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QCD Description of Proton-Proton Collisions

Fundamental Properties and Concepts of QCD

Confinement: fundamental building blocks of QCD – quarks and
gluons – do not exist as free particles

Running coupling: the strong coupling αs changes with the
characteristic energy

Asymptotic freedom: at small distance the quarks and gluons are
(almost) free particles and the perturbative approach is applicable

Factorisation: enables the separation of large- [essentially
nonperturbative] and small-distance [perturbative hard scattering
matrix elements] contributions

Parton distribution functions [pdfs]: accumulate information about
intrinsic structure of hadrons

I.O. Cherednikov Introduction to Wilson Lines and Loops



Transverse-Momentum Dependent pdfs

Inclusive processes → collinear factorisation: one or less hadron
detected; e.g., DIS, electron-positrion annihilation to hadrons

“More inclusive” processes → TMD factorisation: two or more
hadrons in the initial or final state detected; e.g., Drell-Yan, SIDIS,
hadron-hadron to jets, Higgs and heavy-flavour production

Collinear factorisation: longitudinal momenta of the patrons are
intrinsic, transverse momenta can be created by perturbative
radiation effects (parton showers)

TMD factorisation: a unifying QCD-based framework with both
mechanisms of the transverse-momentum creation taken into
account–intrinsic (essentially non-perturbative) and perturbative
radiation
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3D Imaging of the Nucleon: PDFs beyond the collinear
approximation

3-dimensional pdfs contain the information about the intrinsic
longitudinal and two-dimensional transverse momenta of the quarks
and gluons, are called unintegrated or

Transverse-Momentum Dependent = TMD

3D-structure: two sets of experimental data

high-energy DIS:
√
s →∞, momentum transfer fixed

low-qT DY and SIDIS (polarized and unpolarized): qT → 0,
invariant mass fixed
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Why TMD Factorization?

low-qT DY: dσZ∗
DY(qT ) in the range 60 GeV < M < 120 GeV →

High-qT (102 GeV ), the ‘peak region’ (10 GeV ), low-qT (1 GeV ).
pQCD convoluted with the collinear pdf → dσZ∗

DY(qT ) diverges at
small qT .

high-energy DIS: rise of the proton structure function at small-x . As
parton longitudinal momentum fractions (Bojrken-x) become small,
the transverse degrees of freedom becomes increasingly important.
The strong corrections at small-x come from multiple radiation of
gluons over long intervals in rapidity, in regions not ordered in the
gluon transverse momenta k⊥, and are present in all higher orders of
perturbation theory. TMD evolution provides an appropriate
framework to resum such corrections.
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Parton Distribution Functions

Must be

Gauge-invariant

Universal

Renormalizable

Wilson lines are crucial for everything!
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Parton Distribution Functions

Issues

Wilson lines: save gauge invariance, but introduce path-dependence

Path-dependence: the structure of the Wilson lines is
process-dependent (colour flows); universality (and/or factrorization)
may be broken

Factorisation scale is arbitrary: transition from one scale to another
(different experiments have different characteristic scales) by means
of evolution equations; Wilson lines complicate renormalizability
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Path-dependence in the collinear (integrated) PDF

Longitudinal momentum fraction:

xk+ = P+

F(x) =
1

2

∫
dz−

2π
e−ik

+z−〈h|ψ̄(z−)γ+ψ(0−)|h〉

Gauge transfomations:

ψ(x)→ U(x)ψ(x)

ψ̄(x)→ ψ̄(x)U†(x)
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Gauge invariance and path-dependence of bi-local operator products

∆(y , x) = ψ̄(y)ψ(x)

∆(y , x)→ ψ̄(y)U†(y)U(x)ψ(x)

Problem: find a ‘transporter’

T[y ,x]ψ(x)→ U(y)[T[y ,x]ψ(x)]

Bi-local product supplied with the transporter is gauge invariant:

ψ̄(y)T[y ,x]ψ(x)→

ψ̄(y)U†(y)U(y)[T[y ,x]ψ(x)] = ψ̄(y)T[y ,x]ψ(x)
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Parallel transport equation

d

dt
T[y ,x] = ±igAγ(t)T[y ,x]

Path-dependence:

z ∈ γ

dzµ = γ̇µ(t)dt, z(0) = x , z(t) = y

Aγ(t) = Aµ[z(t)] γ̇µ(t)
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Parallel transport equation: Solution

Integral form:

T[y ,x] − T[x,x] = T (t)− T (0) =

∫ t

0

Aγ(t1)T (t1)dt1

Perturbative expansion:

T[y ,x](t) = T (0) + gT (1) + g2T (2) + ...+ gnT (n) + ...

Initial condition:
T (0) = T [x,x] = T (0)
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Parallel transport equation: Solution

Leading order term:

T (1)(t) =

[∫ t

0

Aγ(t1)dt1

]
T (0)

T (2)(t) =

∫ t

0

Aγ(t1)T (t1)dt1

=

[∫ t

0

Aγ(t1)

∫ t1

0

Aγ(t2)dt1dt2

]
T (0)

T (2)(t) =
1

2

[
P
∫ t

0

∫ t

0

Aγ(t1)Aγ(t2)dt1dt2

]
T (0)
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Parallel transport equation: Solution

Path-ordering:

PAγ(t1)Aγ(t2)

= θ(t1 − t2) Aγ(t1)Aγ(t2) + θ(t2 − t1) Aγ(t2)Aγ(t1)

T (n)(t) =
1

n!
P
∫ t

0

...

∫ t

0

[Aγ(t1)...Aγ(tn)dt1dt2...dtn] T (0)

T (t) =
∑
n=0

gn 1

n!
P
∫ t

0

...

∫ t

0

[Aγ(t1)...Aγ(tn)dt1dt2dtn]T (0)

≡ Pexp
[
g

∫ t

0

Aγ(t ′)dt ′
]
T (0)
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Parallel transport equation: Wilson line

T (0) = T [x,x] = 1

T[y ,x] = Pexp
[
±ig

∫ y

x

Aµ[z ]dzµ

]
γ

Parallel transporter is a Wilson line:

T[y ,x] =Wγ [y , x ]

@ [ICh, Mertens, Van der Veken: ‘Wilson Lines in Quantum Field Theory’, De Gruyter (2014)]
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Path-dependent correlation functions: main issues

F(k)γ = F.T. 〈h| Ψ̄(z) Wγ [z , 0] Ψ(0) |h〉

Gauge invariance is guaranteed by the Wilson line

Wγ = P exp

[
±ig

∫ z

0

dζµAµ(ζ)

]
γ

Issues:

Gauge invariance → complicated structure of the Wilson lines

Path dependence → universality is geopardized

Singularities → problems with renormalization

Factorization → evolution
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Beyond the tree approximation: Why divergences?
Heisenberg representation

〈h|HΨ̄H(z) Wγ [z−, z⊥; 0−, 0⊥]ΨH(0)|h〉H

Dirac representation

〈h|Ψ̄(z) Wγ [z−, z⊥; 0−, 0⊥]Ψ(0) Sint|h〉

→ Perturbative expansion, Feynman graphs etc.
@ [ICh, Stefanis (2008, 2009, 2010)]

UV, rapidity and overlapping divergences beyond the
tree-approximation in the operator definition of TMD: principal
source of the evolution issues
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