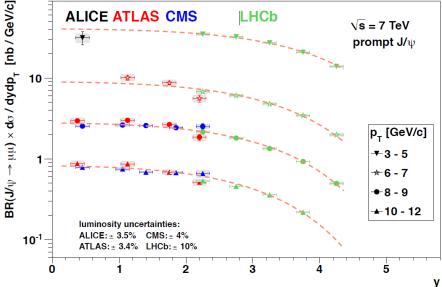
ALICE: J/ψ production at 7 TeV, 5.6/nb(ee, y < 0.9) + 15.6/nb(μμ, 2.5 <y<4)< th=""><th>PLB704(2011)442</th></y<4)<>	PLB704(2011)442
ALICE: J/ψ production at 7 TeV, 5.6/nb(ee, y < 0.9)	JHEP11(2012) 065
ALICE: J/ψ production at 7 TeV, 1.35/pb (μμ, 2.5 <y<4)< td=""><td>EPJ C74 (2014) 2974</td></y<4)<>	EPJ C74 (2014) 2974
ALICE: J/ψ production at 8 TeV, 1.28/pb (μμ, 2.5 <y<4)< td=""><td>CERN-PH-EP-2015-267</td></y<4)<>	CERN-PH-EP-2015-267
ALICE: J/ψ production at 2.76 TeV, 1.1/nb(ee, y < 0.9) + 19.9/nb(μμ, 2.5 <y<4< td=""><td>PL B718 (2012) 295</td></y<4<>	PL B718 (2012) 295
ATLAS: J/ψ production at 7 TeV, 2.3/pb, y < 2.4	NP B 850 (2011) 387
ATLAS: J/ψ production at 7 TeV, 2.1/fb and 8 TeV, 11.4/fb	arXiv:1512.03657
CMS: J/ψ production at 7 TeV, 37/pb	JHEP02(2012)011
CMS: J/ψ production at 7 TeV, 314/pb, y < 2.4	EPJ C71 (2011) 1575
CMS: J/ψ production at 7 TeV, 4.9/fb, y < 1.2	PRL 114 (2015) 191802
LHCb: J/ ψ production at 13 TeV, 3/pb, pT < 14 GeV, 2 < y < 4.5	JHEP10(2015)172
LHCb: J/ψ production at 8 TeV, 18/pb, 2 < y < 4.5	JHEP06(2013)064
LHCb: J/ψ production at 7 TeV, 5.2/pb, 2 < y < 4.5	CERN-PH-EP-2011-018
CDE_1 / μ production at 1.06 TaV 20.7/ph $ \mu < 0.6$	
CDF: J/ ψ production at 1.96 TeV, 39.7/pb y < 0.6	PRD71 (2005) 032001

D0: J/ψ production, 1.8 TeV |η|<0.6 D0: J/ψ production , 1.8 TeV, 9.8/pb, 2.5<|η|<3.7 PRD71 (2005) 032001 PLB 370(1996) 239 PRL 82(1999) 35

Prompt J/\psi production: Tevatron

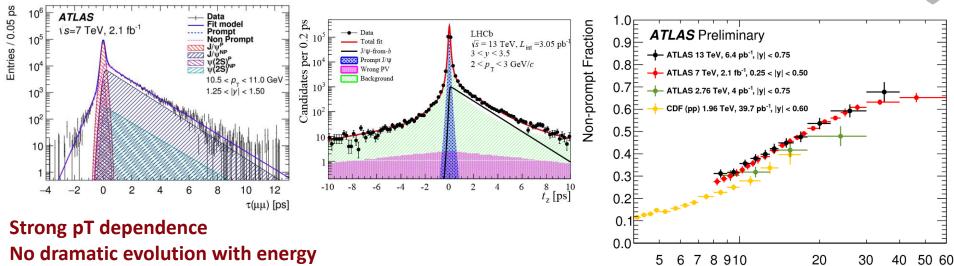
Lancaster University


Prompt J/\psi production: LHC

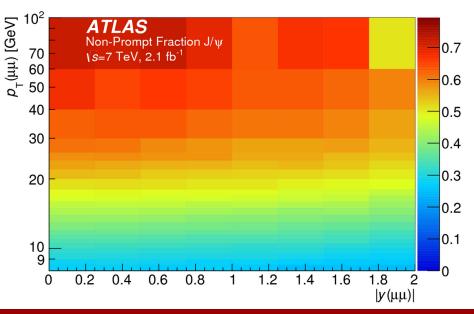


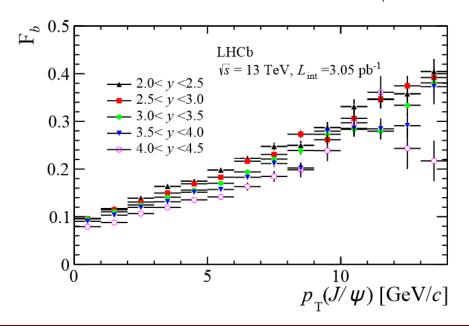
(a couple of years old by now)

Nice synergy between the LHC experiments



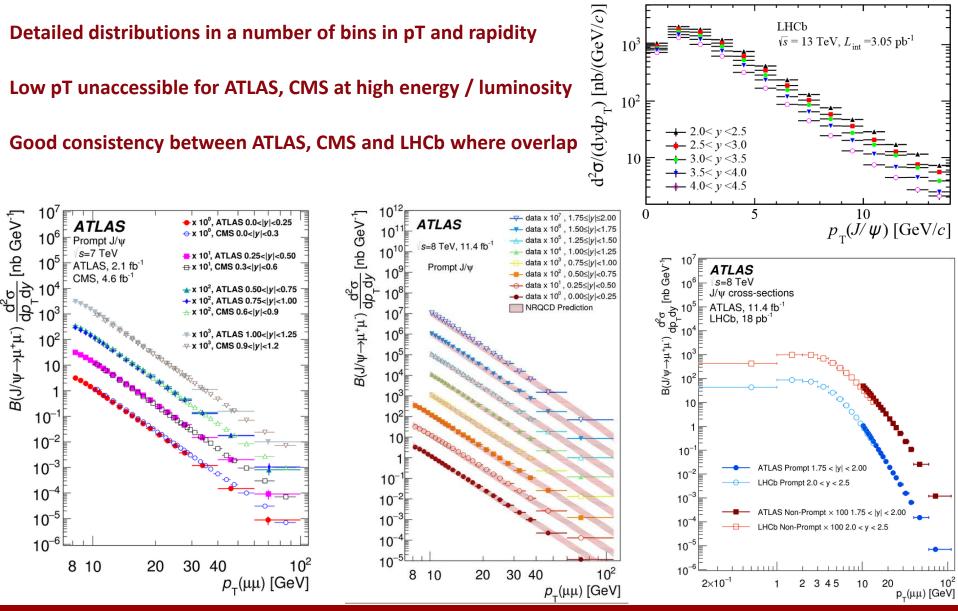
Between the experiments, a huge kinematic range is covered: |y| < 4.5, 0<p_T<100 GeV


Over 6 orders of magnitude in p_T


Given the diversity of experiments and conditions, consistency of measurements is really remarkable

Non-prompt J/ ψ fraction: LHC recent

No dramatic evolution with energy Some dependence on rapidity forward


Lancaster Star University

 $p_{\pm}(\mu^{+}\mu^{-})$ [GeV]

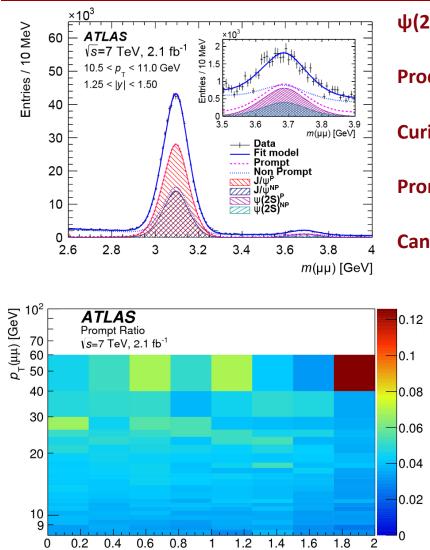
::: Quarkonium2016, Trento :: 29 Feb 2016 :: V Kartvelishvili – Quarkonium production at colliders Page 6

Prompt J/\psi production: LHC recent

ψ (2S) production: references

LHCb: $\psi(2S)$ production at 7 TeV, 36/pb, pT<14 GeV, 2<y<4.5 CMS: $\psi(2S)$ production at 7 TeV, 37/pb CMS: $\psi(2S)$ production at 7 TeV, 4.9/nb, |y| < 1.2ATLAS: $\psi(2S)$ production at 7 TeV, 2.1/fb and 8 TeV, 11.4/fb ATLAS: $\psi(2S)$ production (J/ $\psi\pi\pi$ mode) at 7 TeV, 2.1/fb ALICE: $\psi(2S)$ production at 7 TeV, 1.35/pb ($\mu\mu$, 2.5 <y<4) ALICE: $\psi(2S)$ production at 8 TeV, 1.28/pb ($\mu\mu$, 2.5 <y<4)

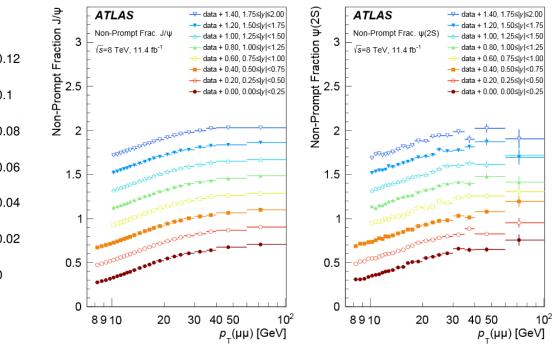
CDF: $\psi(2S)$ production at 1.96 TeV, 1.1/fb |y|< 0.6


EPJ C72 (2012) 2100 JHEP02(2012)011 PRL114 (2015) 191802 arXiv:1512.03657 JHEP09(2014)079 EPJ C74 (2014) 2974

CERN-PH-EP-2015-267

PRD 80 (2009) 031103

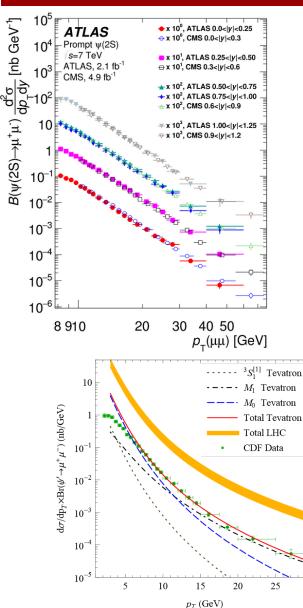
ψ (2S) production: general remarks


 ψ (2S) more challenging: lower stats, higher background

Production mechanism should be theoretically cleaner

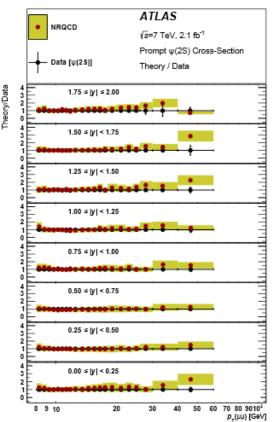
Curiously, non-prompt fraction very similar to J/ψ

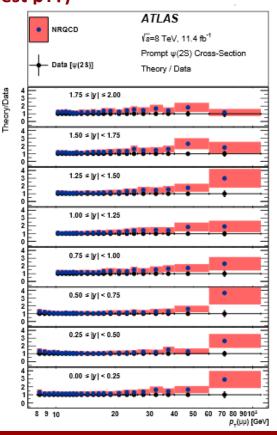
Prompt $\psi(2S)$ /J ψ ratio close to constant


Can these facts be understood within our current picture?

V Kartvelishvili – Quarkonium production at colliders :: Quarkonium2016, Trento :: 29 Feb 2016 :: Page 9

 $|y(\mu\mu)|$


Prompt $\psi(2S)$ production



Again, ATLAS and CMS consistent

Could be used to extract some LDMEs (Ma,Wang,Chao,arXiv:1009.3655)

LDMEs from Tevatron fits in decent agreement with LHC data (maybe peeling slightly high at highest pT?)

Lancaster University

V Kartvelishvili – Quarkonium production at colliders :: Quarkonium2016, Trento :: 29 Feb 2016 ::

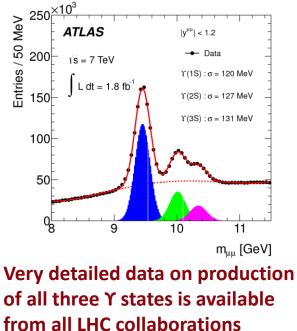
30

Page 10

Y(nS) production: references

ALICE: Υ production at 7 TeV, 1.35/pb (μμ, 2.5 <y<4)< td=""><td>EPJ C74 (2014) 2974</td></y<4)<>	EPJ C74 (2014) 2974
ALICE: Υ production at 8 TeV, 1.28/pb (μμ, 2.5 <y<4)< td=""><td>arXiv:1509.08258</td></y<4)<>	arXiv:1509.08258
ATLAS: Y(1S) fiducial production at 7 TeV, 1.13/pb	PLB 705 (2011) 9
ATLAS: Y production at 7 TeV, 1.8/fb	PR D87 (2013) 052004
CMS: Υ production at 7 TeV, 3.1/pb, y <2	PRD 83 (2011) 112004
CMS: Υ production at 7 TeV, 36/pb, y <2.4	PLB 727 (2013) 101
CMS: Υ production at 7 TeV, 4.9/fb, y <1.2	PLB 749 (2015) 14
LHCb: Υ production at 7 TeV (1/fb) and 8 TeV (2/fb) [pT<30 GeV, 2 <y<4.5]< td=""><td>JHEP 1511 (2015) 103</td></y<4.5]<>	JHEP 1511 (2015) 103
LHCb: Y production at 2.76 TeV (3.3/pb) [pT<15 GeV, 2 <y<4.5]< td=""><td>EPJ C74 (2014) 2835</td></y<4.5]<>	EPJ C74 (2014) 2835
LHCb: Υ production at 8 TeV, 51/pb, 2 < y < 4.5	JHEP06(2013)064
LHCb: Υ production at 7 TeV, 25/pb, pT<15 GeV, 2 <y<4.5< td=""><td>EPJ C72 (2012) 2025</td></y<4.5<>	EPJ C72 (2012) 2025

D0: Υ production at 1.96 TeV,


CDF: Υ production at 1.8 TeV,

PRL 94 (2005) 232001, PRL 100 (2008) 049902 PRL 88 (2002) 161802, PRL 75 (1995) 4358

Lancaster Star University

Recent results from LHC

|y^ĩ| < 1.2

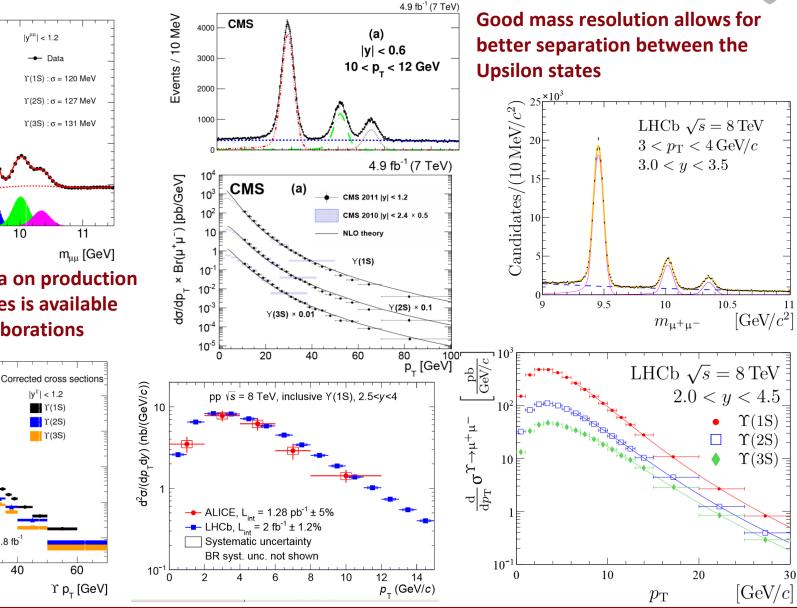
r(1S)

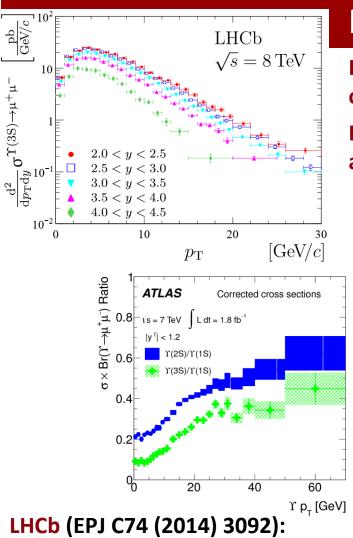
r(2S)

r(3S)

dt = 1.8 fb

40

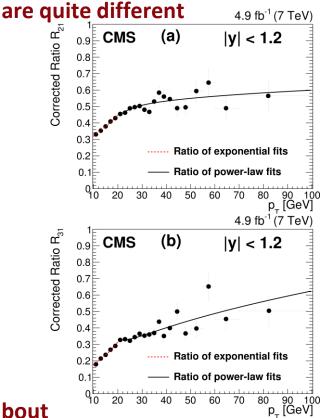

 $\begin{array}{ccc} d^2\sigma/dp_Tdy \times Br(T \rightarrow \mu^+\mu^{}) \ [pb/GeV] \\ 0 & 0 \\ 0 & 1 \\ 0 & 1 \\ \end{array} \quad 1 & 0 \\ 0 & 0 \\ 0 \end{array}$

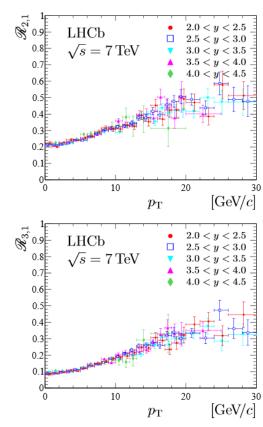

ATLAS

\s = 7 TeV

0

20




feed-down from C-even states is about 50% for all three Υ(nS) states There is no "clean" state here like ψ(2s)

Ratios

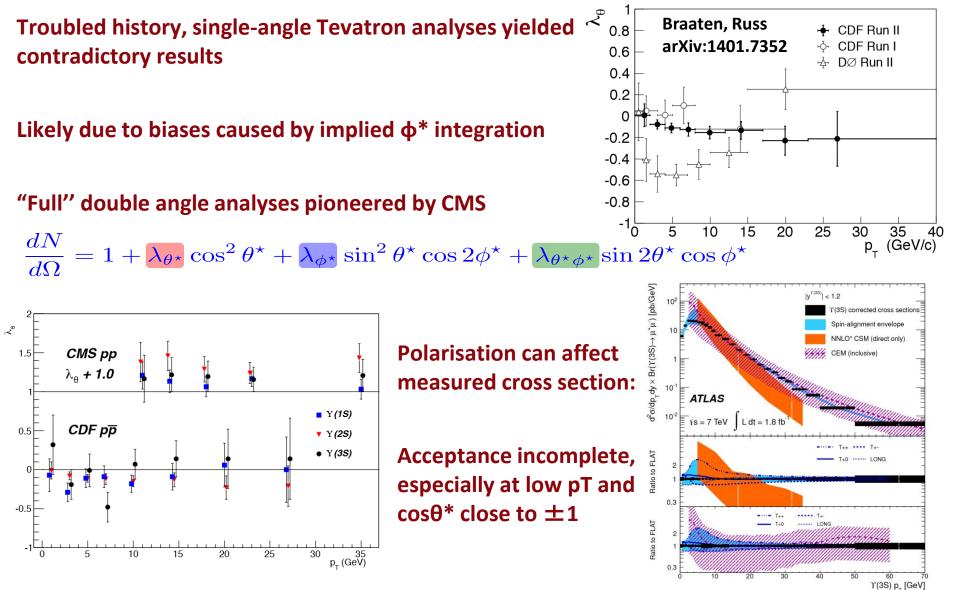
Ratios $\Upsilon(3S)/\Upsilon(1S)$ and $\Upsilon(2S)/\Upsilon(1S)$ show strong dependence on pT, hinting on a superposition of several mechanisms

But no dependence on y, even at high y where pT spectra

Lancaster Star University

Can these experimental facts be reconciled within our current picture of production?

Polarisation measurements: references



LHCb: $\psi(2S)$ polarisation, 7 TeV, 1/fb, 2 < y < 4.5 LHCb: J/ ψ polarisation, 7 TeV, 0.37/fb, 2 < y < 4.5 CMS: Y polarisation, 7 TeV, 4.9/fb, |y|<1.2 CMS: J/ ψ and $\psi(2S)$ polarisation, 7 TeV, 4.9/fb, |y|<1.2 ALICE: J/ ψ polarisation, 7 TeV, 2.5 < y < 4 EPJ C74 (2014) 2872 EPJ C73 (2013) 2631 PRL 110 (2013) 081802 PLB 727 (2013) 381 PRL108 (2012) 082001

CDF: J/ ψ and ψ (2S) polarisation, 1.96 TeV CDF: J/ ψ and ψ (2S) polarisation, 1.8 TeV CDF: Y polarisation, 1.96 TeV D0: Y polarisation, 1.96 TeV PRL 99 (2007) 132001 PRL 85 (2000) 2886 PRL 108 (2012) 151802 PRL 101 (2008) 182004

Polarisation measurements with Y

Upsilon – "global fit" attempt

Attempt to describe $\Upsilon(nS)$ production cross sections and polarisations within a single fit

Fitting LDMEs to describe Tevatron and LHC data at NLO

Assumes no feed-down for $\Upsilon(3S)$ – and gets its polarisation wrong

With "moderate" success otherwise

— mv

.... Agen

— mv

..... A_{qcb}

+ CMS Data

m,

+ CDF RUN II

1 (2S)

T(2S)

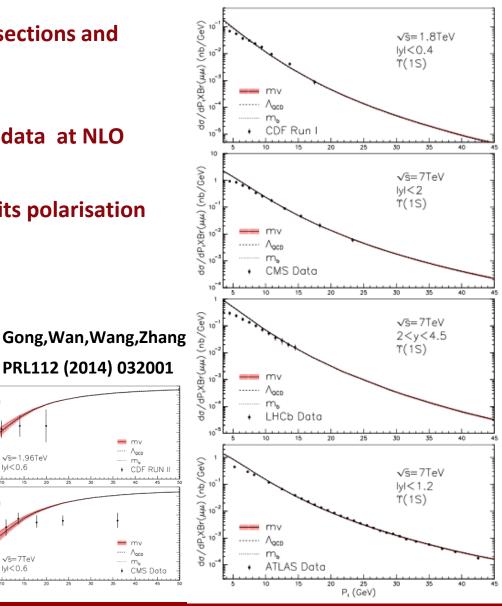
√s=1.96TeV

√s=7TeV

lyl<0.6

. T(1S)

+ + + +


T(1S)

√s=1.96TeV

|v| < 0.6

√s=7TeV

lyl<0.6

V Kartvelishvili – Quarkonium production at colliders :: Quarkonium2016, Trento :: 29 Feb 2016 :: Page 16

. T(3S)

T(3S)

√s=1.96TeV

lvl<0.6

√s=7TeV

lyl<0.6

= mv

..... Agen

- mv

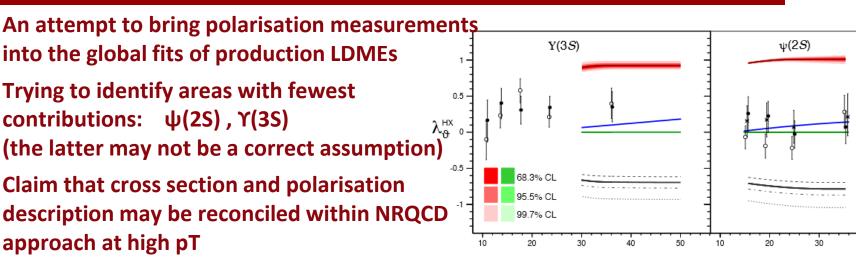
..... A_{oco}

- mv

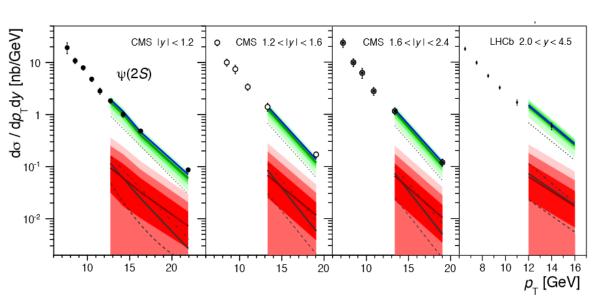
----- Agen

— mv

∧_{ocp}


m,

+ CMS Data


m,

+ CDF RUN II

Change of perspective?

Faccioli, Knünz, Lourenco, Seixas, Wöhri PLB736 (2014) 98

However, at high pT, both polarisation-dependent variations and differences between various LDME contributions are small

Lancaster 253 University

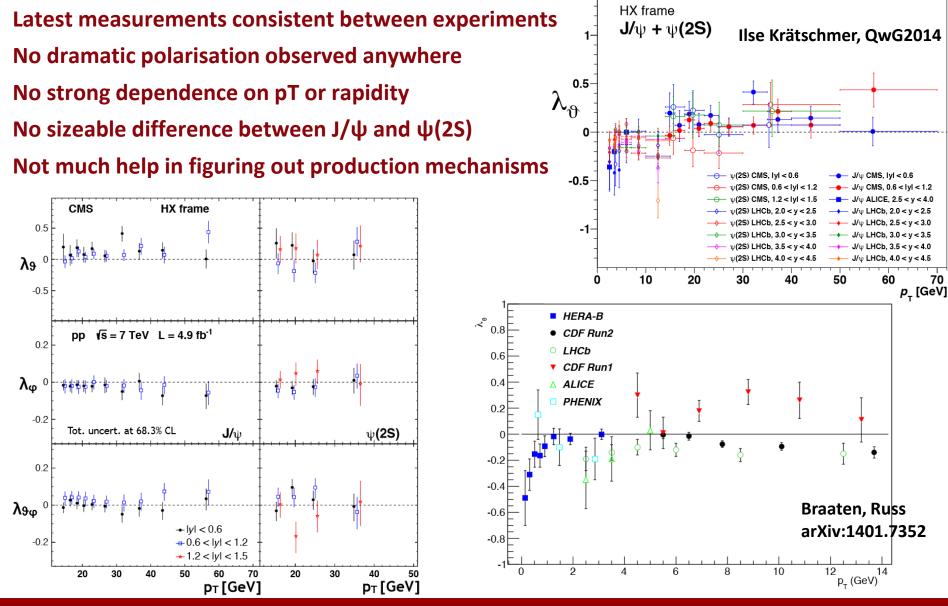
CMS

★ 1.2 < |y| < 1.5</p>

– Total – ³S.^[0]

- '*S*."

₅₀ p_∓ [GeV]


 ${}^{3}S_{1}^{[1]}$

40

More comprehensive analysis needed to be convincing

Charmonium polarisation

The big puzzle is still there – how are quarkonium states produced in hadronic collisions?

Vast amounts of data are now available from both the Tevatron and the LHC experiments

In general, very good synergy between the LHC experiments – complement each other in pT and rapidity, covering a huge range between them

More and more bits of the puzzle are becoming available

Maybe we are (slowly) getting (slightly) closer to the point of a big breakthrough in understanding?