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Fig. 1. Transverse single spin asymmetry measurements for charged and neutral pions at different center-of-mass energies as a
function of Feynman-x, xF .

After a general overview on some of the most relevant
experimental results, mostly collected at RHIC, we will
focus on the phenomenological study of azimuthal and
tSSAs in pp collisions within the GPM approach: this in-
deed offers a powerful tool to describe many data sets for
the inclusive cases and their main features, representing at
the same time a window into possible factorisation break-
ing effects. We will also comment, wherever appropriate,
on the corresponding results in the twist-3 approach. A
general overview on TMDs and their phenomenology in
SIDIS and e+e− annihilation processes can be found in
Ref. [23] (this Special Issue).

For their relevance we will present and discuss in some
detail a selection of results from RHIC, that indeed has
provided and is still providing with the most interesting
and challenging experimental data. For a recent discussion
of the potential role of SSA studies for the fixed-target
experiment AFTER, proposed at the Large Hadron Col-
lider (LHC), see Ref. [24]. It is also worth to mention
the proposed polarised target and beam program with
SeaQuest [25,26] at FermiLab that will provide the possi-
bility to study TMDs for sea and valence quarks through
DY production. Although there is no dedicated TMD ex-
perimental program, LHC would also offer a nice opportu-
nity to investigate, at the largest available center-of-mass
energy and transverse momentum, several TMD observ-
ables and effects involved in azimuthal asymmetries for
unpolarised pp and pA collisions.

2 Experimental Results

Results from the PHENIX [27] and STAR [28] Collabora-
tions have shown that large transverse single spin asymme-
tries for inclusive hadron production, AN , that were first
seen in pp collisions at fixed-target energies and modest

pT (the transverse momentum of the final hadron), ex-
tend to the highest RHIC center-of-mass (c.m.) energies,√
s = 500 GeV and surprisingly large pT . These asym-

metries are defined as AN = dσ↑−dσ↓

dσ↑+dσ↓ , where ↑, ↓ repre-
sent the two opposite spin orientations perpendicular to
the scattering plane. Figure 1 summarizes the measured
asymmetries from different experiments as a function of
Feynman-x, xF = 2pL/

√
s ∼ x1 − x2, where pL is the

c.m. longitudinal momentum of the final hadron and x1,2

the initial parton light-cone momentum fractions. Surpris-
ingly the asymmetries are nearly independent of

√
s over

a very wide range (
√
s: 4.9 GeV to 500 GeV).

To understand the underlying physics being responsi-
ble for the observed SSAs one has to go beyond the con-
ventional collinear parton picture in the hard scattering.
As already stated in the introduction, two theoretical for-
malisms have been proposed to generate sizable SSAs in
the QCD framework: one based on transverse momentum
dependent (TMD) parton distribution functions (PDFs)
and fragmentation functions (FFs), and the other based
on collinear twist-3 quark-gluon-quark correlations in the
initial state proton or in the fragmentation process. As
the SSAs for inclusive hadrons cannot discriminate be-
tween these different approaches, nor among the different
mechanisms within the same formalism (initial vs. final
state effects), the focus has in the recent years shifted to
observables that could help in disentangling them clarify-
ing their effective role, and, at the same time, will be able
to give new insight into the transverse spin structure of
hadrons.

2.1 Access to Transversity: the Collins and
Interference Fragmentation Functions

To have a complete picture of the proton structure at lead-
ing twist one has to consider not only the unpolarised

Collections of results on AN  
The RHIC cold QCD Plan: A Portal to the EIC, arXiv 1602.03922 
E. Aschenauer, U. D’Alesio, F. Murgia, arXiv:1512.05379 - EPJA

p" p! ⇡ X xF = x1 - x2

AN becomes large for large values of x1, 
positive effect for π+ (u quarks), 
negative effect for π- (d quarks)  
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Transverse spin structure of the proton 
A natural next step in the investigation of nucleon structure is an expansion of our current picture of the 
nucleon by imaging the proton in both momentum and impact parameter space. At the same time we need to 
further our understanding of color interactions and how they manifest in different processes. In the new 
theoretical framework of transverse momentum dependent parton distributions (TMDs) we can obtain an 
image in the transverse as well as longitudinal momentum space (2+1 dimensions).  This has attracted 
renewed interest, both experimentally and theoretically in transverse single spin asymmetries (SSA) in 
hadronic processes at high energies, which have a more than 30 years history. First measurements at RHIC 
have extended the observations from the fixed-target energy range to the collider regime. Future PHENIX 
and STAR measurements at RHIC with transversely polarized beams will provide unique opportunities to 
study the transverse spin asymmetries in Drell-Yan lepton pair, direct photon, and W boson productions, and 
other complementary processes. Also evolution and universality properties of these functions can be studied. 
Polarized nucleon-nucleus collisions may provide further information about the origin of SSA in the forward 
direction and the saturation phenomena in large nuclei at small x. 

Transverse asymmetries at RHIC  

Single spin asymmetries in inclusive hadron production in proton-proton collisions have been measured at 
RHIC for the highest center-of-mass energies to date, ¥s=500 GeV.  Figure 6 summarizes the measured 
asymmetries from different experiments as functions of Feynman-x (xF ~ x1-x2) and transverse momentum. 
Surprisingly large asymmetries are seen that are nearly independent of  over a very broad range. To 
understand the observed significant SSAs one has to go beyond the conventional collinear parton picture in 
the hard processes.  Two theoretical formalisms have been proposed to generate sizable SSAs in the QCD 
framework: transverse momentum dependent parton distributions and fragmentation functions, which 
provide the full transverse momentum information and the collinear quark-gluon-quark correlation, which 
provides the average transverse information.   

 
At RHIC the pT-scale is sufficiently large to make the collinear quark-gluon-quark correlation formalism the 
appropriate approach to calculate the spin asymmetries. At the same time, a transverse momentum dependent 
model has been applied to the SSAs in these hadronic processes as well. Here, various underlying 
mechanisms can contribute and need to be disentangled to understand the experimental observations in 
detail, in particular the pT-dependence. These mechanisms are associated with the spin of the initial state 
nucleon (Sivers/Qiu-Sterman effects) and outgoing hadrons (Collins effects). We identify observables below, 
which will help to separate the contributions from initial and final states, and will give insight to the 
transverse spin structure of hadrons.  

 
Figure 6: Transverse single spin asymmetry measurements for neutral pions at different center-of-mass energies as function of 

Feynman-x (left) and pT-dependence at = 500 GeV (right). 

p
s = 19.4 GeV/c2, E704
p

s = 62.4 GeV/c2, PHENIX 3.2 < ⌘ < 3.7
p

s = 200 GeV/c2, STAR h⌘i = 3.3
p

s = 200 GeV/c2, STAR h⌘i = 3.7
p

s = 500 GeV/c2, STAR 2.7 < ⌘ < 4.0

AN  persists at high energies ….          



…. and at large PT          
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FIG. 5. (color online) Invariant cross sections for (a) ⇡+ and (b) ⇡� with pQCD predictions using the DSS [37] and AKK08 [39]
FFs. Top panel: PHENIX [52] and STAR [53] results are also compared. Bottom: systematic (boxes) and statistical (bars)
uncertainties are shown with relative di↵erence between data and prediction. (c) Comparison of averaged charged pion cross
section and ⇡

0 cross section by PHENIX [54]. Bottom panel: data-theory comparisons.

TABLE II. Invariant cross section for ⇡+ and ⇡

� hadrons, as well as the statistical and systematic uncertainties. In addition,
there is an absolute scale uncertainty of 9.6%.

⇡

+
⇡

�

pT bin hpT i E ⇤ d3�
dp3

STAT SYST E ⇤ d3�
dp3

STAT SYST

(GeV/c) (GeV/c) (mb/GeV

2) (mb/GeV

2)
5–6 5.39 1.75⇥10�5 0.05⇥10�5 0.24⇥10�5 1.49⇥10�5 0.04⇥10�5 0.20⇥10�5

6–7 6.39 5.01⇥10�6 0.15⇥10�6 0.33⇥10�6 4.30⇥10�6 0.13⇥10�6 0.29⇥10�6

7–8 7.41 1.56⇥10�6 0.07⇥10�6 0.10⇥10�6 1.283⇥10�6 0.060⇥10�6 0.080⇥10�6

8–9 8.44 6.19⇥10�7 0.39⇥10�7 0.40⇥10�7 4.94⇥10�7 0.35⇥10�7 0.32⇥10�7

9–11 9.71 2.14⇥10�7 0.16⇥10�7 0.14⇥10�7 1.57⇥10�7 0.13⇥10�7 0.10⇥10�7

11–13 11.70 4.83⇥10�8 0.71⇥10�8 0.38⇥10�8 3.57⇥10�8 0.60⇥10�8 0.28⇥10�8

A more quantitative interpretation requires the inclu-
sion of such data into a global fit using the next-to-
leading order (NLO) pQCD framework. The midrapidity
production of charged pions with 5 < pT < 12 GeV/c atp
s = 200 GeV covers the kinematic range of 0.03 <⇠ x

<⇠
0.16. The relevant ingredients for a global analysis are
available: unpolarized quark and gluon PDFs, polarized
quark PDFs, charge-separated unpolarized FFs [37] and
hard scattering cross sections at NLO. The invariant dif-
ferential cross sections for ⇡

+ and ⇡

� as a function of
pT can be used to check the validity of the NLO pQCD
calculation as well as the PDFs and FFs adopted for the
global analysis on �G.

The double-spin asymmetry ALL for inclusive charged
pion production is measured as

ALL =
1

hPB · PY i
N

++ �R ·N+�

N

++ +R ·N+� , R =
L

++

L

+� (2)

where N is the number of charged pions and L is the lu-
minosity for a given helicity combination. The notation
++ (+�) follows the same convention as in Eq. 1. The

polarizations of the two counter-circulating RHIC beams
are denoted as PB and PY and for 2009 were 0.56 and
0.55, respectively. The luminosity-weighted beam polar-
ization product hPBPY i, important for ALL, was 0.31
with a global relative scale uncertainty of 6.5% on the
product. An additional uncertainty based on the preci-
sion with which we can determine the degree of longitu-
dinal polarization in the collision [56] must be included,
leading to a total relative scale uncertainty of +7.0%

�7.7%.

The relative luminosity, R, between the sampled lu-
minosities for the di↵erent helicities is determined from
the yield of BBC triggered events on a fill-by-fill basis.
The systematic uncertainty on relative luminosity is de-
termined by comparing to the yield of ZDC triggers [56],
and was found in 2009 to be 1.4⇥ 10�3.

Beyond the systematic uncertainties from polarization
and relative luminosity, the dominant systematic uncer-
tainty on the asymmetries are from tracks misidentified
as charged pions. The size of the possible asymmetry
from this background was determined to be ⇠ 10�4.
The determination was performed by calculating the spin

mid-rapidity RHIC data, unpolarised cross sections  
(arXiv:1409.1907 [hep-ex], Phys. Rev. D91 (2015) 3, 032001)

good agreement between RHIC data 
and collinear pQCD calculations
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FIG. 3. Pseudorapidity vs. tangent of the azimuthal angle
of the di-photon center of mass, for Eγγ > 50 GeV. LEFT:
0.08 < Mγγ < 0.19 GeV/c2, RIGHT: 0.45 < Mγγ < 0.65
GeV/c2. The filled boxes indicate events that pass the center
cut (Eq. (3)).

opment, the agreement in the widths of mass peaks be-
tween the simulation and data has been improved signif-
icantly over previous analyses [12, 20, 21]. Furthermore,
the data-simulation agreement in the continuum region
between the π0 and η peaks is very good, allowing for a
simulation-based background estimation for the η signal.
Corrections for the remaining data-simulation discrepan-
cies in mass resolution were applied to the cross-section
measurements. The η to π0 cross-section ratio in the
simulation has been set at 0.45 to be consistent with the
data. The bottom panel of Fig. 2 shows the invariant
mass dependence of AN , which exhibits a suppression in
the continuum region. Within the large statistical uncer-
tainty, the asymmetry for this region does not show a sig-
nificant xF dependence. In the simulation, this mass re-
gion is dominated by approximately equal contributions
from a pair of photons from two different π0 decays, and
a charged hadron combined with a photon.

The energy resolution of the FPD is estimated to be
about 7 to 8% of the total energy based on the com-
parison of invariant mass and di-photon separation dis-
tributions between data and Cherenkov shower simula-
tion. Coupled to the rapidly falling cross-section in en-
ergy, more than half of events in any measured energy
bin originate from lower true energy bins. For the cross-
section measurements, we unfolded the energy smearing
by applying the Bayesian iterative method [31] to the
smearing matrices obtained from the simulation. The
unfolding procedure combines the statistical and system-
atic uncertainties from the original data points.

The upper panel of Fig. 4 shows the differential cross-
sections for π0 and η. The center cut (Eq. (3)) was
imposed on both mesons. Full pythia + geant simu-
lations were used to obtain the detector efficiency cor-
rections including the η → 2γ branching ratio. Also
shown are the previously published STAR results for the
π0 cross-section in similar kinematic regions. The error
band corresponds to the NLO pQCD theory prediction
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FIG. 4. (color online) Differential production cross-sections
for π0 and η at average pseudorapidity of 3.68. Also shown are
the previously published STAR results for similar kinematics
[21] and a NLO pQCD calculation of the π0 cross-section [32].
The error band represents the uncertainty in the calculation
due to scale variations. The η to π0 cross-section ratio is
shown in the bottom panel. The error bars indicate the total
statistical and systematic uncertainties.

for the π0 cross-section [32], based on the CTEQ6M5 par-
ton distribution function [33] and the DSS fragmentation
function [34]. The uncertainty for the theory prediction
was obtained by increasing the factorization and renor-
malization scales from µ = pT to µ = 2pT . We note
that the DSS fragmentation function includes in the fit
the previously published STAR results at pseudorapid-
ity of 3.3 and 3.8 [20], along with other RHIC results.
The error bars include both statistical and systematic
uncertainties. The major sources of systematic uncer-
tainties are the absolute energy calibration uncertainty
of 3%, which dominates the π0 cross-section, and the un-
certainty from the unfolding process, which dominates
the η cross-section at high energies. The normalization
uncertainty was estimated at 12.5%, including the un-
certainty of the BBC coincidence cross-section of 7.6%
[30].

The lower panel of Fig. 4 shows the η to π0 cross-
section ratio, which is found to be around 50%. The
error bars include both statistical and systematic uncer-
tainties. The latter is dominated by the 1.5% relative

good agreement also at large rapidity

Phys. Rev. D86 (2012) 051101
4

FIG. 1: Inclusive π0 cross section for p+p collisions versus
the leading π0 energy (Eπ) averaged over 5 GeV bins at fixed
pseudorapidity (η). The error bars combine statistical and
point-to-point systematic errors. The curves are NLO pQCD
calculations using two sets of fragmentation functions (FF).

ceptance and is within 8-19% of the efficiency in p+p.

Inclusive π0 cross sections for p+p collisions at
√

s =
200 GeV are seen in Fig. 1 at ⟨η⟩ = 3.3, 3.8 [5], and 4.00.
Data are in 5 GeV bins, plotted at the average Eπ . Data
at ⟨η⟩ = 3.3 and 3.8 were taken with the PFPD, where
the systematic error increases with Eπ from 10 − 26%,
dominated by the correction for the jet accompanying
the π0 [5]. Data at ⟨η⟩ = 4.00 were taken with the FPD,
where the systematic error is 8− 16%, dominated by the
energy calibration [22]. The normalization error is 17%
for both p+p and d+Au, dominated by the absolute η un-
certainty [22]. The curves are NLO pQCD calculations
[23] using CTEQ6M PDFs [24] and equal renormaliza-
tion and factorization scales of pT = Eπ/ cosh η. Scale
dependence is comparable at η ≈ 4 and η ≈ 0. Theoret-
ical systematic errors, attributed to scale dependence at
η ≈ 0 [6], may require further study at large η. The solid
and dashed curves use Kniehl-Kramer-Pötter (KKP) [25]
and Kretzer [26] FFs, respectively, which differ primar-
ily in the gluon-to-pion FF. Differences between FFs may
occur at pT

<
∼ 2 GeV/c, where the dominant contribution

to π0 production becomes gg scattering [27]. At ⟨η⟩ = 3.3
and 3.8, the data are consistent with KKP. At ⟨η⟩ = 4.00,
the data drop below KKP and approach Kretzer as pT

decreases, similar to the trend seen at η ≈ 0 [6].

The study of effects from possible gluon saturation in
a nucleus begins with the inclusive π0 cross section for
d+Au collisions (Fig. 2). No explicit constraint is placed
on the centrality of the collisions analyzed. The system-
atic error is 10 − 22%, dominated by the background
correction. The solid (dashed) curve is a NLO pQCD
calculation using Au PDFs with shadowing [8] and KKP

FIG. 2: Inclusive π0 cross section per binary collision for
d+Au collisions, as in Fig. 1. The curves are calculations de-
scribed in the text. (Inset) Diphoton invariant mass spectrum
for data (stars), normalized to simulation (histogram).

(Kretzer) FFs. The dotted curve is a LO calculation of
multiple parton scattering [13], normalized to π0 data at
η ≈ 0 [6]. The dot-dash curve is a LO calculation convo-
luting CTEQ5 PDFs and KKP FFs, replacing the hard
partonic scattering with a dipole-nucleus cross section to
model parton scattering from a CGC in the nucleus [12],
normalized to d + Au → h− + X data at η = 3.2 [10].
The CGC calculation overpredicts the π0 data here by
a factor of 2, a factor that could approach unity with
use of the Kretzer FF. The pT dependence of the yield is
consistent with the CGC calculation.

The nuclear modification factor is defined as:

RY
dAu =

σpp
inel

⟨Nbin⟩σdAu
hadr

E d3σ/dp3(d + Au → Y + X)

E d3σ/dp3(p + p → Y + X)
. (1)

The inelastic p+p cross section is σpp
inel = 42 mb, while

σdAu
hadr = (2.21 ± 0.09) b and the mean number of binary

collisions, ⟨Nbin⟩ = 7.5 ± 0.4, are from a Glauber model
calculation [20]. The prefactor in RY

dAu is equal to the
ratio of binary collisions in p+p and d+Au, 1/(2× 197).

Fig. 3 shows Rπ0

dAu versus pT at ⟨η⟩ = 4.00 with h− data
at smaller η [10]. Systematic errors from p+p and d+Au
are added in quadrature. The normalization error in-
cludes the ⟨Nbin⟩ error but not the absolute η error, since
the FPD position was the same for d+Au and p+p data.

In the absence of nuclear effects, hard processes scale
with the number of binary collisions and RY

dAu = 1. At

midrapidity, R h±

dAu
>
∼ 1, with a Cronin enhancement for

pT
>
∼ 2 GeV/c [10, 20]. As η increases, RY

dAu becomes
much less than 1. This decrease with η is qualitatively
consistent with models that suppress the nuclear gluon
density [11, 13, 14, 16]. Scaling R h−

dAu by 2/3 to account

for isospin effects on p+p → h−+X [8], R π0

dAu is consistent

Phys. Rev. Lett. 97 (2006) 152302
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SSA in hadronic processes: TMDs, higher-twist correlations?

 

Two main different (?) approaches

1. Generalization of collinear scheme (GPM) 
(assuming factorization)

Field-Feynman
M.A., M. Boglione, U. D’Alesio, E. Leader, S. Melis, F. Murgia, A. Prokudin, ...

a b

c
X

X

�̂

non perturbative single spin effects in TMDs



X

q(x) = fq
1 (x) =

�
d2k� fq

1 (x, k2
�)fq

1 (x, k2
�)

X

sq

several spin-k┴ correlations in TMDs

“Sivers effect” “Boer-Mulders effect”
S · (p⇥ k�) sq · (p⇥ k�) S · sq · · ·

TMD - PDFs



similar spin-p┴ correlations in fragmentation process 
(case of final spinless hadron) 

X
H�q

1 (x,p2
�)

X
Dq

1(x,p2
�)

“Collins effect”sq · (pq ⇥ p�)

TMD - FFs

Dh/q,sq
(z,p?) = Dh/q(z, p?) +

1
2

�NDh/q"(z, p?) sq · (p̂q ⇥ p̂?)

= Dq
1(z, p?) +

p?
zMh

H?q
1 (z, p?) sq · (p̂q ⇥ p̂?)



⊗
k⊥

•
-k⊥

simple physical picture for the Sivers effect 

PT � k�

spin

spin

left-right spin asymmetry for the process �⇤q ! q

the spin-k⊥ correlation is an intrinsic property of the 
nucleon; it should be related to the parton orbital motion 

fq/p,S(x,k?) = fq/p(x, k?) +
1
2
�N

fq/p"(x, k?) S · (p̂⇥ k̂?)

= fq/p(x, k?)� k?
M

f

?q
1T (x, k?) S · (p̂⇥ k̂?)



Phenomenology - TMD factorization

d�⇥ � d�⇤ ⇥ E� d� p�� X

d3p�

� E� d� p�� X

d3p�

= [d�⇥ � d�⇤]Sivers + [d�⇥ � d�⇤]Collins

AN =
d�� � d�⇥

d�� + d�⇥
main contribution from Sivers 

and Collins effects

[d⇤⇥ � d⇤⇤]Sivers =
�

qa,b,qc,d

⇥
dxa dxb dz

16 ⇥2 xa xb z2s
d2k⌅a d2k⌅b d3p⌅ �(p⌅ · p̂c) J(p⌅) �(ŝ + t̂ + û)

⇤ �Nfa/(xa, k⌅a) cos ⌅a

⇤ fb/p(xb, k⌅b)
1
2

⇤
|M̂0

1 |2 + |M̂0
2 |2 + |M̂0

3 |2
⌅

ab�cd
D�/c(z, p⌅)

Sivers phase

negligible contributions from other TMDs

[d⇤⇥ � d⇤⇤]Collins =
�

qa,b,qc,d

⇥
dxa dxb dz

16 ⇥2 xa xb z2s
d2k⌅a d2k⌅b d3p⌅ �(p⌅ · p̂c) J(p⌅) �(ŝ + t̂ + û)

⇤ �T qa(xa, k⌅a) cos(⌅a + ⇧1 � ⇧2 + ⌅H
� )

⇤ fb/p(xb, k⌅b)
⇤
M̂0

1 M̂0
2

⌅

qab�qcd
�ND�/qc

(z, p⌅)
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FIG. 6: The Sivers contribution to the charged pion single spin asymmetry AN , compared with the corresponding BRAHMS
experimental data at two fixed scattering angles and

√
s = 200 GeV [44]. The central lines are obtained adopting the GRV98

set of collinear PDFs and the Kretzer FFs, with the Sivers functions as in Eqs. (10)–(12) with the parameters given in Table 1.
The shaded statistical error bands are generated applying the error estimate procedure described in Appendix A of Ref. [24].
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FIG. 7: The Sivers contribution to the neutral pion single spin asymmetry AN , compared with the corresponding STAR
experimental data at two fixed pion rapidities and

√
s = 200 GeV [45]. The central lines are obtained adopting the GRV98 set

of collinear PDFs and the Kretzer FFs, with the Sivers functions as in Eqs. (10)–(12) with the parameters given in Table 1.
The shaded statistical error bands are generated applying the error estimate procedure described in Appendix A of Ref. [24].

alone, the SSAs for pion production, as measured both by BRAHMS and STAR Collaborations at 200 GeV.
The preliminary STAR data at 500 GeV [47] deserve a dedicated comment. Quite surprisingly, they show values of

AN of the order of few percents, with a flat behaviour as a function of PT at fixed xF , up to PT ≃ 7 GeV. Such a trend
is well reproduced by our set of chosen best parameters; however, the computed magnitude of AN is smaller than
data, as shown in Fig. 10, left plots. As the asymmetry is so small, we have also computed the Collins contribution to
AN , following Ref. [71]. It turns out that, for some sets of the parameters, the Collins contribution has a similar trend
and magnitude as the Sivers one, as shown in Fig. 10, right plots. Then, an appropriate sum of the two contributions,
according to Eq. (5), might well explain also this new puzzling data.
Another cautious comment about the STAR data on AN at 500 GeV concerns the large value of their QCD scale,

Q2 = P 2
T . As we noticed for the COMPASS proton data, at such values the TMD evolution might play an important

role. Our results should then be taken as an indication in favour of a combined Collins + Sivers effect, rather than a
proof. Qualitatively, one expects from TMD evolution an increase of the average ⟨k2⊥⟩ value of the Sivers distribution,
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AN of the order of few percents, with a flat behaviour as a function of PT at fixed xF , up to PT ≃ 7 GeV. Such a trend
is well reproduced by our set of chosen best parameters; however, the computed magnitude of AN is smaller than
data, as shown in Fig. 10, left plots. As the asymmetry is so small, we have also computed the Collins contribution to
AN , following Ref. [71]. It turns out that, for some sets of the parameters, the Collins contribution has a similar trend
and magnitude as the Sivers one, as shown in Fig. 10, right plots. Then, an appropriate sum of the two contributions,
according to Eq. (5), might well explain also this new puzzling data.
Another cautious comment about the STAR data on AN at 500 GeV concerns the large value of their QCD scale,

Q2 = P 2
T . As we noticed for the COMPASS proton data, at such values the TMD evolution might play an important

role. Our results should then be taken as an indication in favour of a combined Collins + Sivers effect, rather than a
proof. Qualitatively, one expects from TMD evolution an increase of the average ⟨k2⊥⟩ value of the Sivers distribution,
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FIG. 8: The same as in Fig. 7, but with the STAR data plotted vs. the pion transverse momentum, PT , for different bins in
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which would help increasing the corresponding value of AN .

B. SSAs for p↑p → jetX and p↑p → γX processes

In these processes no fragmentation mechanism is required, so that, within the GPM and the TMD factorisation
approach, one can access directly the spin and k⊥ properties of the partonic distributions. After integration over the
intrinsic azimuthal phases only the Sivers effect survives, which is then best studied in these processes, as discussed,

TABLE I: Our chosen set of 7 parameters, Eq. (13), fixing the u and d quark Sivers distribution functions, according to
Eqs. (10-12). Among the 81 sets of the scan procedure, this set gives the best description of the AN data. The corresponding
total value of χ2 for the 217 SIDIS data points is 273.2, which is very close to the best value χ2

0 = 270.5 of the reference set.
The statistical errors quoted for each free parameter correspond to the shaded uncertainty areas in Figs. 6-9 and 11 and the
left panels of Fig. 10, as explained in the text and in the Appendix of Ref. [24].

Nu = 0.35+0.08
−0.04 αu = 0.00+0.06

−0.00 βu = 0.00

Nd = −1.00+0.24
−0.00 αd = 0.24+0.11

−0.17 βd = 1.00

M2 = 0.44+0.78
−0.15 GeV2

STAR

BRAHMS

M. A., M. Boglione, U. D'Alesio, S. Melis, F. Murgia , A. Prokudin,  
Phys. Rev. D88 (2013) 054023

AN, as obtained in the GPM scheme 
with the SIDIS extracted Sivers 

functions, compared with some 
RHIC data. 

The SIDIS data leave great 
uncertainty in the  large x values 

of the Sivers functions.  



Figure 4: Diagrammatic representation of the origin of complex phase leading to the single-spin
asymmetry in SIDIS. The longer cut denotes the final state of the process, while the shorter
cut demonstrates the origin of the phase needed for the asymmetry.

3.2 Drell-Yan Process

We now perform a similar calculation for the Drell-Yan process in the same model consid-
ered above for deep inelastic scattering. We will consider the scattering of an antiquark on a
transversely-polarized proton with transverse spin eigenvalue � that produces a virtual photon,
which then decays into a dilepton pair with invariant mass q2 = Q2. This process is shown in
Fig. 5 at the level of virtual photon production: q + p" ! �⇤

+ X.

�

�

p

�
p p � r

�

q

��
q � r

r

(A)

(B)

k

q � kq � r

k � r

p � k p � r

q
��

Figure 5: Diagrams for the q + p" ! �⇤
+ X DY amplitude at one-loop order (A) and tree-

level (B). The incoming proton and anti-quark are denoted by the lower and upper solid lines
correspondingly, with the outgoing diquark denoted by the dashed line.

Following [9], we work in a generic frame collinear to the proton (~p? =

~
0?). We define the

longitudinal momentum fraction of the photon to be � ⌘ q+/p+ and the momentum fraction
exchanged in the t-channel to be � ⌘ r+/p+. As before, four-momentum conservation and the

15

SIDIS final state interactions (⇒ AN)

examples of non vanishing Sivers function - simple  
quark-scalar diquark model of the proton 

Brodsky, Hwang, Schmidt, PL B530 (2002) 99; NP B642 (2002) 344                                            
Brodsky, Hwang, Kovchegov, Schmidt, Sievert, PR D88 (2013) 014032

Figure 6: Diagrammatic representation of the origin of complex phase leading to the single-spin
asymmetry in the Drell-Yan process. The longer cut denotes the final state of the process, while
the shorter cut demonstrates the origin of the phase needed for the asymmetry.

It is interesting to investigate the diagrammatic origin of the sign-flip in Eqs. (61) and (62).
To do that we consider the diagram contributing to the single-spin asymmetry in the Drell-Yan
process shown in Fig. 6. As follows from the calculation in Appendix B, the asymmetry in
the Drell-Yan case arises due to putting the (q � k)- and k-lines in Fig. 5 (A) (corresponding
to lines ¨ and ≠ in Figs. 13 and 14) on mass-shell: this is illustrated in Fig. 6 by the second
(shorter) cut, in analogy to Fig. 4. Comparing Figures 6 and 4, we see that the minus sign in
Eqs. (61) and (62) arises due to the replacement of the outgoing eikonal quark in Fig. 4 by the
incoming eikonal anti-quark in Fig. 6: this is in complete analogy with the original Wilson-line
time-reversal argument of Collins [8] (see also [36]).

However, a closer inspection of Figures 4 and 6 reveals that the cuts generating the complex
phase appear to be different: in Fig. 4 the (shorter) cut crosses the struck quark and the diquark
lines, while in Fig. 6 the (shorter) cut crosses the anti-quark line and the line of the quark in
the proton wave function. While we have already identified the outgoing quark/incoming anti-
quark duality in SIDIS vs. DY as generating the sign flip, the fact that in the proton’s wave
function the diquark is put on mass shell in SIDIS and the quark is put on mass shell in DY
makes one wonder why the absolute magnitudes of the asymmetries in Eq. (62) are equal. After
all, different cuts may lead to different contributions to the magnitudes of the asymmetry.

Ultimately the origin of Eq. (62) is in the fact that spin-asymmetry is a pseudo T -odd
quantity and the Wilson lines describing the outgoing quark in SIDIS and the incoming anti-
quark in DY are related by a time-reversal transformation [8]. However, in the diagrams at
hand the origin of the equivalence of the shorter cuts in Figs. 4 and 6 is as follows. Consider the
splitting of a polarized proton into a quark and a diquark as shown in Fig. 7: this subprocess
is common to both diagrams in Figs. 4 and 6. The essential difference between Figs. 4 and 6
that we are analyzing is in the fact that in Fig. 4 the diquark is on mass shell, while in Fig. 6
the quark is on mass shell.

Concentrating on the denominators of the quark and diquark propagators in Fig. 7 we shall
write for the SIDIS case of Fig. 4 (quark is off mass shell, diquark is on mass shell)

1

k2
�
�
(p � k)

2 � �2
�

=

�1

p+ (

~k2
? + a2

)

�

 
k� � M2

p+
+

~k2
? + �2

(1 � �) p+

!
⇡ �1

p+ (

~k2
? + a2

)

�(k�
), (66)

where we have used Eqs. (21), (34), and (30) along with x ⇡ �, and, in the last step, neglected
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D-Y initial state interactions (⇒ -AN)
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γ∗
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(d)(c)

(b)(a)

+

−

γ∗−
γ∗

+

+

−

Figure 1: (a),(b) Simple QED example for process-dependence of the Sivers functions in DIS and

the Drell-Yan process. (c),(d) Same for QCD.

case is “initial-state” and is between the remnant of the transversely polarized “hadron” and the

initial parton from the other, unpolarized, “hadron”. These necessarily have identical charges,

and the interaction is repulsive. As a result, the spin-effect in this case needs to be of opposite

sign as that in DIS.

These simple models are readily generalized to true hadronic scattering in QCD. In DIS, the

final-state interaction is through a gluon exchanged between the 3 and 3̄ states of the struck quark
and the nucleon remnant, which is attractive, as indicated in Fig. 1(c). In the Drell-Yan process,

the interaction is between the 3 and 3 states (or 3̄ and 3̄) and therefore repulsive, as shown in
Fig. 1(d). This is the essence of the – by now widely quoted – result that the Sivers functions

contributing to DIS and to the Drell-Yan process have opposite sign [3, 4, 5, 6]:

fSivers(x, k⊥)
∣∣∣
DY

= −fSivers(x, k⊥)
∣∣∣
DIS

. (1)

In the full gauge theory, the phases generated by the additional (final-state or initial-state) inter-

actions can be summed to all orders into a “gauge-link”, which is a path-ordered exponential of

the gluon field and makes the Sivers functions gauge-invariant. The non-universality of the Sivers

functions is then reflected in a process-dependence of the space-time direction of the gauge-link.

The crucial role played by the gauge link has given rise to intuitive model interpretations of

single-spin asymmetries in terms of spatial deformations of parton distributions in a transversely

polarized nucleon [19]. The process-dependence of the Sivers functions will also manifest itself

in more complicated QCD hard-scattering, albeit in a more intricate way [20]. An example is

the single-spin asymmetry in di-jet angular correlations [21, 22, 23], which is now under inves-

tigation at RHIC [24]. We note that a related initial-state interaction may give rise to azimuthal

angular dependences in the unpolarized Drell-Yan process [25, 26].

The verification of the predicted non-universality of the Sivers functions is an outstanding

challenge in strong-interaction physics. It is most cleanly possible in the Drell-Yan process,

3

DIS: 
“attractive”

D-Y: 
“repulsive”

[fq�
1T ]SIDIS = �[fq�

1T ]DY

process-dependence of Sivers functions 

Collins, PL B536 (2002) 43



2. Higher-twist partonic correlations (ETQS)          
(Efremov, Teryaev, Ratcliffe; Qiu, Sterman; Kouvaris, Vogelsang, Yuan; 

Bacchetta, Bomhof, Mulders, Pijlman; Koike; Gamberg, Kang...) 

d�� ⇥
�

a,b,c

Ta(k1, k2,S⇥)� fb/B(xb)�Hab�c(k1, k2)�Dh/c(z)

twist-3 correlators product of hard amplitudes, 
not cross sections

higher-twist partonic correlations - factorization OK  

4

into non-perturbative PDFs, FFs, or the correlation functions. Consequently, unlike for the TMD distributions, all
field operators defining the non-perturbative functions in the collinear factorization approach are evaluated at the
same light-cone separation with zero “+” and “⊥” components, as shown for example in Eq. (8).
Since the quark-gluon correlation functions in the collinear factorization approach have all their active partons’

transverse momenta integrated, these correlation functions can be related to k⊥-moments of the TMD parton distri-
bution functions. It was shown at the operator level [23, 33, 36] that the ETQS function Tq,F (x, x) is closely related
to the k⊥-moment of Sivers function:

gTq,F (x, x) = −
∫

d2k⊥
|k⊥|2

M
f⊥q
1T (x, k2⊥)|SIDIS (10)

where the subscript “SIDIS” emphasizes that the Sivers functions here are probed in the SIDIS process. We stress
again the importance of the sign convention for the coupling constant g in the definition of the gauge link. If the sign
convention used to define Tq,F (x, x) is different from that in the definition of f⊥q

1T (x, k2⊥), the difference will introduce
an extra factor “−1” in the relation between these two functions, so that there will be no minus sign on the right-hand
side of Eq. (10).
We emphasize that the operator definition in Eq. (8) does not completely fix the quark-gluon correlation function

Tq,F (x, x), unless the renormalization scheme is specified. As is well known from the case of ordinary PDFs, the matrix
element in Eq. (8) is ultraviolet (UV) divergent [39]. Like in the case of PDFs, the quark-gluon correlation function
is really defined in terms of the QCD factorization formalism. The leading UV divergent (the large k⊥) region of the
matrix element on the right-hand-side of Eq. (8) corresponds to the region of phase space with large parton virtuality,
and is required by factorization to be moved from the matrix element into the perturbatively calculated short-distance
functions. The removal or subtraction of the UV divergence is not unique, which leads to the factorization scheme
and scale (µ) dependence of the correlation functions Tq,F (x, x, µ) [40]. In this way, also the relation in Eq. (10) is
subject to the UV subtractions and the adopted factorization scheme, and hence not a unique identity. That said, the
relation (10) provides a natural “zeroth-order” connection between the Sivers and the ETQS functions. It plays an
important role in establishing the consistency between the TMD factorization approach and the collinear twist-three
quark-gluon correlation approach in the descriptions of the SSAs in SIDIS and the Drell-Yan process [33]. It also is a
useful starting point for phenomenological studies and is of much help in testing the various constraints on the quark
Sivers and quark-gluon correlation functions. In the following, we will therefore make use of relation (10), keeping
however in mind the caveats we have made regarding UV renormalization.

III. THE “SIGN MISMATCH”

The quark Sivers functions f⊥q
1T (x, k2⊥) (or equivalently, ∆Nfq/A↑(x, k⊥)) and the twist-3 quark-gluon correlation

functions Tq,F (x, x) have been extracted from experimental data on SSAs for single hadron production in SIDIS and
in hadron-hadron scattering, respectively. In this section, we compare the existing parameterizations of these two
functions and present our findings concerning the “sign mismatch”. We also introduce and discuss various loopholes
that might resolve the apparent inconsistency.

So far the quark Sivers functions have been extracted from the Asin(φh−φs)
UT azimuthal asymmetries in SIDIS. We

consider two such parametrizations here. One is from Ref. [10] (we refer it as “old Sivers”), the other one (“new Sivers”)
from Ref. [11] . They both parametrize the spin-averaged TMD PDFs f q

1 (x, k
2
⊥) and Sivers functions ∆Nfq/h↑(x, k⊥)

for each quark flavor q in the form

f q
1 (x, k

2
⊥) = f q

1 (x)g(k⊥), (11)

∆Nfq/h↑(x, k⊥) = 2Nq(x)f
q
1 (x)h(k⊥)g(k⊥), (12)

where f q
1 (x) is the quark’s spin-averaged collinear PDF,Nq(x) is a fitted function whose functional form is not relevant

for our discussion below, and g(k⊥) is assumed to have a Gaussian form,

g(k⊥) =
1

π⟨k2⊥⟩
e−k2

⊥/⟨k2
⊥⟩ (13)

with a fitting parameter ⟨k2⊥⟩ for the width. However, the two parameterizations adopt different functional forms for
the k⊥-dependence of the Sivers function:

old Sivers: h(k⊥) =
2k⊥M0

k2⊥ +M2
0

, (14)

new Sivers: h(k⊥) =
√
2e

k⊥
M1

e−k2
⊥/M2

1 , (15)
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production in hadronic collisions, A↑(S⊥) +B → h(Ph⊥) +X :

Eh
dσ

d3Ph
=

α2
s

S

∑

a,b,c

∫

dz

z2
Dc→h(z)

∫

dx′

x′
fb/B(x

′)

∫

dx

x
fa/A(x)H

U
ab→c(ŝ, t̂, û)δ

(

ŝ+ t̂+ û
)

, (A.1)

where fa/A(x) and fb/B(x
′) are the PDFs, Dc→h(z) are the FFs, andHU

ab→c are the partonic hard-scattering functions,

with ŝ, t̂, and û the Mandelstam variables at the parton level. Including only the contributions by the twist-3 quark-
gluon correlation functions, the spin-dependent cross section d∆σ(s⊥) ≡ [dσ(s⊥)− dσ(−s⊥)]/2 is given by

Eh
d∆σ(s⊥)

d3Ph
=

α2
s

S

∑

a,b,c

∫

dz

z2
Dc→h(z)

∫

dx′

x′
fb/B(x

′)

∫

dx

x

√
4παs

(

ϵPh⊥s⊥nn̄

zû

)

×
[

Ta,F (x, x)− x
d

dx
Ta,F (x, x)

]

Hab→c(ŝ, t̂, û)δ
(

ŝ+ t̂+ û
)

, (A.2)

where the relevant hard-scattering functions Hab→c(ŝ, t̂, û) can be written as

Hab→c(ŝ, t̂, û) = HI
ab→c(ŝ, t̂, û) +HF

ab→c(ŝ, t̂, û)

(

1 +
û

t̂

)

, (A.3)

with HI
ab→c and HF

ab→c representing the contributions from initial- and final-state interactions, respectively. The
explicit forms of HU

ab→c, H
I
ab→c, and HF

ab→c are given in [14]. It is important to point out that the spin-dependent
cross section in Eq. (A.2) is calculated from an interference between two partonic amplitudes. It thus depends on
the sign convention for the coupling constant g; the form given in Eq. (A.2) is based on the convention in Eq. (4).
If one uses the other sign convention for the covariant derivative, there will be an extra minus sign appearing on the
right-hand side of Eq. (A.2), which would be compensated by an extra sign in Eq. (10).
The SSA, AN , is given by the ratio of spin-dependent and spin-averaged cross sections:

Eh
d∆σ(s⊥)

d3Ph

/

Eh
dσ

d3Ph
≡ AN sin(φs − φh), (A.4)

where φh and φs are the azimuthal angles of the hadron transverse momentum Ph⊥ and the spin vector s⊥, respectively.
The absolute sign of AN depends on the choice of frame and the coordinate system. In experiment the following
convention is used: positive values of AN correspond to a larger cross section for hadron production to the beam’s left
when the beam’s proton spin is vertically upward [30], as sketched in Fig. A.1. In the center-of-mass frame of A and
B, a convenient coordinate system (consistent with the experimental convention) is given by choosing the polarized
nucleon A to move along +z, the unpolarized B along −z, the spin vector s⊥ along y, and the produced hadron’s
transverse momentum Ph⊥ along the x-direction. In this frame, φh = 0, φs = π/2, and

ϵPh⊥s⊥nn̄ = −|Ph⊥||s⊥|. (A.5)

We note at this point that there is an overall sign error in [30] and consequently in [14], because in these papers the
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FIG. A.1: Illustration of the sign convention for AN : positive AN means that more hadrons are produced to the left of the
beam direction when the beam’s spin is vertically upward.

choice ϵPh⊥s⊥nn̄ > 0 was made (see Eq. (73) of [30], in contrast to Eq. (A.5) above).
In the forward direction, qg → qg is the dominant partonic scattering channel for inclusive single hadron production.

The corresponding hard-scattering functions are given by [14]

HU
qg→qg =

N2
c − 1

2N2
c

[

− ŝ

û
− û

ŝ

] [

1− 2N2
c

N2
c − 1

ŝû

t̂2

]

|t̂|≪ŝ∼|û|−→
[

2ŝ2

t̂2

]

, (A.6)
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production in hadronic collisions, A↑(S⊥) +B → h(Ph⊥) +X :

Eh
dσ

d3Ph
=

α2
s

S

∑

a,b,c

∫

dz

z2
Dc→h(z)

∫

dx′

x′
fb/B(x

′)

∫

dx

x
fa/A(x)H

U
ab→c(ŝ, t̂, û)δ

(

ŝ+ t̂+ û
)

, (A.1)

where fa/A(x) and fb/B(x
′) are the PDFs, Dc→h(z) are the FFs, andHU

ab→c are the partonic hard-scattering functions,

with ŝ, t̂, and û the Mandelstam variables at the parton level. Including only the contributions by the twist-3 quark-
gluon correlation functions, the spin-dependent cross section d∆σ(s⊥) ≡ [dσ(s⊥)− dσ(−s⊥)]/2 is given by

Eh
d∆σ(s⊥)

d3Ph
=

α2
s

S

∑

a,b,c

∫

dz

z2
Dc→h(z)

∫

dx′

x′
fb/B(x

′)

∫

dx

x

√
4παs

(

ϵPh⊥s⊥nn̄

zû

)

×
[

Ta,F (x, x)− x
d

dx
Ta,F (x, x)

]

Hab→c(ŝ, t̂, û)δ
(

ŝ+ t̂+ û
)

, (A.2)

where the relevant hard-scattering functions Hab→c(ŝ, t̂, û) can be written as

Hab→c(ŝ, t̂, û) = HI
ab→c(ŝ, t̂, û) +HF

ab→c(ŝ, t̂, û)

(

1 +
û

t̂

)

, (A.3)

with HI
ab→c and HF

ab→c representing the contributions from initial- and final-state interactions, respectively. The
explicit forms of HU

ab→c, H
I
ab→c, and HF

ab→c are given in [14]. It is important to point out that the spin-dependent
cross section in Eq. (A.2) is calculated from an interference between two partonic amplitudes. It thus depends on
the sign convention for the coupling constant g; the form given in Eq. (A.2) is based on the convention in Eq. (4).
If one uses the other sign convention for the covariant derivative, there will be an extra minus sign appearing on the
right-hand side of Eq. (A.2), which would be compensated by an extra sign in Eq. (10).
The SSA, AN , is given by the ratio of spin-dependent and spin-averaged cross sections:

Eh
d∆σ(s⊥)

d3Ph

/

Eh
dσ

d3Ph
≡ AN sin(φs − φh), (A.4)

where φh and φs are the azimuthal angles of the hadron transverse momentum Ph⊥ and the spin vector s⊥, respectively.
The absolute sign of AN depends on the choice of frame and the coordinate system. In experiment the following
convention is used: positive values of AN correspond to a larger cross section for hadron production to the beam’s left
when the beam’s proton spin is vertically upward [30], as sketched in Fig. A.1. In the center-of-mass frame of A and
B, a convenient coordinate system (consistent with the experimental convention) is given by choosing the polarized
nucleon A to move along +z, the unpolarized B along −z, the spin vector s⊥ along y, and the produced hadron’s
transverse momentum Ph⊥ along the x-direction. In this frame, φh = 0, φs = π/2, and

ϵPh⊥s⊥nn̄ = −|Ph⊥||s⊥|. (A.5)

We note at this point that there is an overall sign error in [30] and consequently in [14], because in these papers the
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choice ϵPh⊥s⊥nn̄ > 0 was made (see Eq. (73) of [30], in contrast to Eq. (A.5) above).
In the forward direction, qg → qg is the dominant partonic scattering channel for inclusive single hadron production.

The corresponding hard-scattering functions are given by [14]

HU
qg→qg =

N2
c − 1

2N2
c

[

− ŝ

û
− û

ŝ

] [

1− 2N2
c

N2
c − 1

ŝû

t̂2

]

|t̂|≪ŝ∼|û|−→
[

2ŝ2

t̂2

]

, (A.6)
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HI
qg→qg =

1

2(N2
c − 1)

[

− ŝ

û
− û

ŝ

] [

1−N2
c
û2

t̂2

]

|t̂|≪ŝ∼|û|−→
[

− N2
c

2(N2
c − 1)

] [

2ŝ2

t̂2

]

, (A.7)

HF
qg→qg =

1

2N2
c (N

2
c − 1)

[

− ŝ

û
− û

ŝ

] [

1 + 2N2
c
ŝû

t̂2

]

|t̂|≪ŝ∼|û|−→
[

− 1

N2
c − 1

] [

2ŝ2

t̂2

]

. (A.8)

This shows that both HI
qg→qg and HF

qg→qg have opposite sign to that of the spin-averaged hard-scattering function
HU

qg→qg . Furthermore it is clear that the SSA in π+ production is mainly sensitive to Tu,F (x, x), while the one for π−

production probes Td,F (x, x). Since

ϵPh⊥s⊥nn̄

û
> 0, (A.9)

we conclude from Eq. (A.2) that the observed positive SSAs for π+ production indicates a negative Tu,F (x, x), while
the observed negative asymmetry for π− production indicates a positive Td,F (x, x), as shown by the solid curves in
Fig. 1.
To conclude this appendix, we demonstrate the apparent “sign mismatch” again numerically, by evaluating the

SSAs for inclusive single hadron production using the ETQS functions indirectly derived via Eq. (10) from the quark
Sivers functions in Eqs. (16) and (17). The results are shown in Fig. A.2. As expected, the signs of the calculated
SSAs are opposite to those observed experimentally.

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.2 0.3 0.4 0.5 0.6

y=3.7
π-

π0

π+

xF

A
N

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.2 0.3 0.4 0.5 0.6

y=3.7

π-

π0

π+

xF

A
N

FIG. A.2: The SSA, AN , for inclusive single pion production in p↑p → π + X at
√
s = 200 GeV, as a function of xF and at

rapidity y = 3.7, evaluated by using the old Sivers functions in Eq. (16) (left), and the new Sivers functions in Eq. (17) (right).
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into non-perturbative PDFs, FFs, or the correlation functions. Consequently, unlike for the TMD distributions, all
field operators defining the non-perturbative functions in the collinear factorization approach are evaluated at the
same light-cone separation with zero “+” and “⊥” components, as shown for example in Eq. (8).
Since the quark-gluon correlation functions in the collinear factorization approach have all their active partons’

transverse momenta integrated, these correlation functions can be related to k⊥-moments of the TMD parton distri-
bution functions. It was shown at the operator level [23, 33, 36] that the ETQS function Tq,F (x, x) is closely related
to the k⊥-moment of Sivers function:

gTq,F (x, x) = −
∫

d2k⊥
|k⊥|2

M
f⊥q
1T (x, k2⊥)|SIDIS (10)

where the subscript “SIDIS” emphasizes that the Sivers functions here are probed in the SIDIS process. We stress
again the importance of the sign convention for the coupling constant g in the definition of the gauge link. If the sign
convention used to define Tq,F (x, x) is different from that in the definition of f⊥q

1T (x, k2⊥), the difference will introduce
an extra factor “−1” in the relation between these two functions, so that there will be no minus sign on the right-hand
side of Eq. (10).
We emphasize that the operator definition in Eq. (8) does not completely fix the quark-gluon correlation function

Tq,F (x, x), unless the renormalization scheme is specified. As is well known from the case of ordinary PDFs, the matrix
element in Eq. (8) is ultraviolet (UV) divergent [39]. Like in the case of PDFs, the quark-gluon correlation function
is really defined in terms of the QCD factorization formalism. The leading UV divergent (the large k⊥) region of the
matrix element on the right-hand-side of Eq. (8) corresponds to the region of phase space with large parton virtuality,
and is required by factorization to be moved from the matrix element into the perturbatively calculated short-distance
functions. The removal or subtraction of the UV divergence is not unique, which leads to the factorization scheme
and scale (µ) dependence of the correlation functions Tq,F (x, x, µ) [40]. In this way, also the relation in Eq. (10) is
subject to the UV subtractions and the adopted factorization scheme, and hence not a unique identity. That said, the
relation (10) provides a natural “zeroth-order” connection between the Sivers and the ETQS functions. It plays an
important role in establishing the consistency between the TMD factorization approach and the collinear twist-three
quark-gluon correlation approach in the descriptions of the SSAs in SIDIS and the Drell-Yan process [33]. It also is a
useful starting point for phenomenological studies and is of much help in testing the various constraints on the quark
Sivers and quark-gluon correlation functions. In the following, we will therefore make use of relation (10), keeping
however in mind the caveats we have made regarding UV renormalization.

III. THE “SIGN MISMATCH”

The quark Sivers functions f⊥q
1T (x, k2⊥) (or equivalently, ∆Nfq/A↑(x, k⊥)) and the twist-3 quark-gluon correlation

functions Tq,F (x, x) have been extracted from experimental data on SSAs for single hadron production in SIDIS and
in hadron-hadron scattering, respectively. In this section, we compare the existing parameterizations of these two
functions and present our findings concerning the “sign mismatch”. We also introduce and discuss various loopholes
that might resolve the apparent inconsistency.

So far the quark Sivers functions have been extracted from the Asin(φh−φs)
UT azimuthal asymmetries in SIDIS. We

consider two such parametrizations here. One is from Ref. [10] (we refer it as “old Sivers”), the other one (“new Sivers”)
from Ref. [11] . They both parametrize the spin-averaged TMD PDFs f q

1 (x, k
2
⊥) and Sivers functions ∆Nfq/h↑(x, k⊥)

for each quark flavor q in the form

f q
1 (x, k

2
⊥) = f q

1 (x)g(k⊥), (11)

∆Nfq/h↑(x, k⊥) = 2Nq(x)f
q
1 (x)h(k⊥)g(k⊥), (12)

where f q
1 (x) is the quark’s spin-averaged collinear PDF,Nq(x) is a fitted function whose functional form is not relevant

for our discussion below, and g(k⊥) is assumed to have a Gaussian form,

g(k⊥) =
1

π⟨k2⊥⟩
e−k2

⊥/⟨k2
⊥⟩ (13)

with a fitting parameter ⟨k2⊥⟩ for the width. However, the two parameterizations adopt different functional forms for
the k⊥-dependence of the Sivers function:

old Sivers: h(k⊥) =
2k⊥M0

k2⊥ +M2
0

, (14)

new Sivers: h(k⊥) =
√
2e

k⊥
M1

e−k2
⊥/M2

1 , (15)

=

Z
d

2
k?

|k?|
2

�N
fq/p"(x, k?)|SIDIS
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Towards an explanation of transverse single-spin asymmetries in
proton-proton collisions: the role of fragmentation in collinear factorization
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We study the transverse single-spin asymmetry for single-hadron production in proton-proton
collisions within the framework of collinear twist-3 factorization in Quantum Chromodynamics.
By taking into account the contribution due to parton fragmentation we obtain a very good de-
scription of all high transverse-momentum data for neutral and charged pion production from the
Relativistic Heavy Ion Collider. Our study may provide the crucial step towards a final solution to
the longstanding problem of what causes transverse single-spin asymmetries in hadronic collisions
within Quantum Chromodynamics. We show for the first time that, in a conceptually satisfactory
framework, it is possible to simultaneously describe spin/azimuthal asymmetries in proton-proton
collisions, semi-inclusive deep-inelastic scattering, and electron-positron annihilation.

PACS numbers: 12.38.-t, 12.38.Bx, 12.39.St, 13.75.Cs, 13.88.+e

Introduction The field of transverse single-spin asym-
metries (SSAs) in hard semi-inclusive processes began
some four decades ago with the observation of the large
transverse polarization (up to about 30%) of neutral Λ-
hyperons in the process pBe → Λ↑X at FermiLab [1].
People noticed early on that the näıve collinear parton
model cannot generate such large effects [2]. It was then
pointed out that SSAs for single-particle production in
hadronic collisions are genuine twist-3 observables for
which, in particular, collinear 3-parton correlations have
to be taken into account in order to have a proper descrip-
tion within Quantum Chromodynamics (QCD) [3]. This
formalism later on was worked out in more detail and
also successfully applied to SSAs in processes like hadron
production in proton-proton collisions, p↑p → hX — see,
e.g., Refs. [4–10]. Here we focus on SSAs in such reac-
tions, which were extensively investigated in fixed target
and in collider experiments.
Let us now look at the generic structure of the spin-

dependent cross section for A(P, S⃗⊥)+B(P ′) → C(Ph)+
X , where the 4-momenta and polarizations of the incom-
ing protons A, B and outgoing hadron C are specified.
In twist-3 collinear QCD factorization one has

dσ(S⃗⊥) = H ⊗ fa/A(3) ⊗ fb/B(2) ⊗DC/c(2)

+ H ′ ⊗ fa/A(2) ⊗ fb/B(3) ⊗DC/c(2)

+ H ′′ ⊗ fa/A(2) ⊗ fb/B(2) ⊗DC/c(3) , (1)

with fa/A(t) (fb/B(t)) indicating the distribution func-
tion associated with parton a (b) in proton A (B), while
DC/c(t) represents the fragmentation function associated
with hadron C in parton c. The twist of the functions
is denoted by t. The hard factors corresponding to each
term are given by H , H ′, and H ′′, and the symbol ⊗ rep-
resents convolutions in the appropriate momentum frac-
tions. In Eq. (1) a sum over partonic channels and parton
flavors in each channel is understood.

The first term in (1) has already been studied in quite
some detail in the literature [5, 7–12]. It contains both
quark-gluon-quark correlations and tri-gluon correlations
in the polarized proton, where for the former one needs
to distinguish between contributions from so-called soft
gluon poles (SGPs) and soft fermion poles (SFPs). The
second term in (1), arising from twist-3 effects in the
unpolarized proton, was shown to be small [13]. Only re-
cently a complete analytical result was obtained for the
third term in (1), which describes the twist-3 contribu-
tion due to parton fragmentation [14].
For quite some time many in the community believed

that the first term in (1) dominates the transverse SSA
in p↑p → hX (typically denoted by AN ) for the produc-
tion of light hadrons (see, e.g., Refs. [5, 7, 10]), where the
SGP contribution is generally considered the most impor-
tant part. Note that the SGP contribution to AN is de-
termined by the Qiu-Sterman function TF [4, 5], which
can be related to the transverse-momentum dependent
(TMD) Sivers parton density f⊥

1T [15, 16]. For a given
quark flavor q, these entities satisfy [17]

T q
F (x, x) = −

∫

d2p⃗⊥
p⃗ 2
⊥

M
f⊥q
1T (x, p⃗ 2

⊥)
∣

∣

SIDIS
, (2)

where M is the nucleon mass. Because of the relation
in (2), one can extract TF from data on either AN or on
the Sivers transverse SSA in semi-inclusive deep-inelastic
scattering (SIDIS) ASiv

SIDIS. It therefore came as a ma-
jor surprise when an attempt failed to simultaneously
explain both AN and ASiv

SIDIS [11]. The striking result
pointed out in Ref. [11] was that the two extractions for
TF differ in sign. This “sign-mismatch” puzzle could
not be resolved by more flexible parameterizations of
f⊥
1T [18]. Also tri-gluon correlations are unlikely to fix
this issue [12], while SFPs may play some role [9].
At this point one may start to question the domi-

(1) Twist-3 contribution related to Sivers function  
(2) Twist-3 contribution related to Boer-Mulders function  

(3) Twist-3 fragmentation: has two contributions, 
one related to Collins function + a new one  

the first contribution with a twist-3 quark-gluon-quark 
correlator was expected to be the dominant one, but 

gives a wrong sign ….
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FIG. 1. Fit results for Aπ0

N (data from [35–37]) and Aπ±

N (data
from [38]) for the SV1 input. The dashed line (dotted line in
the case of π−) means Ĥℑ

FU switched off.

and implies
∫ 1
0 dz z Hπ+/u

(3) (z) = Nfav, where H(3) rep-

resents the entire second term on the r.h.s. of (5). For

the disfavored FFs Ĥπ+/(d,ū,s,s̄),ℑ
FU we make an ansatz in

full analogy to (6), introducing the additional parameters
Ndis, αdis, α′

dis, βdis, β′
dis. (Idis and Jdis are calculated

using Dπ+/d = Dπ+/ū from [42].) The π− FFs are then
fixed through charge conjugation, and the π0 FFs are
given by the average of the FFs for π+ and π−. The FFs
Hπ/q are computed by means of (5). All parton correla-
tion functions are evaluated at the scale Ph⊥ with leading
order evolution of the collinear functions.
Using the MINUIT package we fit the fragmentation

contribution to data for Aπ0

N [35–37] and Aπ±

N [38]. To

facilitate the fit we only keep 7 parameters in Ĥπ+/q,ℑ
FU

free. We also allow the β-parameters βT
u = βT

d of the
transversity to vary within the error range given in [33].
For the SV1 input the result of our 8-parameter fit is

TABLE I. Fit parameters for SV1 input.

χ2/d.o.f. = 1.03

Nfav = −0.0357 Ndis = 0.220

αfav = α′
fav = −0.293 βfav = 0.0

β′
fav = β′

dis = −0.180 αdis = α′
dis = 4.02

βdis = 3.39 βT
u = βT

d = 1.06

shown in Tab. I. Note that the values for β′
fav = β′

dis
and βfav are at their lower limits, which we introduce
to guarantee a finite integration upon z1 in (3) and a
proper behavior of AN at large xF , respectively. For
the SV2 input the values of the fit parameters are sim-
ilar, with an equally successful fit (χ2/d.o.f. = 1.10).
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FIG. 4. AN as function of Ph⊥

for SV1 input (
√

S = 500GeV).

The very good de-
scription of AN is also
reflected by Fig. 1.
We emphasize that
such a positive out-
come is non-trivial
if one keeps in mind
the constraint in (5)
and the need to si-
multaneously fit data
for Aπ0

N and Aπ±

N . Results for the FFs Hπ+/q and

H̃π+/q
FU ≡

∫∞

z
dz1
z2
1

1
1
z
− 1

z1

1
ξ Ĥ

π+/q,ℑ
FU (z, z1) are displayed in

Fig. 2. In either case the favored and disfavored FFs have
opposite signs. This is like for H⊥

1 where such reversed
signs are actually “preferred” by the Schäfer-Teryaev
(ST) sum rule

∑

h

∑

Sh

∫ 1
0 dz zMhĤh/q(z) = 0 [47].

Note that the ST sum rule, in combination with (5),
implies a constraint on a certain linear combination

of Hh/q and (an integral of) Ĥh/q,ℑ
FU . In view of that,

reversed signs between favored and disfavored FFs
like in Fig. 2 are actually beneficial. Also depicted

in Fig. 2 is Hπ+/q when Ĥπ+/q,ℑ
FU is switched off. As

shown in Fig. 1, in such a scenario, i.e., by turning
off the 3-parton FF, one cannot describe the data for
AN . According to Fig. 3, the Ĥ term (including its
derivative) in (3) contributes only very little to AN .
Also the SGP pole term is small, except for the SV2
input at large xF , where its contribution is opposite
to the data. Clearly AN is governed by the H-term
in (3). This result can mainly be traced back to the hard
scattering coefficients: e.g., for the dominant qg → qg
channel one has SH ∝ 1/t̂3, but SĤ ∝ 1/t̂2 [14] in the
forward region where t̂ is small. Finally, Fig. 4 shows the
Ph⊥-dependence of AN for

√
S = 500GeV. Preliminary

AN from twist-3 fragmentation functions  
(Kanazawa, Koike, Metz, Pitonyak, PRD 89 (2014) 111501 )  

good fit of AN mainly 
due to the new twist-3 
fragmentation function 

it gives too large values of AN  
in                   processes` p" ! ⇡X

Gamberg, Khang, Metz, Pitonyak, 
PRD 90 (2014) 074012
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FIG. 11: Left panel: our estimate for the jet SSA AN at
√
s = 500 GeV, as a function of xF at fixed pseudo-rapidity η = 3.25,

compared with the ANDY data [47]. The central line is obtained adopting the GRV98 set of collinear PDFs, with the Sivers
functions as in Eqs. (10)–(12) with the parameters given in Table 1. The shaded statistical error band is generated applying
the error estimate procedure described in Appendix A of Ref. [23]. Right panel: the same estimate as in the left panel for a
direct photon, rather than a jet, production at

√
s = 200 GeV and η = 3.5.
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FIG. 12: Our computation of the unpolarised cross section for jet production vs. the jet energy, at
√
s = 510 GeV and fixed

pseudo-rapidity η = 3.25, compared with ANDY data [47].

Notice that the elementary hard scattering interactions are exactly the same as those for the inclusive hadron pro-
duction and the jet, at LO, is identified with the final parton c.
Concerning the direct photon production the basic partonic processes are the Compton process g q (q̄) → γ q (q̄)

and the annihilation process q q̄ → γ g. In this case one can formally use the above equation replacing the partonic
unpolarised cross section, Eq. (7), with the corresponding one for the process a b → γ d (see also Ref. [64]).
No SSA data are so far available for direct photon production, while very recently some preliminary data for

inclusive jet production have been released by the ANDY Collaboration at
√
s = 500 GeV [47]. The values measured

for AN are very tiny, but very precise and might indicate a non zero asymmetry.
In the left plot of Fig. 11 we show our estimate, based on the chosen best set parameters of Table 1, for AN (xF ) in

p↑p → jetX processes at a fixed pseudo-rapidity value and
√
s = 500 GeV, and compare it with the ANDY data [47].

In the right plot we give our corresponding estimates for AN (xF ) in p↑p → γX processes at a fixed pseudo-rapidity
value and

√
s = 200 GeV.

For consistency, in Fig. 12 we compare our (leading order) computation of the cross section for jet production as
given by Eq. (15) where we replace the factor ∆Nfa/p↑ cos(φa) with fa/p, with the ANDY data at

√
s = 510 GeV and

fixed pseudo-rapidity η = 3.25.

3

for collinear FFs [22]. During the fit we enforce posi-
tivity bounds [20] on Sivers functions treating separately
“valence” Sivers functions (uv and dv) and “sea” Sivers
functions (ū and d̄).

TABLE I. Best values of the free parameters for the Sivers
function from fit to SIDIS data [3, 4] on Asin(φh−φs)

UT .

χ2/d.o.f. = 1.04

αuv = 0.05 ± 0.05 αdv = 0.76 ± 0.04

βuv = 0.78 ± 0.46 βdv = 2.09 ± 0.25

Nuv = 0.34 ± 0.01 Ndv = −1± 0.01

αsea = 0 fixed βsea = 0 fixed

Nū = 0.003 ± 0.012 Nd̄ = −0.15 ± 0.01

M2
1 = 0.45 ± 0.10 (GeV/c)2

Fitting the pion data from both HERMES and COM-
PASS we obtain a very good description of SIDIS data,
with χ2/d.o.f. = 1.04. The resulting set of parameters
are presented in Table I together with the corresponding
errors. As one can see, the biggest uncertainty is on pa-
rameters βuv and βdv . This happens because SIDIS data
covers a rather limited kinematic region in x ! 0.3, as
seen clearly in the HERMES plot Fig. 1. Note that fu-
ture measurements of JLab 12 [23] will explore the high-x
region in SIDIS which is very important for jet AN as far
as integration over x is performed in Eq. (3).
In order to find the region of allowed values of βuv

and βdv , we perform the scan procedure, also used in
Ref. [24] to study the Collins effect. We produce a grid
of values βuv , βdv ∈ [0, 4] in steps of 0.25 and for each
pair of βuv , βdv perform a fit of SIDIS data. The re-
sulting sets of parameters corresponding to 289 pairs of
βuv , βdv give very good description of SIDIS data with
χ2/d.o.f ∈ [1.04, 1.08]; they are all almost statistically
identical. Using these 289 sets of parameters we draw
the shaded corridor in all the plots. It is important to
realize that this corridor corresponds to almost the same
description of SIDIS data.
We present a comparison to the SIDIS data in Fig. 1,

which gives a very good description of HERMES π+

data. For π0, π− asymmetries and zh and Ph⊥ depen-
dencies (and COMPASS data), the description is similar.
In Fig. 2 we show the first k⊥-moment of the extracted
quark Sivers functions versus x.
We now assess whether the recently measured jet spin

asymmetry from the AnDY experiment is compatible
with the SIDIS Sivers asymmetry data; in other words,
whether the jet asymmetry is consistent with our expec-
tation on the process-dependence of the Sivers effect. To
this end, we calculate the jet asymmetry AN from Eq. (4)
with our 289 equally-good sets of parameters. The result-
ing shaded region for jet AN as a function of Feynman
xF ≡ 2PJz/

√
s (PJz the jet longitudinal momentum) is

shown in Fig. 3. We note that the preliminary jet data

 (x
)

  (
1)

1T
x 

f
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vd

u
d

x
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−210 −110 1
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FIG. 2. The first k⊥-moment of the quark Sivers functions
as a function of x, here f⊥q(1)

1T (x) = −Tq,F (x, x)/2M . Dashed
lines correspond to positivity bounds, while the solid lines and
the shaded region are the same as in Fig. 1.

N
A

Fx
0.1 0.2 0.3 0.4 0.5 0.6

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

FIG. 3. Description of AnDY preliminary data [16] for inclu-
sive jet production at forward rapidity ⟨y⟩ = 3.25 and center-
of-mass energy

√
s=500 GeV. Shaded region corresponds to

the parameter scan.

are inside the shaded region, which demonstrates that
SIDIS Sivers data and jet AN data are statistically com-
patible with each other and that there exists a set of
Sivers functions which can describe them simultaneously.
Although we cannot claim that our analysis proves the
process-dependence of the Sivers effect (the role of ISIs
and FSIs) due to the large uncertainty and the very small
size of the jet asymmetry data, at the very least such a
process-dependence is not in disagreement with the ex-
isting experimental data. Thus, we conclude that this
is the first indication for the process-dependence of the
Sivers effect.
The very small size of the jet asymmetry is largely due

to a cancellation between u and d quark Sivers functions,
which have opposite signs. In order to carry out a more
definitive test on the process-dependence of the Sivers
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FIG. 3: Invariant forward jet cross section measured at
η = 3.25. Our measurements are compared to predictions
by PYTHIA.

ization; and (e) jet-finder parameters (Rjet, Ethr) that
also probe underlying event contributions. The result-
ing distribution of forward jet cross section as a func-
tion of energy is shown in Fig. 3. Our results are com-
pared to PYTHIA 6.222 [19] and 6.425 [24] predictions
for anti-kT jets reconstructed from stable particles that
are within the detector acceptance. In Ref. [22] it was
shown that PYTHIA predicts forward jets are from par-
tonic hard scattering. PYTHIA 6.222 is prior to tunings
based on Tevatron data which resulted in later versions
(e.g., 6.425) used by the LHC. Versions of PYTHIA that
predate tunings for the LHC are known to accurately de-
scribe large xF π0 production [26], and are known to lose
accuracy for more complicated multi-particle correlations
[27].
The forward jet AN is measured by the cross-ratio

method, that cancels through second order luminosity
and detector asymmetries by combining spin up (↑)
and spin down (↓) measurements from nominally mir-
ror symmetric beam-left (L) and beam-right (R) hadron
calorimeter modules. The jet analyzing power is

AN =
1

Pbeam

√

N↑
LN

↓
R −

√

N↓
LN

↑
R

√

N↑
LN

↓
R +

√

N↓
LN

↑
R

. (1)

Each fill has a pattern of spin directions for bunches
of beam injected into RHIC. A specific crossing of
bunches from the two rings is the remainder after di-
viding the RHIC clock count for an event by 120. The
bunch-crossing distribution has characteristic holes that
correspond to missing bunches from one or the other
beam. The pattern of polarization directions for that fill
recorded at ANDY originating from information broad-

cast by RHIC, is then used to accumulate N↑(↓)
L(R) in the

analysis. Since the RHIC broadcast information speci-

FIG. 4: Analyzing power for forward jet production. Jets
are reconstructed with the anti-kT algorithm using Rjet =
0.7. Preliminary results [22] reported comparable AN with
the mid-point cone algorithm. Systematic error estimates are
described in the text, and do not include scale uncertainty
from the beam polarization measurements.

fies polarization directions at the polarized ion source,
we rely on the measurement of spin asymmetries for far-
forward neutron production measured by the ZDC, where
the AN was previously measured [28], to ensure the jet
AN is measured with the proper sign.
Our measured forward jet AN is shown in Fig. 4. One

check for systematic effects was to fit the spin asymmetry
(ϵ = PbeamAN ) measured in each jet ⟨xF ⟩ bin for each
RHIC fill by a constant. The resulting χ2 per degree of
freedom from these fits is close to unity, and is consistent
with the statistical errors, meaning the systematic errors
are small. A more quantitative check for systematic ef-
fects was to establish if an effectively unpolarized sample
of p+ p collisions had AN consistent with zero. This was
accomplished by a random reversal of the spin direction
for half of the filled bunch crossings. The mean value of
ϵ for ∼ 100 random spin direction patterns had values
10−5 < ϵ < 10−4 resulting in the systematic uncertainty
estimate of 2 × 10−4 for the jet AN . The systematic er-
ror estimates in Fig. 4 are estimated by varying the jet
finder and valid jet parameters. Our jet AN measurement
is limited by statistics. Our measured small and positive
jet AN is naively expected because AN (π+)≈−AN(π−),
thus giving cancelling contributions from π± in a jet.
In conclusion, we have made first measurements of for-

ward jet production in p↑ + p collisions at
√
s=500 GeV.

Our measured cross section is consistent with dominant
contributions from partonic hard scattering, even though
the transverse momentum for the produced jets is small
(2 < pT < 10 GeV/c). We have measured the analyz-
ing power for forward jet production, and find it to be
small and positive. Our measurements constrain knowl-
edge [29] of Sivers functions, that are related to parton

AN for jet production at ANDY 

Phys. Lett. B750 (2015) 660

lower left plot: AN assuming TMD 
factorization, PRD 88 (2013) 054023  

lower right plot: AN with twist-3 
correlation function, Gamberg, Kang, 

Prokudin, PRL 110 (2013) 232301

measuring AN for prompt photon production might help 
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q = u, ū, d, d̄, s, s̄

Sivers effect in D-Y processes 
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xF = x1−x2 (left panel) and as a function of M (central panel). The integration ranges are (0 ≤ qT ≤ 1) GeV, (4 ≤ M ≤ 9) GeV
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Predictions for AN - no TMD evolution
Sivers functions from SIDIS, with sign change  

M.A., M. Boglione, U. D’Alesio, S. Melis, F. Murgia, A. Prokudin, PR D79 (2009) 054010 
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FIG. 4. [Color online] Transverse single-spin asymmetry amplitude for W+ (left plot) and W− (right plot) versus yW compared
with the non TMD-evolved KQ [11] model, assuming (solid line) or excluding (dashed line) a sign change in the Sivers function.
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some hints at sign change …..



Conclusions
SSAs (AN) are experimentally very well established; common 
features from medium to high energy, up to rather large PT 

values. Originate in valence quark region. 
They cannot be originated by collinear pQCD spin effects.

GPM with assumed TMD factorisation relates AN to intrinsic 
nucleon properties (Sivers distribution) or hadronisation 

properties (Collins FF). Same mechanisms in SIDIS, e+e- and, 
possibly, D-Y interactions.   

Higher-twist approach is factorised; generates AN from pQCD 
+ non perturbative correlators; indirectly related to TMDs 

(with problems). In models, it predicts opposite values of AN in 
SIDIS and D-Y (general argument based on gauge links ?).

keep measuring AN ….


