(The mystery of) SSAs: TMD vs collinear twist-3 vs GPM

$p^{\uparrow} p \rightarrow \pi X$
Single Spin
Asymmetry

$$
\begin{gathered}
A_{N}=\frac{\mathrm{d} \sigma^{\uparrow}-\mathrm{d} \sigma^{\downarrow}}{\mathrm{d} \sigma^{\top}+\mathrm{d} \sigma^{\downarrow}} \\
\text { E704 (1991) } \\
\sqrt{5}=20 \mathrm{GeV} \\
0.7<\mathrm{p}_{\mathrm{T}}<2.0
\end{gathered}
$$

M. Anselmino, Torino University \& INFN

New observables in quarkonium production, ECT*, February 29 - March 4, 2016

$A_{N}=$ simple left-right asymmetry

$$
A_{N}=\frac{d \sigma^{\uparrow}\left(\boldsymbol{P}_{T}\right)-d \sigma^{\downarrow}\left(\boldsymbol{P}_{T}\right)}{d \sigma^{\uparrow}\left(\boldsymbol{P}_{T}\right)+d \sigma^{\downarrow}\left(\boldsymbol{P}_{T}\right)}=\frac{d \sigma^{\uparrow}\left(\boldsymbol{P}_{T}\right)-d \sigma^{\uparrow}\left(-\boldsymbol{P}_{T}\right)}{2 d \sigma^{\mathrm{unp}}\left(P_{T}\right)}
$$

$$
A_{N} \equiv \frac{\mathrm{~d} \sigma^{\uparrow}-\mathrm{d} \sigma^{\downarrow}}{\mathrm{d} \sigma^{\uparrow}+\mathrm{d} \sigma^{\downarrow}} \propto \boldsymbol{S} \cdot\left(\boldsymbol{p} \times \boldsymbol{P}_{T}\right) \propto \sin \theta
$$

transverse Single Spin Asymmetry (SSA)

Collections of results on A_{N}

The RHIC cold QCD Plan: A Portal to the EIC, arXiv 1602.03922 E. Aschenauer, U. D'Alesio, F. Murgia, arXiv:1512.05379-EPJA

$p^{\uparrow} p \rightarrow \pi X \quad \mathrm{X}_{\mathrm{F}}=\mathrm{X}_{1}-\mathrm{X}_{2}$
A_{N} becomes large for large values of x_{1}, positive effect for π^{+}(u quarks), negative effect for π - (d quarks)

A_{N} persists at high energies

.... and at large P_{T}

How do we get Single Spin Asymmetries?
Transverse single spin asymmetries in elastic scattering

$$
\begin{gathered}
A_{N} \equiv \frac{\mathrm{~d} \sigma^{\uparrow}-\mathrm{d} \sigma^{\downarrow}}{\mathrm{d} \sigma^{\uparrow}+\mathrm{d} \sigma^{\downarrow}} \propto \boldsymbol{S} \cdot\left(\boldsymbol{p} \times \boldsymbol{P}_{T}\right) \propto \sin \theta \\
\text { Example: } p p \rightarrow p p \\
5 \text { independent helicity amplitudes } \\
A_{N} \propto \operatorname{Im}\left[\Phi_{5}\left(\Phi_{1}+\Phi_{2}+\Phi_{3}-\Phi_{4}\right)^{*}\right]
\end{gathered}\left\{\begin{array}{l}
H_{++;++} \equiv \Phi_{1} \\
H_{--;++} \equiv \Phi_{2} \\
H_{+-;+-} \equiv \Phi_{3} \\
H_{-+;+-} \equiv \Phi_{4} \\
H_{-+;++} \equiv \Phi_{5}
\end{array}\right.
$$

Single spin asymmetries at partonic level. Example: $q q^{\prime} \rightarrow q q^{\prime}$ $A_{N} \neq 0$ needs helicity flip + relative phase

QED and QCD interactions conserve helicity, up to corrections $\mathcal{O}\left(\frac{m_{q}}{E_{q}}\right)$

$$
A_{N} \propto \frac{m_{q}}{E_{q}} \alpha_{s} \quad \text { at quark level }
$$

but large SSA observed at hadron level!

Cross section for $p p \rightarrow \pi^{0} X$ in PQCD , only one scale, P_{T} based on factorization theorem (in collinear configuration)

$$
\mathrm{d} \sigma=\left.\sum_{a, b, c, d=q, \bar{q}, g} \underbrace{f_{a / p}\left(x_{a}\right) \otimes f_{b / p}\left(x_{b}\right)}_{\text {PDF }} \otimes\right|_{\substack{\text { pQCD elementary } \\ \text { interactions }}} ^{\mathrm{d} \hat{\sigma}^{a b \rightarrow c d} \otimes \underbrace{D_{\pi / c}(z)}_{\mathrm{FF}}}
$$

mid-rapidity RHIC data, unpolarised cross sections

 (arXiv:1409.1907 [hep-ex], Phys. Rev. D91 (2015) 3, 032001)

good agreement between RHIC data and collinear pQCD calculations

good agreement also at large rapidity

Phys. Rev. D86 (2012) 051101

Phys. Rev. Lett. 97 (2006) 152302

$$
\begin{aligned}
& p, S \\
& \mathrm{~d} \sigma^{\uparrow}-\mathrm{d} \sigma^{\downarrow}=\sum_{a, b, c, d=q, \bar{q}, g} \underbrace{\Delta_{T} f_{a}}_{\begin{array}{c}
\text { transversity }
\end{array}} \otimes f_{b} \otimes \underbrace{\left[\mathrm{~d} \hat{\sigma}^{\uparrow}-\mathrm{d} \hat{\sigma}^{\downarrow}\right]}_{\begin{array}{c}
\text { PQCD elementary } \\
\text { SSA }
\end{array}} \otimes \underbrace{D_{\pi / c}}_{\mathrm{FF}} \\
& A_{N}=\frac{\mathrm{d} \sigma^{\uparrow}-\mathrm{d} \sigma^{\downarrow}}{\mathrm{d} \sigma^{\uparrow}+\mathrm{d} \sigma^{\downarrow}} \propto \hat{a}_{N} \propto \frac{m_{q}}{E_{q}} \alpha_{s} \quad \begin{array}{c}
\text { was considered } \\
\text { almost a theorem }
\end{array}
\end{aligned}
$$

SSA in hadronic processes: TMDs, higher-twist correlations?
Two main different (?) approaches

1. Generalization of collinear scheme (GPM)
(assuming factorization)

$$
\mathrm{d} \sigma^{\uparrow}=\sum_{a, b, c=q, \bar{q}, g} \underbrace{f_{a / p^{\uparrow}}\left(x_{a}, \boldsymbol{k}_{\perp a}\right)}_{\text {non perturbative single spin effects in TMDs }} \otimes \underbrace{f_{b / p}\left(x_{b}, \boldsymbol{k}_{\perp b}\right)} \otimes \mathrm{d} \hat{\sigma}^{a b \rightarrow c d}\left(\boldsymbol{k}_{\perp a}, \boldsymbol{k}_{\perp b}\right) \otimes \underbrace{D_{\pi / c}\left(z, \boldsymbol{p}_{\perp \pi}\right)}_{\pi / c}
$$

M.A., M. Boglione, U. D'Alesio, E. Leader, S. Melis, F. Murgia, A. Prokudin, ... Field-Feynman

TMD - PDFs

$f_{1}^{q}\left(x, k_{\perp}^{2}\right)$

$$
q(x)=f_{1}^{q}(x)=\int \mathrm{d}^{2} \boldsymbol{k}_{\perp} f_{1}^{q}\left(x, k_{\perp}^{2}\right)
$$

several spin- \mathbf{k}_{\perp} correlations in TMDs

$\boldsymbol{S} \cdot\left(\boldsymbol{p} \times \boldsymbol{k}_{\perp}\right) \quad \boldsymbol{s}_{q} \cdot\left(\boldsymbol{p} \times \boldsymbol{k}_{\perp}\right) \quad \boldsymbol{S} \cdot \boldsymbol{s}_{q}$
"Sivers effect" "Boer-Mulders effect"

TMD - FFs

similar spin- p_{\perp} correlations in fragmentation process (case of final spinless hadron)

$\boldsymbol{s}_{q} \cdot\left(\boldsymbol{p}_{q} \times \boldsymbol{p}_{\perp}\right) \quad$ "Collins effect"

$$
\begin{aligned}
D_{h / q, \boldsymbol{s}_{q}}\left(z, \boldsymbol{p}_{\perp}\right) & =D_{h / q}\left(z, p_{\perp}\right)+\frac{1}{2} \Delta^{N} D_{h / q^{\top}}\left(z, p_{\perp}\right) \boldsymbol{s}_{q} \cdot\left(\hat{\boldsymbol{p}}_{q} \times \hat{\boldsymbol{p}}_{\perp}\right) \\
& =D_{1}^{q}\left(z, p_{\perp}\right)+\frac{p_{\perp}}{z M_{h}} H_{1}^{\perp q}\left(z, p_{\perp}\right) \boldsymbol{s}_{q} \cdot\left(\hat{\boldsymbol{p}}_{q} \times \hat{\boldsymbol{p}}_{\perp}\right)
\end{aligned}
$$

simple physical picture for the Sivers effect

$$
\begin{aligned}
f_{q / p, \boldsymbol{S}}\left(x, \boldsymbol{k}_{\perp}\right) & =f_{q / p}\left(x, k_{\perp}\right)+\frac{1}{2} \Delta^{N} f_{q / p^{\imath}}\left(x, k_{\perp}\right) S \cdot\left(\hat{\boldsymbol{p}} \times \hat{\boldsymbol{k}}_{\perp}\right) \\
& =f_{q / p}\left(x, k_{\perp}\right)-\frac{k_{\perp}}{M} f_{1 T}^{\perp q}\left(x, k_{\perp}\right) S \cdot\left(\hat{\boldsymbol{p}} \times \hat{\boldsymbol{k}}_{\perp}\right)
\end{aligned}
$$

left-right spin asymmetry for the process $\gamma^{*} q \rightarrow q$
the spin- \mathbf{k}_{\perp} correlation is an intrinsic property of the nucleon; it should be related to the parton orbital motion

Phenomenology - TMD factorization

$$
\begin{aligned}
& A_{N}=\frac{d \sigma^{\uparrow}-d \sigma^{\downarrow}}{d \sigma^{\uparrow}+d \sigma^{\downarrow}} \quad \begin{array}{c}
\text { main contribution from Sivers } \\
\text { and Collins effects }
\end{array} \\
& d \sigma^{\uparrow}-d \sigma^{\downarrow} \equiv \frac{E_{\pi} d \sigma^{p \rightarrow \pi X}}{d^{3} \boldsymbol{p}_{\pi}}-\frac{E_{\pi} d \sigma^{p \rightarrow \pi X}}{d^{3} \boldsymbol{p}_{\pi}}=\left[d \sigma^{\uparrow}-d \sigma^{\downarrow}\right]_{\text {Sivers }}+\left[d \sigma^{\uparrow}-d \sigma^{\downarrow}\right]_{\text {Collins }} \\
& {\left[d \sigma^{\uparrow}-d \sigma^{\downarrow}\right]_{\text {Sivers }} }=\sum_{q_{a}, b, q_{c}, d} \int \frac{d x_{a} d x_{b} d z}{16 \pi^{2} x_{a} x_{b} z^{2} s} d^{2} \boldsymbol{k}_{\perp a} d^{2} \boldsymbol{k}_{\perp b} d^{3} \boldsymbol{p}_{\perp} \delta\left(\boldsymbol{p}_{\perp} \cdot \hat{\boldsymbol{p}}_{c}\right) J\left(p_{\perp}\right) \delta(\hat{s}+\hat{t}+\hat{u}) \\
&\times \underbrace{\Delta^{N} f_{a /}\left(x_{a}, k_{\perp a}\right.}) \cos \phi_{a} \longrightarrow \text { Sivers phase } \\
& \times f_{b / p}\left(x_{b}, k_{\perp b}\right) \frac{1}{2}\left[\left|\hat{M}_{1}^{0}\right|^{2}+\left|\hat{M}_{2}^{0}\right|^{2}+\left|\hat{M}_{3}^{0}\right|^{2}\right]_{a b \rightarrow c d} D_{\pi / c}\left(z, p_{\perp}\right) \\
& {\left[d \sigma^{\uparrow}-d \sigma^{\downarrow}\right]_{\text {Collins }} }=\sum_{q_{a}, b, q_{c}, d} \int \frac{d x_{a} d x_{b} d z}{16 \pi^{2} x_{a} x_{b} z^{2} s} d^{2} \boldsymbol{k}_{\perp a} d^{2} \boldsymbol{k}_{\perp b} d^{3} \boldsymbol{p}_{\perp} \delta\left(\boldsymbol{p}_{\perp} \cdot \hat{\boldsymbol{p}}_{c}\right) J\left(p_{\perp}\right) \delta(\hat{s}+\hat{t}+\hat{u}) \\
& \times \Delta_{T} q_{a}\left(x_{a}, k_{\perp a}\right) \cos \left(\phi_{a}+\varphi_{1}-\varphi_{2}+\phi_{\pi}^{H}\right) \longrightarrow \text { Collins + scattering } \\
& \times f_{b / p}\left(x_{b}, k_{\perp b}\right)\left[\hat{M}_{1}^{0} \hat{M}_{2}^{0}\right]_{q_{a} b \rightarrow q_{c} d} \Delta^{N} D_{\pi / q_{c}}\left(z, p_{\perp}\right)
\end{aligned}
$$

negligible contributions from other TMDs

M. A., M. Boglione, U. D'Alesio, S. Melis, F. Murgia , A. Prokudin, Phys. Rev. D88 (2013) 054023

A_{N}, as obtained in the GPM scheme with the SIDIS extracted Sivers functions, compared with some RHIC data.
The SIDIS data leave great uncertainty in the large x values of the Sivers functions.

examples of non vanishing Sivers function - simple quark-scalar diquark model of the proton

SIDIS final state interactions $\left(\Rightarrow A_{N}\right)$

D-Y initial state interactions $\left(\Rightarrow-A_{N}\right)$

Brodsky, Hwang, Schmidt, PL B530 (2002) 99; NP B642 (2002) 344 Brodsky, Hwang, Kovchegov, Schmidt, Sievert, PR D88 (2013) 014032

process-dependence of Sivers functions

DIS:

"attractive"

(a)

(c)

(b)

(d)

$$
\left[f_{1 T}^{q \perp}\right]_{\mathrm{SIDIS}}=-\left[f_{1 T}^{q \perp}\right]_{\mathrm{DY}}
$$

Collins, PL B536 (2002) 43

2. Higher-twist partonic correlations (ETQS)

(Efremov, Teryaev, Ratcliffe; Qiu, Sterman; Kouvaris, Vogelsang, Yuan;
Bacchetta, Bomhof, Mulders, Pijlman; Koike; Gamberg, Kang...)
higher-twist partonic correlations - factorization OK

$$
\mathrm{d} \Delta \sigma \propto \sum_{a, b, c} \underbrace{T_{a}\left(k_{1}, k_{2}, \boldsymbol{S}_{\perp}\right)}_{\text {twist-3 correlators }} \otimes f_{b / B}\left(x_{b}\right) \otimes \underbrace{H^{a b \rightarrow c}\left(k_{1}, k_{2}\right)}_{\begin{array}{c}
\text { product of hard amplitudes, } \\
\text { not cross sections }
\end{array}} \otimes D_{h / c}(z)
$$

$$
g T_{q, F}(x, x)=-\left.\int d^{2} k_{\perp} \frac{\left|k_{\perp}\right|^{2}}{M} f_{1 T}^{\perp q}\left(x, k_{\perp}^{2}\right)\right|_{\mathrm{SIDIS}}
$$

Phenomenology - higher-twist, ETQS functions

 Kouvaris, Qiu, Vogelsang, Yuan, PRD 74 (2006) 114013 Kang, Qiu, Vogelsang, Yuan, PRD83 (2011) 094001$$
\begin{aligned}
& E_{h} \frac{d \Delta \sigma\left(s_{\perp}\right)}{d^{3} P_{h}}= \frac{\alpha_{s}^{2}}{S} \sum_{a, b, c} \int \frac{d z}{z^{2}} D_{c \rightarrow h}(z) \int \frac{d x^{\prime}}{x^{\prime}} f_{b / B}\left(x^{\prime}\right) \int \frac{d x}{x} \sqrt{4 \pi \alpha_{s}}\left(\frac{\epsilon^{P_{h \perp} s_{\perp} n \bar{n}}}{z \hat{u}}\right) \\
& \times\left[T_{a, F}(x, x)-x \frac{d}{d x} T_{a, F}(x, x)\right] H_{a b \rightarrow c}(\hat{s}, \hat{t}, \hat{u}) \delta(\hat{s}+\hat{t}+\hat{u}) \\
& H_{a b \rightarrow c}(\hat{s}, \hat{t}, \hat{u})=H_{a b \rightarrow c}^{I}(\hat{s}, \hat{t}, \hat{u})+H_{a b \rightarrow c}^{F}(\hat{s}, \hat{t}, \hat{u})\left(1+\frac{\hat{u}}{\hat{t}}\right)
\end{aligned}
$$

products of hard scattering amplitudes
$q 9 \rightarrow 99$ is the dominant partonic channel

$$
\begin{aligned}
& H_{q g \rightarrow q g}^{I}=\frac{1}{2\left(N_{c}^{2}-1\right)}\left[-\frac{\hat{s}}{\hat{u}}-\frac{\hat{u}}{\hat{s}}\right]\left[1-N_{c}^{2} \frac{\hat{u}^{2}}{\hat{t}^{2}}\right] \xrightarrow{|\hat{t}| \ll \hat{s} \sim|\hat{u}|}\left[-\frac{N_{c}^{2}}{2\left(N_{c}^{2}-1\right)}\right]\left[\frac{2 \hat{s}^{2}}{\hat{t}^{2}}\right], \\
& H_{q g \rightarrow q g}^{F}=\frac{1}{2 N_{c}^{2}\left(N_{c}^{2}-1\right)}\left[-\frac{\hat{s}}{\hat{u}}-\frac{\hat{u}}{\hat{s}}\right]\left[1+2 N_{c}^{2} \frac{\hat{s} \hat{u}}{\frac{\hat{t}^{2}}{}}\right] \xrightarrow{|\hat{t}| \ll \hat{s} \sim|\hat{u}|}\left[-\frac{1}{N_{c}^{2}-1}\right]\left[\frac{2 \hat{s}^{2}}{\hat{t}^{2}}\right]
\end{aligned}
$$

both contributions are negative

fits of E704 and STAR data
Kouvaris, Qiu, Vogelsang, Yuan

sign mismatch

(Kang, Qiu, Vogelsang, Yuan, PR D83 (2011) 094001)
compare

$$
\begin{aligned}
g T_{q, F}(x, x) & =-\left.\int d^{2} k_{\perp} \frac{\left|k_{\perp}\right|^{2}}{M} f_{1 T}^{\perp q}\left(x, k_{\perp}^{2}\right)\right|_{\mathrm{SIDIS}} \\
& =\left.\int d^{2} k_{\perp} \frac{\left|k_{\perp}\right|}{2} \Delta^{N} f_{q / p^{\uparrow}}\left(x, k_{\perp}\right)\right|_{\mathrm{SIDIS}}
\end{aligned}
$$

as extracted from fitting A_{N} data, with that obtained by inserting in the above relation the SIDIS extracted Sivers functions

similar magnitude, but opposite sign!

the same mismatch does not occur adopting TMD factorization; the reason is that the hard scattering part in higher-twist factorization is negative
other higher-twist contributions to A_{N}

$$
\begin{aligned}
d \sigma\left(\vec{S}_{\perp}\right) & =H \otimes f_{a / A(3)} \otimes f_{b / B(2)} \otimes D_{C / c(2)} \\
& +H^{\prime} \otimes f_{a / A(2)} \otimes f_{b / B(3)} \otimes D_{C / c(2)} \\
& +H^{\prime \prime} \otimes f_{a / A(2)} \otimes f_{b / B(2)} \otimes D_{C / c(3)}
\end{aligned}
$$

(1) Twist-3 contribution related to Sivers function
(2) Twist-3 contribution related to Boer-Mulders function
(3) Twist-3 fragmentation: has two contributions, one related to Collins function + a new one
the first contribution with a twist-3 quark-gluon-quark correlator was expected to be the dominant one, but gives a wrong sign
A_{N} from twist-3 fragmentation functions (Kanazawa, Koike, Metz, Pitonyak, PRD 89 (2014) 111501)

good fit of A_{N} mainly

 due to the new twist-3 fragmentation functionit gives too large values of A_{N} in $\ell p^{\uparrow} \rightarrow \pi X$ processes
Gamberg, Khang, Metz, Pitonyak, PRD 90 (2014) 074012

A_{N} for jet production at $A_{N} D Y$
Phys. Lett. B750 (2015) 660
lower left plot: A_{N} assuming TMD factorization, PRD 88 (2013) 054023
lower right plot: A_{N} with twist-3 correlation function, Gamberg, Kang,

Prokudin, PRL 110 (2013) 232301

measuring A_{N} for prompt photon production might help

TMDs in Drell-Yan processes COMPASS, RHIC, Fermilab, NICA, AFTER...

factorization holds, two scales, M^{2}, and $q_{T} \ll M$

$$
\begin{gathered}
\mathrm{d} \sigma^{D-Y}=\sum_{a} f_{q}\left(x_{1}, \boldsymbol{k}_{\perp 1} ; Q^{2}\right) \otimes f_{\bar{q}}\left(x_{2}, \boldsymbol{k}_{\perp 2} ; Q^{2}\right) \mathrm{d} \hat{\sigma}^{q \bar{q} \rightarrow \ell^{+} \ell^{-}} \\
\text {direct product of TMDs } \\
\text { no fragmentation process }
\end{gathered}
$$

Sivers effect in D-Y processes

By looking at the $d^{4} \sigma / d^{4} q$ cross section one can single out the Sivers effect in D-Y processes

$$
\begin{aligned}
& \mathrm{d} \sigma^{\uparrow}-\mathrm{d} \sigma^{\downarrow} \propto \sum_{q} \otimes^{N} f_{q / p^{\uparrow}}\left(x_{1}, \boldsymbol{k}_{\perp 1}\right) \otimes f_{\bar{q} / p}\left(x_{2}, k_{\perp 2}\right) \otimes \mathrm{d} \hat{\sigma} \\
& q=u, \bar{u}, d, \bar{d}, s, \bar{s}
\end{aligned}
$$

$$
A_{N}^{\sin \left(\phi_{S}-\phi_{\gamma}\right)} \equiv \frac{2 \int_{0}^{2 \pi} \mathrm{~d} \phi_{\gamma}\left[\mathrm{d} \sigma^{\uparrow}-\mathrm{d} \sigma^{\downarrow}\right] \sin \left(\phi_{S}-\phi_{\gamma}\right)}{\int_{0}^{2 \pi} \mathrm{~d} \phi_{\gamma}\left[\mathrm{d} \sigma^{\uparrow}+\mathrm{d} \sigma^{\downarrow}\right]}
$$

Predictions for $A_{N}-$ no TMD evolution

 Sivers functions from SIDIS, with sign change

expected Sivers asymmetry in D-Y @AFTER, with sign change
M.A., M. Boglione, U. D'Alesio, S. Melis, F. Murgia, A. Prokudin, PR D79 (2009) 054010

First results from RHIC, $p^{\uparrow} p \rightarrow W^{ \pm} X$ STAR Collaboration, arXiv:1511.06003

some hints at sign change

Conclusions

SSAs $\left(A_{N}\right)$ are experimentally very well established; common features from medium to high energy, up to rather large P_{T} values. Originate in valence quark region.
They cannot be originated by collinear pQCD spin effects.
GPM with assumed TMD factorisation relates A_{N} to intrinsic nucleon properties (Sivers distribution) or hadronisation properties (Collins FF). Same mechanisms in SIDIS, e+e-and, possibly, D-Y interactions.

Higher-twist approach is factorised; generates A_{N} from pQCD + non perturbative correlators; indirectly related to TMDs (with problems). In models, it predicts opposite values of A_{N} in SIDIS and D-Y (general argument based on gauge links?).
keep measuring A_{N}....

