

Mare Schlegel Institute for Theoretical Physics University of Tübingen

New Observables in Quarkonium Production, ECT*, Trento / Italy, Feb. 29, 2016

TMD vs. collinear factorization
Collinear factorization in pQCD

- applicable to one-scale processes, e.g. 1-particle inclusive processes

- Cross sections at high energies \rightarrow (hard part) \times (soft parts)
- hard part \rightarrow pQCD (NLO, NNLO,...) ; soft parts \rightarrow universal, 1-dim collinear parton distributions

$$
q(x, \mu), \Delta q(x, \mu), \delta q(x, \mu)
$$

$$
G(x, \mu), \Delta G(x, \mu)
$$

TMD vs. collinear factorization
Collinear factorization in pQCD

- applicable to one-scale processes, e.g. 1-particle inclusive processes

- Cross sections at high energies \rightarrow (hard part) \times (soft parts)
- hard part \rightarrow pQCD (NLO, NNLO,...) ; soft parts \rightarrow universal, 1-dim collinear parton distributions

$$
q(x, \mu), \Delta q(x, \mu), \delta q(x, \mu)
$$

$$
G(x, \mu), \Delta G(x, \mu)
$$

- Transverse Single-Spin Asymmetries \rightarrow Quark - Gluon Correlations
- Collinear factorization: 2 (or more...)-particle inclusive processes SIDIS

Drell-Yan
two scales: hard scale $Q+\quad$ final state transverse momentum q_{T}

- Collinear factorization: 2 (or more...)-particle inclusive processes

SIDIS

Drell-Yan
two scales: hard scale $Q+\quad$ final state transverse momentum q_{T}
\rightarrow integrated observables $\int d^{2} q_{T} w\left(q_{T}\right) \frac{d \sigma}{d x d Q^{2} d q_{T}} \equiv\left\langle w\left(q_{T}\right)\right\rangle$

- Collinear factorization: 2 (or more...)-particle inclusive processes

SIDIS

Drell-Yan

two scales: hard scale $Q+\quad$ final state transverse momentum q_{T}
\rightarrow integrated observables $\int d^{2} q_{T} w\left(q_{T}\right) \frac{d \sigma}{d x d Q^{2} d q_{T}} \equiv\left\langle w\left(q_{T}\right)\right\rangle$

- q_{t}-dependence:
one scale \rightarrow collinear factorization ok, transverse momentum generated perturbatively in hard part
- Collinear factorization: 2 (or more...)-particle inclusive processes

SIDIS

Drell-Yan

two scales: hard scale $Q+\quad$ final state transverse momentum q_{T}
\rightarrow integrated observables $\int d^{2} q_{T} w\left(q_{T}\right) \frac{d \sigma}{d x d Q^{2} d q_{T}} \equiv\left\langle w\left(q_{T}\right)\right\rangle$

- q_{t}-dependence:
one scale \rightarrow collinear factorization ok, transverse momentum generated perturbatively in hard part

$$
\frac{d \sigma}{d q_{T}}\left(\Lambda_{\mathrm{QCD}} \ll q_{T} \ll Q\right)
$$

large logs in the hard part (gluon radiation) $\log ^{n}\left(q_{T} / Q\right)$
\rightarrow CSS-resummation \rightarrow coll. fact. still applicable

- Collinear factorization: 2 (or more...)-particle inclusive processes

SIDIS

Drell-Yan

two scales: hard scale $Q+$
final state transverse momentum q_{T}
\rightarrow integrated observables $\int d^{2} q_{T} w\left(q_{T}\right) \frac{d \sigma}{d x d Q^{2} d q_{T}} \equiv\left\langle w\left(q_{T}\right)\right\rangle$

- q_{t}-dependence:
one scale \rightarrow collinear factorization ok, transverse momentum generated perturbatively in hard part

$$
\frac{d \sigma}{d q_{T}}\left(\Lambda_{\mathrm{QCD}} \ll q_{T} \ll Q\right)
$$

large logs in the hard part (gluon radiation) $\log ^{n}\left(q_{T} / Q\right)$ \rightarrow CSS-resummation \rightarrow coll. fact. still applicable

[^0]
Idea of TMDs:

transverse momentum qt from "intrinsic" transverse parton momentum kT_{T}
\rightarrow different kind of factorization
\rightarrow additional degree of freedom of partonic motion
\rightarrow study different aspects of hadron spin structure (e.g. 3-d momentum structure, spin-orbit correlations, etc.)

Idea of TMDs:

transverse momentum qt from "intrinsic" transverse parton momentum K_{T}
\rightarrow different kind of factorization
\rightarrow additional degree of freedom of partonic motion
\rightarrow study different aspects of hadron spin structure (e.g. 3-d momentum structure, spin-orbit correlations, etc.)

- All-order factorization theorem for, e.g., Drell-Yan

$$
\xrightarrow[{q_{T} \ll Q \xrightarrow{W^{\mu \nu} \sim \int d^{2} k_{a T} d^{2} k_{b T} \delta^{(2)}\left(\vec{k}_{a T}+\vec{k}_{b T} \vec{q}_{T}\right) \operatorname{Tr}\left[\hat{M}^{\mu} \Phi\left(x_{a}, \vec{k}_{a T}\right)\left(\hat{M}^{\nu}\right)^{\dagger} \bar{\Phi}\left(x_{b}, \vec{k}_{b T}\right)\right]} q_{T} \simeq} Q]{Y^{\mu \nu}}
$$

Idea of TMDs:

transverse momentum qt from "intrinsic" transverse parton momentum K_{T}
\rightarrow different kind of factorization
\rightarrow additional degree of freedom of partonic motion
\rightarrow study different aspects of hadron spin structure (e.g. 3-d momentum structure, spin-orbit correlations, etc.)

- All-order factorization theorem for, e.g., Drell-Yan

$$
\xrightarrow[{q_{T} \ll Q \xrightarrow[W^{\mu \nu} \sim \int d^{2} k_{a T} d^{2} k_{b T} \delta^{(2)}\left(\vec{k}_{a T}+\vec{k}_{b T}\right]{\overbrace{T}) \operatorname{Tr}\left[\hat{M}^{\mu} \Phi\left(x_{a}, \vec{k}_{a T}\right)\left(\hat{M}^{\nu}\right)^{\dagger} \Phi\left(x_{b}, \vec{k}_{b T}\right)\right]} q_{T} \simeq} Q]{Y^{\mu \nu}}
$$

- proven for SIDIS + pp - collisions with color singlet final states
[Collins; Ji, Ma, Yuan; Qiu; Rogers, Mulders; see talk by Qiu] (Naive) definition of the TMD parton distributions

$$
\Phi^{[\Gamma]}\left(x, k_{T}\right)=\left.\int \frac{d z^{-} d^{2} z_{T}}{2(2 \pi)^{3}} \mathrm{e}^{i k \cdot z}\langle P, S| \bar{q}(0) \Gamma \mathcal{W}[0, z] q(z)|P, S\rangle\right|_{z^{+}=0}
$$

N^{q}	U	L	T
U	f_{1}		5_{1}
L		g_{1}	h_{12}
T	$\mathrm{f}_{4 \mathrm{ti}}^{ \pm}$	g_{19}	$\mathrm{h}_{1} \mathrm{~h}_{1 \mathrm{l}}^{\text {ti }}$

$$
\begin{aligned}
& \Phi^{[\Gamma]}\left(x, k_{T}\right)=\left.\int \frac{d z^{-} d^{2} z_{T}}{2(2 \pi)^{3}} \mathrm{e}^{i k \cdot z}\langle P, S| \bar{q}(0) \Gamma \mathcal{W}[0, z] q(z)|P, S\rangle\right|_{z^{+}=0} \\
& \text { Color gauge } \\
& \text { Invariance }
\end{aligned}
$$

N	U	L	T
U	f_{1}		h_{1}
L		g 1	$\mathrm{h}_{1 \mathrm{~L}}$
T	$\mathrm{f}_{4 \mathrm{t}}^{\text {+ }}$	g_{19}	$\mathrm{h}_{1} \mathrm{~h}_{1 \mathrm{ta}}^{\text {t }}$

$$
\Phi^{[\Gamma]}\left(x, k_{T}\right)=\left.\int \frac{d z^{-} d^{2} z_{T}}{2(2 \pi)^{3}} \mathrm{e}^{i k \cdot z}\langle P, S| \bar{q}(0) \Gamma \mathcal{W}[0, z] q(z)|P, S\rangle\right|_{z^{+}=0}
$$

Color gauge Invariance

Physics of the Wilson line

$$
\mathcal{W}[a ; b]=\mathcal{P} \mathrm{e}^{-i g \int_{a}^{b} d s \cdot A(s)}
$$

Initial State Interactions: Drell-Yan

Final State Interactions: SIDIS

Physics of the Wilson line

$$
\mathcal{W}[a ; b]=\mathcal{P} \mathrm{e}^{-i g \int_{a}^{b} d s \cdot A(s)}
$$

Initial State Interactions: Drell-Yan

$\mathcal{P} \mathcal{T}$ - Transformation on the quark correlator $\quad \rightarrow$ ISI $\Leftrightarrow \mathrm{FSI}$
\rightarrow sign switch of Sivers and Boer-Mulder function "T-odd"

$$
\left.f_{1 T}^{\perp}\right|_{D I S}=-\left.\left.f_{1 T}^{\perp}\right|_{D Y} \quad h_{1}^{\perp}\right|_{D I S}=-\left.h_{1}^{\perp}\right|_{D Y}
$$

Physics of the Wilson line

$$
\mathcal{W}[a ; b]=\mathcal{P} \mathrm{e}^{-i g \int_{a}^{b} d s \cdot A(s)}
$$

Initial State Interactions: Drell-Yan

Final State Interactions: SIDIS

$\mathcal{P} \mathcal{T}$ - Transformation on the quark correlator $\quad \rightarrow \mathrm{ISI} \Leftrightarrow \mathrm{FSI}$
\rightarrow sign switch of Sivers and Boer-Mulder function "T-odd"

$$
\left.f_{1 T}^{\perp}\right|_{D I S}=-\left.\left.f_{1 T}^{\perp}\right|_{D Y} \quad h_{1}^{\perp}\right|_{D I S}=-\left.h_{1}^{\perp}\right|_{D Y}
$$

\rightarrow important theoretical prediction to test TMD factorization First TMD moments vs. collinear Twist-3
[Kanazawa, Koike, Metz, Pitonyak, MS, arXiv:1512.07233, PRD (accepted)]

QCD Equation of Motion + Lorentz-invariance relations:

$$
\begin{aligned}
& \quad g_{1 T}^{\perp(1)}(x)=x\left(\int_{x}^{1} \frac{d y}{y} g_{1}(y)+\frac{m_{d}}{M} \int_{x}^{1} \frac{d y}{y^{2}} h_{1}(y) \leftarrow\right. \text { WW - term } \\
& \left.+\int_{x}^{1} \frac{d y}{y^{2}} \int_{-1}^{1} d z\left[\frac{F_{F T}(y, z)}{y-z}-\frac{(3 y-z) G_{F T}(y, z)}{(y-z)^{2}}\right]\right) \text { also for } \mathrm{h}_{1}{ }^{\perp(1)}, \text { FF... }
\end{aligned}
$$ First TMD moments vs. collinear Twist-3

[Kanazawa, Koike, Metz, Pitonyak, MS, arXiv:1512.07233, PRD (accepted)]

$$
\Phi_{\partial}^{\alpha}(x)=\int d^{2} k_{T} k_{T}^{\alpha} \Phi\left(x, k_{T}\right) \Longrightarrow f_{1 T}^{\perp(1)}(x), g_{1 T}^{(1)}(x), h_{1 L}^{\perp(1)}(x), h_{1}^{\perp(1)}(x)
$$

$$
\Phi_{F}^{\alpha}\left(x, x^{\prime}\right) \sim\langle P, S| \bar{q}(0) g F^{n \alpha}(\mu n) q(\lambda n)|P, S\rangle
$$

$$
\Longrightarrow F_{F T}\left(x, x^{\prime}\right), G_{F T}\left(x, x^{\prime}\right), H_{F L}\left(x, x^{\prime}\right), H_{F U}\left(x, x^{\prime}\right)
$$

QCD Equation of Motion + Lorentz-invariance relations:

$$
\begin{aligned}
& g_{1 T}^{\perp(1)}(x)=x\left(\int_{x}^{1} \frac{d y}{y} g_{1}(y)+\frac{m_{x}}{M} \int_{x}^{1} \frac{d y}{y^{2}} h_{1}(y)\right. \\
& \left.+\int_{x}^{1} \frac{d y}{y^{2}} \int_{-1}^{1} d z\left[\frac{F_{F T}(y, z)}{y-z}-\frac{(3 y-z) G_{F T}(y, z)}{(y-z)^{2}}\right]\right) \\
& \text { WW - term } \\
& \text { also for } h_{1 L}{ }^{\perp(1)}, F F \ldots
\end{aligned}
$$ First TMD moments vs. collinear Twist-3

[Kanazawa, Koike, Metz, Pitonyak, MS, arXiv:1512.07233, PRD (accepted)]

$$
\Phi_{\partial}^{\alpha}(x)=\int d^{2} k_{T} k_{T}^{\alpha} \Phi\left(x, k_{T}\right) \Longrightarrow f_{1 T}^{\perp(1)}(x), g_{1 T}^{(1)}(x), h_{1 L}^{\perp(1)}(x), h_{1}^{\perp(1)}(x)
$$

$$
\Phi_{F}^{\alpha}\left(x, x^{\prime}\right) \sim\langle P, S| \bar{q}(0) g F^{n \alpha}(\mu n) q(\lambda n)|P, S\rangle
$$

$\Longrightarrow F_{F T}\left(x, x^{\prime}\right), G_{F T}\left(x, x^{\prime}\right), H_{F L}\left(x, x^{\prime}\right), H_{F U}\left(x, x^{\prime}\right)$

Soft Gluon Poles:

$$
f_{1 T}^{\perp(1)}(x)= \pm \pi F_{F T}(x, x)
$$

$$
h_{1}^{\perp(1)}(x)= \pm \pi H_{F U}(x, x)
$$

QCD Equation of Motion + Lorentz-invariance relations:

$$
\begin{array}{r}
g_{1 T}^{+(1)}(x)=x\left(\int_{x}^{1} \frac{d y}{y} g_{1}(y)+\frac{m_{x}}{M} \int_{x}^{1} \frac{d y}{y^{2}} h_{1}(y)\right. \\
\left.+\int_{x}^{1} \frac{d y}{y^{2}} \int_{-1}^{1} d z\left[\frac{F_{F T}(y, z)}{y-z}-\frac{\left(3 y-z-\left(y-G_{F T}(y, z)\right.\right.}{(y-z)^{2}}\right]\right)
\end{array}
$$

WW - term
also for $h_{1 L}{ }^{\perp(1)}, F F \ldots$
[Aybat, Rogers; Collins' "Foundations of pQCD"; Ji, Ma, Yuan; Echevarria, Idilbi, Schimemi]

Exact TMD definition beyond tree-level:

1) Wilson lines are off the light cone
$\rightarrow \xi$ regulates light cone divergences
\rightarrow "unsubtracted " TMD
2) "Soft factors" implemented

$$
f_{1}^{q}\left(x, \vec{b}_{T}^{2} ; \mu ; \xi\right)=Z_{F} Z_{2} \lim _{y \rightarrow-\infty}\left(f_{1}^{q, \text { unsub }}\left(x, \vec{b}_{T}^{2} ; \mu ; y_{P}-y\right) \times \sqrt{\frac{S\left(\vec{b}_{T}^{2} ;-y, y_{s}\right)}{S\left(\vec{b}_{T}^{2} ;-y, y\right) S\left(\vec{b}_{T}^{2} ; y_{s}, y\right)}}\right)
$$

Evolution equations for ξ (Collins-Soper evolution)

$$
\frac{\partial \ln f_{1}^{q}\left(x, \vec{b}_{T}^{2} ; \mu ; \xi\right)}{\partial \ln \sqrt{\xi}}=\frac{1}{2} \frac{\partial}{\partial y_{s}} \ln \left(\frac{S\left(\vec{b}_{T}^{2} ; y_{s},-\infty\right)}{S\left(\vec{b}_{T}^{2} ; \infty, y_{s}\right)}\right)
$$

anomalous dimensions

$$
\frac{d \ln f_{1}^{q}\left(x, \vec{b}_{T}^{2} ; \mu ; \xi\right)}{d \ln \mu}=\gamma_{F}\left(g(\mu) ; \xi / \mu^{2}\right) \quad \frac{d}{d \mu} \frac{1}{2} \frac{\partial}{\partial y_{s}} \ln \left(\frac{S\left(\vec{b}_{T}^{2} ; y_{s},-\infty\right)}{S\left(\vec{b}_{T}^{2} ; \infty, y_{s}\right)}\right)=-\gamma_{K}(g(\mu))
$$

Solution of evolution equation

TMD at large k_{T}
perturbative Sudakov factor
non-perturbative input

Nucleon Structure at the LHC
 LHC - physics dominated by gluon fusion \rightarrow gluon TMDs gluon TMD matrix element:

$$
\Gamma^{\alpha \beta}\left(x, k_{T}\right)=\frac{1}{x^{2}(P \cdot n)} \int \frac{d \lambda d^{2} z_{T}}{(2 \pi)^{3}} \mathrm{e}^{i \lambda x(P \cdot n)+i k_{T} \cdot z_{T}}\langle P| F^{n \alpha}(0) \mathcal{W} F^{n \beta}\left(\lambda n+z_{T}\right)|P\rangle
$$

Nucleon Structure at the LHC

LHC - physics dominated by gluon fusion \rightarrow gluon TMDs

gluon TMD matrix element:

$\Gamma^{\alpha \beta}\left(x, k_{T}\right)=\frac{1}{x^{2}(P \cdot n)} \int \frac{d \lambda d^{2} z_{T}}{(2 \pi)^{3}} \mathrm{e}^{i \lambda x(P \cdot n)+i k_{T} \cdot z_{T}}\langle P| F^{n \alpha}(0) \mathcal{W} F^{n \beta}\left(\lambda n+z_{T}\right)|P\rangle$
Parameterization:

$$
\Gamma^{\alpha \beta}\left(x, k_{T}\right)=\frac{1}{2 x}\left[-g_{T}^{\alpha \beta} f_{1}^{g}\left(x, k_{T}^{2}\right)+\frac{k_{T}^{\alpha} k_{T}^{\beta}-\frac{1}{2} k_{T}^{2} g_{T}^{\alpha \beta}}{M^{2}} h_{1}^{\perp g}\left(x, k_{T}^{2}\right)\right]
$$

$f_{1}^{g} \longrightarrow$ unpolarized gluons
$h_{1}^{\perp g} \longrightarrow \quad$ linearly polarized gluons

Nucleon Structure at the LHC

LHC - physics dominated by gluon fusion \rightarrow gluon TMDs

gluon TMD matrix element:

$\Gamma^{\alpha \beta}\left(x, k_{T}\right)=\frac{1}{x^{2}(P \cdot n)} \int \frac{d \lambda d^{2} z_{T}}{(2 \pi)^{3}} \mathrm{e}^{i \lambda x(P \cdot n)+i k_{T} \cdot z_{T}}\langle P| F^{n \alpha}(0) \mathcal{W} F^{n \beta}\left(\lambda n+z_{T}\right)|P\rangle$
Parameterization:

$$
\Gamma^{\alpha \beta}\left(x, k_{T}\right)=\frac{1}{2 x}\left[-g_{T}^{\alpha \beta} f_{1}^{g}\left(x, k_{T}^{2}\right)+\frac{k_{T}^{\alpha} k_{T}^{\beta}-\frac{1}{2} k_{T}^{2} g_{T}^{\alpha \beta}}{M^{2}} h_{1}^{\perp g}\left(x, k_{T}^{2}\right)\right]
$$

f_{1}^{g}

\longrightarrowunpolarized gluons $h_{1}^{\perp g} \longrightarrow \quad$ linearly polarized gluons
both TMDs fundamental properties of the nucleon structure $h_{1}{ }^{\perp \mathrm{g}}$ consequence of transverse momentum K_{T} $h_{1}{ }^{\perp g}$ causes gluon helicity flip (non-pert.) \rightarrow azimuthal modulations

Gluon - Gluon Cross Section [see taks by Pisano, Boor, ...]

$$
\left.\frac{d \sigma^{g g}}{d^{4} q d \Omega}\right|_{q_{T} \ll Q}=\hat{F}_{1}\left[f_{1}^{g} \otimes f_{1}^{g}\right]+\hat{F}_{2}\left[h_{1}^{\perp g} \otimes h_{1}^{\perp g}\right]+\cos (2 \phi) \hat{F}_{3}\left[h_{1}^{\perp g} \otimes f_{1}^{g}+f_{1}^{g} \otimes h_{1}^{\perp g}\right]+\cos (4 \phi) \hat{F}_{4}\left[h_{1}^{\perp g} \otimes h_{1}^{\perp g}\right]
$$

Diphoton channel at the LHC:
[Qiu, MS, Vogelsang, PRL 2011]

$\mathrm{r}(\mathrm{J} / \psi)+\gamma$ channel at the LHC:
[den Dunnen, Lansberg, Pisano, MS, PRL 2014]

Gluon - Gluon Cross Section [see taiks by Pisano, Boer, ...]

$$
\left.\frac{d \sigma^{g g}}{d^{4} q d \Omega}\right|_{q_{T}<Q}=\hat{F}_{1}\left[f_{1}^{g} \otimes f_{1}^{g}\right]+\hat{F}_{2}\left[h_{1}^{\perp g} \otimes h_{1}^{\perp g}\right]+\cos (2 \phi) \hat{F}_{3}\left[h_{1}^{\perp g} \otimes f_{1}^{g}+f_{1}^{g} \otimes h_{1}^{\perp g}\right]+\cos (4 \phi) \hat{F}_{4}\left[h_{1}^{\perp g} \otimes h_{1}^{\perp g}\right]
$$

Diphoton channel at the LHC: [Qiu, MS, Vogelsang, PRL 2011]
$\underline{(J / \psi)+\gamma}$ channel at the LHC: [den Dunnen, Lansberg, Pisano, MS, PRL 2014]

Higgs production at the LHC:
[Boer, den Dunnen, Pisano, MS, Vogelsang, PRL 2012, 2013]

Spin \& Parity of Higgs resonance from linear gluon polarization in the $\gamma \gamma$-channel!

"Color Entanglement"

TMD factorization problematic in pp - collisions with a colored final state! [Collins, Qiu; Rogers, Mulders]

"Color Entanglement"

TMD factorization problematic in pp - collisions with a colored final state! [Collins, Qiu; Rogers, Mulders]
Example: dijet production pp \rightarrow jet + jet $+X$

Initial State Interaction: not problematic

 "Color Entanglement"

 "Color Entanglement"}

TMD factorization problematic in pp - collisions with a colored final state! [Collins, Qiu; Rogers, Mulders]
Example: dijet production pp \rightarrow jet + jet $+X$

Initial State Interaction: not problematic

Final State Interactions from both nucleons are "entangled" in color space
\rightarrow cannot define Wilson lines
\rightarrow TMD factorization invalid

"Color Entanglement"

TMD factorization problematic in pp - collisions with a colored final state! [Collins, Qiu; Rogers, Mulders]
Example: dijet production pp \rightarrow jet + jet $+X$

Initial State Interaction: not problematic

Final State Interactions from both nucleons are "entangled" in color space
\rightarrow cannot define Wilson lines
\rightarrow TMD factorization invalid

TMD factorization in pp - collisions only for color singlet final states: $p+p \longrightarrow$ leptons, isolated photons, isolated Quarkonia in a color singlet state

[^0]: $\frac{d \sigma}{d q_{T}}\left(\Lambda_{\mathrm{QCD}} \sim q_{T} \ll Q\right) \rightarrow$ Transverse momentum dependent (TMD) factorization!

