Experimental review of η_{c}, χ_{c} and χ_{b} production in $\mathrm{p} \overline{\mathrm{p}}^{(1)}$ collisions

Ilse Krätschmer* (HEPHY Vienna) New Observables in Quarkonium Production 29. February 2016
*Supported by Austrian Science Fund (FWF):
P 28411-N36

η_{c} cross section at LHCb

- $\eta_{c}(1 S)$ and J / ψ are detected via their decay to $p \bar{p}$
- Prompt $\eta_{c}(1 S)$ to J / ψ cross section ratio for $p_{T}>6.5 \mathrm{GeV}$

$$
\begin{aligned}
& \sigma\left(\eta_{c}(1 \mathrm{~S})\right) / \sigma(\mathrm{J} / \psi) \\
&=1.74 \pm 0.29 \text { (stat. }) \pm 0.28 \text { (syst. }) \pm 0.18(\mathrm{BF})(\sqrt{s}=7 \mathrm{TeV}) \\
&=1.60 \pm 0.29 \text { (stat.) } \pm 0.25 \text { (syst.) } \pm 0.17 \text { (BF) }(\sqrt{s}=8 \mathrm{TeV})
\end{aligned}
$$

- First measurement of inclusive branching fraction of b-hadrons into $\eta_{c}(1 S)$ mesons

$$
B R\left(b \rightarrow \eta_{c}(1 S) X\right)=
$$

$$
(4.88 \pm 0.64 \text { (stat. }) \pm 0.29 \text { (syst. }) \pm 0.67 \text { (BF) }) \times 10^{-3}
$$

$\boldsymbol{\eta}_{\mathrm{c}}$ cross section at LHCb

$\boldsymbol{\eta}_{\mathrm{c}}$ cross section at LHCb

- Full NLO NRQCD predictions overshoot data
- Color singlet (CS) contribution alone seems to describe cross section

PRL 114, 092004

Prompt χ_{c} cross sections

- Prompt cross section of $\mathrm{J} / \psi^{\text {'s }}$ s coming from χ_{c} decays (using converted photons)

$$
\chi_{c} \rightarrow \mathrm{~J} / \psi \gamma \rightarrow \mu^{+} \mu^{-}\left(\mathrm{e}^{+} \mathrm{e}^{-}\right)
$$

- CDF does not distinguish between $\chi_{\text {cJ }}$ states

Prompt χ_{c} cross sections

- Prompt cross section of $\mathrm{J} / \psi^{\prime} \mathrm{s}$ coming from χ_{c} decays (using converted photons)

$$
\chi_{c} \rightarrow \mathrm{~J} / \psi \gamma \rightarrow \mu^{+} \mu^{-}\left(\mathrm{e}^{+} \mathrm{e}^{-}\right)
$$

- CDF does not distinguish between $\chi_{\text {cJ }}$ states
- Different rapidity regions and energies for CDF and ATLAS measurements

Prompt χ_{c} cross sections

- Prompt cross section of $\mathrm{J} / \psi^{\prime} \mathrm{s}$ coming from χ_{c} decays (using converted photons)

$$
\chi_{c} \rightarrow \mathrm{~J} / \psi \gamma \rightarrow \mu^{+} \mu^{-}\left(\mathrm{e}^{+} \mathrm{e}^{-}\right)
$$

- CDF does not distinguish between $\chi_{\text {cı }}$ states
- Different rapidity regions and energies for CDF and ATLAS measurements
- Scaled CDF and ATLAS measurements have similar pt dependence

Comparison to theory

- NLO NRQCD calculations describe ATLAS and CDF data

Non-prompt $\chi_{c 1}$ and $\chi_{c 2}$ cross sections at ATLAS

- Non-prompt fractions are around 25% for the $\chi_{c 1}$ and 10% for the $\chi_{c 2}$

Relative prompt $\chi_{\mathrm{c} 2}$ to $\chi_{\mathrm{c} 1}$ cross section ratio

Relative prompt $\chi_{\mathrm{c} 2}$ to $\chi_{\mathrm{c} 1}$ cross section ratio

Relative prompt $\chi_{\mathrm{c} 2}$ to $\chi_{\mathrm{c} 1}$ cross section ratio

Relative prompt $\chi_{\mathrm{c} 2}$ to $\chi_{\mathrm{c} 1}$ cross section ratio

- Measurements using conversions are consistent

Relative prompt $\chi_{c 2}$ to $\chi_{c 1}$ cross section ratio

- Measurements using conversions are consistent

Relative prompt $\chi_{\mathrm{c} 2}$ to $\chi_{\mathrm{c} 1}$ cross section ratio

- Measurements using conversions are consistent
- LHCb results are different using different photon detection methods

Relative prompt $\chi_{\mathrm{c} 2}$ to $\chi_{\mathrm{c} 1}$ cross section ratio

- Measurements using conversions are consistent
- LHCb results are different using different photon detection methods

Comparison to theory

- LHC and Tevatron data agree with theory calculations
- Theory predicts that CS contribution is dominating

Figure adapted from PRD 90, 074021

Comparison to theory

- LHC and Tevatron data agree with theory calculations
- Theory predicts that CS contribution is dominating

Figure adapted from PRD 90, 074021

Relative prompt $\chi_{\mathrm{c} 2}$ to $\chi_{\mathrm{c} 1}$ cross section ratio

- Results depend on the polarizations assumed for the two states
- If both states have helicity 0 , the LHCb results agree
\Rightarrow Important to measure χ_{c} polarizations

Relative non-prompt $\chi_{c 2}(1 \mathrm{P})$ to $\chi_{\mathrm{c} 1}(1 \mathrm{P})$ cross section ratio

- Non-prompt ratio seems to be flat

Relative non-prompt $\chi_{c 2}(1 \mathrm{P})$ to $\chi_{\mathrm{c} 1}(1 \mathrm{P})$ cross section ratio

- Non-prompt ratio seems to be flat
- CDF and ATLAS measurements are in agreement

Relative prompt $\chi_{c o}$ to $\chi_{c 2}$ cross section ratio at LHCb

- $\chi_{c 0}$ signal is observed at LHCb with a significance of 4.3σ
- $705 \pm 163 \chi_{c 0}$ candidates for $4<\mathrm{p}_{\mathrm{T}}(\mathrm{J} / \psi)<20 \mathrm{GeV}$
- $\chi_{c 0}$ cross section is measured relative to $\chi_{c 2}$ because the p_{T} dependence is expected to be similar

Prompt $\chi_{c} \rightarrow J / \psi$ feed-down

LHCb, ATLAS and higher p_{T} CDF points are well aligned

Relative $\chi_{\mathrm{b} 2}(1 \mathrm{P})$ to $\chi_{\mathrm{b} 1}(1 \mathrm{P})$ cross section ratio

- χ_{b} mesons are detected via their radiative decay using converted photons

$$
\chi_{\mathrm{b}}(1 \mathrm{P}) \rightarrow \mathrm{Y}(1 \mathrm{~S}) \gamma \rightarrow \mu^{+} \mu^{-} \mathrm{e}^{+} \mathrm{e}^{-}
$$

- Ratio is seemingly flat

Relative $\chi_{\mathrm{b} 2}(1 \mathrm{P})$ to $\chi_{\mathrm{b} 1}(1 \mathrm{P})$ cross section ratio

- χ_{b} mesons are detected via their radiative decay using converted photons

$$
\chi_{\mathrm{b}}(1 \mathrm{P}) \rightarrow Y(1 \mathrm{~S}) \gamma \rightarrow \mu^{+} \mu^{-} \mathrm{e}^{+} \mathrm{e}^{-}
$$

- Ratio is seemingly flat
- LHCb and CMS measurements are consistent within large uncertainties

Relative $\chi_{\mathrm{b} 2}(1 \mathrm{P})$ to $\chi_{\mathrm{b} 1}(1 \mathrm{P})$ cross section ratio

- χ_{b} mesons are detected via their radiative decay using converted photons

- Ratio is seemingly flat
- LHCb and CMS measurements are consistent within large uncertainties
- Experimental results are in disagreement with theory

Relative $\chi_{\mathrm{b} 2}(1 \mathrm{P})$ to $\chi_{\mathrm{b} 1}(1 \mathrm{P})$ cross section ratio

- Scaled LHCb χ_{c} cross section ratio is consistent with χ_{b} cross section ratio measurements

$\chi_{b}(n P) \rightarrow Y(n S)$ feed-down

$\chi_{\mathrm{b}}(\mathrm{nP}) \rightarrow Y(\mathrm{nS})$ feed-down

Summary

Results from $\mathrm{p} \overline{\mathrm{p}}$ ' collisions on

- Cross sections of η_{c} and χ_{c} mesons
- χ_{c} and χ_{b} cross section ratios
- χ_{c} and χ_{b} feed-down fractions

In general, good agreement between measurements of different experiments

References

LHCb collaboration. Measurement of the $\eta_{c}(1 S)$ production cross-section in proton-proton collisions via the decay $\eta_{c}(1 S) \rightarrow p \bar{p}$. Eur. Phys. J. C (2015) 75:311

LHCb collaboration. Measurement of the cross-section ratio $\sigma\left(\chi_{\mathrm{c} 2}\right) / \sigma\left(\chi_{\mathrm{c} 1}\right)$ for prompt χ_{c} production at s $=7$ TeV. Phys. Lett. B 714 (2012) 215-223

ATLAS collaboration. Measurement of $\chi_{\mathrm{c} 1}$ and $\chi_{\mathrm{c} 2}$ production with $\sqrt{\mathrm{s}}=7 \mathrm{TeV} \mathrm{pp}$ collisions at ATLAS. JHEP 07 (2014) 154

CMS collaboration. Measurement of the relative prompt production rate of $\chi_{\mathrm{c} 2}$ and $\chi_{\mathrm{c} 1}$ in pp collisions at s $=7$ TeV. Eur. Phys. J. C (2012) 72:2251

LHCb collaboration. Measurement of the relative rate of prompt $\chi_{c 0}, \chi_{c 1}$ and $\chi_{c 2}$ production at $\sqrt{s}=7 \mathrm{TeV}$. JHEP 10 (2013) 115

HERA-B collaboration. Production of the charmonium states $\chi_{c 1}$ and $\chi_{c 2}$ in proton nucleus interactions at s = 41.6 GeV. Phys. Rev. D 79, 012001 (2009)

CDF collaboration. Production of J / ψ Mesons from χ_{c} Meson Decays in $\mathrm{p} \overline{\mathrm{p}}$ Collisions at $\sqrt{\mathrm{s}}=1.8 \mathrm{TeV}$. Phys. Rev. Lett. 79, 578 (1997)

CDF collaboration. Measurement of $\sigma\left(\chi_{\mathrm{c} 2}\right) \mathrm{BR}\left(\chi_{\mathrm{c} 2} \rightarrow \mathrm{~J} / \psi \gamma\right) / \sigma_{\mathrm{c} 1} \mathrm{BR}\left(\chi_{\mathrm{c} 1} \rightarrow \mathrm{~J} / \psi \gamma\right)$ in $\mathrm{p} \overline{\mathrm{p}}$ Collisions at $\sqrt{\mathrm{s}}=1.96 \mathrm{TeV}$. Phys. Rev. Lett. 98, 232001 (2007)

LHCb collaboration. Measurement of the ratio of prompt χ_{c} to J / ψ production in pp collisions at لs $=7$ TeV. Phys. Lett. B 718 (2012) 431-440

LHCb collaboration. Measurement of the cross-section ratio $\sigma\left(\chi_{c 2}\right) / \sigma\left(\chi_{c 1}\right)$ for prompt χ_{c} production at s = 7 TeV. Phys. Lett. B 714 (2012) 215-223

References

CMS collaboration.Measurement of the production cross section ratio $\sigma\left(\chi_{\mathrm{b} 2}(1 \mathrm{P})\right) / \sigma\left(\chi_{\mathrm{b} 1}(1 \mathrm{P})\right)$ in pp collisions at $\sqrt{\mathrm{s}}=8 \mathrm{TeV}$. Phys. Lett. B 743 (2015) 383-402

LHCb collaboration. Study of χ_{b} meson production in pp collisions at $\sqrt{\mathrm{s}}=7$ and 8 TeV and observation of the decay $\chi_{\mathrm{b}}(3 \mathrm{P}) \rightarrow \mathrm{Y}(3 \mathrm{~S}) \gamma$. Eur. Phys. J. C (2014) 74:3092

LHCb collaboration. Measurement of the $\chi_{\mathrm{b}}(3 \mathrm{P})$ mass and of the relative rate of $\chi_{\mathrm{b} 1}(1 \mathrm{P})$ and $\chi_{\mathrm{b} 2}(1 \mathrm{P})$ production. JHEP 10 (2014) 088

CDF collaboration. Production of $\mathrm{Y}(1 \mathrm{~S})$ Mesons from χ_{b} Decays in $\mathrm{p} \overline{\mathrm{p}}$ Collisions at $\sqrt{\mathrm{s}}=1.8 \mathrm{TeV}$. Phys. Rev. Lett. 84 (2000) 2094

Prompt $\chi_{\mathrm{c} 1}$ and $\chi_{\mathrm{c} 2}$ cross sections at ATLAS

- ATLAS provides cross sections as function of J / ψ and $\chi_{c} \mathrm{P}_{\top}$
- NLO NRQCD calculations describe the cross sections well

$\chi_{c} \rightarrow J / \psi$ feed-down at PHENIX

- No distinction between prompt and non-prompt χ_{c} mesons
- J/ ψ detected through its decay to electrons
- Feed-down fraction is $32 \pm 9 \%$ for $|y|<0.35$ in pp collisions at /s $=200 \mathrm{GeV}$

