Y production in pA and AA collisions from Fermilab, RHIC, and LHC

New Observables in Quarkonium Production ECT* Workshop 1/March/2016

Manuel Calderón de la Barca Sánchez

Outline

- Bottomonium Measurement in pA and AA collisions.
 - Emphasis on Y(1S)
 - Caveat: Many results include ground states.
 - Will be mentioned, but leave emphasis for session on excited states.
 - Fermilab pA
 - √s=40 GeV
 - RHIC dA, AA
 - √s=200 GeV
 - LHC pA, AA
 - √s=2.76, 5.02 TeV
- Summary

1/March/2016

Bottomonium in pA and AA

- Y in AA: a probe of color deconfinement
 - Suppression of yield: states do not form in a color deconfined medium
 - Color screening, gluodissociation, partonic breakup/Landau damping.
- Y in pA: Production in Cold nuclear matter
 - Initial state effects: e.g. nPDF
 - Final state: energy loss, absorption
- Bottomonium: a cleaner probe than charmonium...
 - 3 states are accessible experimentally
 - Expect smaller recombination contribution compared to charmonium
 - $m_b \sim 3 m_c$

E772 pA Υ measurement

- Ratio of nuclear targets normalized to deuterium
- Suppression seen with increasing A.
- A dependence:

 $\alpha_{1S} = 0.962 \pm 0.006$ $\alpha_{2S+3S} = 0.948 \pm 0.012$

R_{dAu} at RHIC

- R_{dAu} vs. y
 - Model comparison:
 - Shadowing, EPS09
 - R. Vogt
 - Energy loss
 - Energy loss + shadowing
 - y~0 is right in the middle of the antishadowing region
 - Expect R_{dAu} > 1 (small effect)
 - Observe $R_{dAu} < 1$

Comparison: STAR & E772

- For a similar comparison, separate Υ(1S) stat
 - Use |y| < 1, check A dependence.
- STAR result: consistent with trend vs. A from E772.
- Large suppression seen near xF~0 by E772, α~0.9.
 - Similar to STAR |y| <0.5 points.

M. Calderón de la Barca S

XF

Note: p_T dependence of α in E772

- Not trivial either.
 Suppression largest at ~1 GeV
 - Large enhancement above 3 GeV

 No LHC measurements vs. p_T for pPb, yet.
 pp reference at 5.02 TeV just taken

Comparison: STAR & E772

8

- For a similar comparison, ٩ separate $\Upsilon(1S)$ stat
 - Increases the statistical uncertainty compared to sum $\Upsilon(1S+2S+3S)$
 - Use|y| < 1, check A dependence.
 - Also compare y or x_F dependence.
- STAR result: consistent with A trend from E772.
- Large suppression seen near xF~0 by E772, α~0.9.
 - Same as STAR |y| < 0.5 points.
- Shadowing, or shadowing+E. Loss cannot explain suppression at y=0.
- Effect goes away in the forward y ٩ bins.
- A higher-statistics d+Au run ٢ would help.
 - Note: dAu 2008 run was first attempt at measuring bottomonium in cold nuclear matter, can revisit with higher statistics

1/March/2016

LHCb Y results for R_{pPb}

- Caveat emptor:
 - JHEP 07 (2014) 094 All LHC R_{pPb} results to date done without pp Reference at 5.02 TeV:
 - LHCb: Power-law interpolation: BR x s = 1.12 ± 0.11 nb
- Slight enhancement at negative rapidity, indication of antishadowing ۲
- Slight suppression at forward rapidity
- Different theoretical models are consistent with data, within uncertainties
 - EPS09 NLO: IJMP E22 (2013) 1330007
 - E. loss : JHEP 03 (2013) 122

1/March/2016

ALICE Υ results for R_{pPb}

- Backward rapidity: ALICE sees no enhancement, slight suppression.
 - EPS09 NLO: antishadowing in forward region. Enhancement remains when including ELoss + EPS09.

• Forward rapidity data:

- EPS09 NLO expects only modest suppression.
- Including E. Loss lowers R_{pPb}, data near lower end of prediction
- Note: ALICE data in both cases lower than LHCb data.
- ALICE pp interpolation:
 - Used LHCb data (not in the same rapidity range).
 - Fit with CEM (15 different choices of scale, pdf), FONLL bare quark energy dependence; power-law, linear, exponential.
 - 1451 ± 114(syst) pb and 770 ± 87(syst) pb,

M. Calderón de la Barca Sánchez

- 1S in pPb, Little to no modification seen at midrapidity.
 - STAR lower energy data for y∼0.

1/March/2016

Υ in pPb at LHC with CMS

- Observables:
 - Double ratio, single ratio
 - "Self-normalized" yields
 - Study as a function of event activity
 - Look at activity close to or far from Υ meson.

1/March/2016

Y Self-normalized yields: Far activity

- E_T , Far activity
- Close to linear scaling is observed for all systems.
 - Suppression in PbPb for high E_T : central events.
- pPb, pp follow very closely line with slope 1 (dashed line)
 - Fit gives slope consistent with 1 within errors.
 - All systems, all Υ states.

1/March/2016

M. Calderón de la Barca Sánchez

Y Self-normalized yields: Near activity

- Significant differences among systems and among states!
 - $\Upsilon(1S)$ production scaling: stronger than linear in pp.
- All states, even in pp, regardless of whether activity is far or near, show increasing relative yield in higher activity events.
 - Multi-parton interactions in pp?

1/March/2016

M. Calderón de la Barca Sánchez

 CMS:Clear suppression of all states in PbPb compared to pp.

CMS Υ R_{AA} in PbPb and models

- Strickland et al. : Nucl. Phys. A 879 (2012) 25
 - Incorporate Re and Im Potential, insert into hydrodynamic expansion, include feed-down contributions.
- Emerick et al. : EPJ A (2012) 48:72
 - Attempt to model binding behavior, test strong/weak binding, kinetic transport model, includes production of Upsilon via "regeneration" of uncorrelated bottom quarks, cold-nuclear-matter aborption.
- Both models consistent with data.
 - But now we have more information, e.g. feeddown contribution is not 50%. What does this do to R_{AA} in models?

1/March/2016

M. Calderón de la Barca Sánchez

- Left: all data in STAR acceptance |y|<1
 - dAu, and two most peripheral bins: consistent with no suppression
 - Suppression most central Au+Au: Consistent with expectations for hot & cold nuclear matter, however...
- Right: bin closest to midrapidity, |y| < 0.5
 - dAu suppression is of the same magnitude as central AuAu: Important to understand dAu system
- Calculations:
 - Strickland & Bazow: Includes estimate of heavy quarkonium potential, Re and Im. Models evolution through anisotropic hydro.
 - Nucl. Phys. A 879 (2012) 25
 - Emerick, Zhao & Rapp: attempt to include both Hot & Cold nuclear effects.
 - Eur. Phys. J. A (2012) 48: 72

1/March/2016

M. Calderón de la Barca Sánchez

STAR & CMS data and model parameters

- Strickland & Bazow:
- Incorporating lattice-based potentials,
 - including real and imaginary parts
- Includes sequential melting and feed-down ٩ contributions
 - Used: ~50% feed-down (what was known at the time)
- Dynamical expansion, variations in initial conditions $(T_0, \eta/S)$
 - Data indicate:
 - 428 < T₀ < 442 MeV at RHIC
 - 552 < T_0 < 580 MeV at LHC
 - for $3 > 4\pi \eta/S > 1$
- Emerick, Zhao, Rapp: ٩
- Kinetic Theory Model
 - Rate Equation: dissociation + regeneration
 - Fireball model: T evolution.
 - $T_0 \sim 300$ MeV at RHIC
 - $T_0 \sim 600$ MeV at LHC
- All models have T_0 well above $T_c \sim$ ٩ 150-160 MeV

N_{part}

1/March/2016

M. Calderón de la B

400

N_{oart}

ALICE, LHCb: ΥR_{AA} forward

- ALICE Measures Y in PbPb
 - Forward rapidity region
 - 2.5 < y < 4
 - Note: CMS, |y|<2.4
 - Fit to 1S to extract yield in PbPb
- pp Reference: LHCb
 2.0 < y < 4.5

- Comparison between CMS and ALICE/LHCb
 - ΥR_{AA} : more suppression at forward rapidities!
 - Energy density, T should be smaller at forward y.
 - Argues for less suppression, not more.

Comparison to transport/regeneration

 Higher stats. for pp @ 2.76 allow finer bins in p_T and y

CMS and ALICE: Υ rapidity dependence

- CMS and ALICE data are consistent near their acceptance limits.
 - Observe a flat or falling rapidity dependence of Upsilon suppression.
- Comparison to Strickland & Bazow model, with Re & Im V(T) + hydro:
 - R_{AA} increases at forward rapidities. (Lower energy density/Temperature)

The bottom line...

- pA collisions:
 - Modifications of production compared to pp observed.
 - Shadowing effects, E.Loss.
 - But not consistent with all data
 - dAu RHIC, LHCb vs. ALICE pPb.
- AA collisions:
 - Large suppression of Upsilon production seen.
 - Need quantitative comparisons pA vs. AA to shed disentangle hot vs. cold nuclear matter.
 - Rapidity dependence: not expected.
 - Goal: Pinning down the medium properties, e.g. Temperature.

Results/References

- Fermilab
 - E772, pA: PRL 66 (1991) 2285
- RHIC
 - STAR, pp, dAu, AuAu: PLB 735 (2014) 127
 - PHENIX: PRC 87, 044909 (2013)
- LHC
 - LHCb, pPb: JHEP 07 (2014) 094
 - ATLAS pPb: ATLAS-CONF-2015-050
 - ALICE pPb: PLB 740 (2015) 105
 - CMS pPb: JHEP 04 103 (2014)
 - ALICE PbPb: PLB 738 (2014) 361
 - CMS PbPb: PRL 109 222301 (2012)

CMS Υ **R**_{AA} vs. Centrality

- Centrality integrated:
 - Y(1S) : 0.56 ± 0.08 ± 0.07
 - Y(2S) : 0.12 ± 0.04 ± 0.02
 - Ƴ(3S):< 0.10 @ 95% CL
- Observation of sequential suppression.
- Comparison to STAR R_{AA} Υ(1S), |y|<1 :
 - 0.88±0.09±0.13^{+0.03}-0.07
 ±0.11
 - More suppression at LHC compared to RHIC

Υ in STAR, AuAu

STAR: PLB 735 (2014) 127

- Invariant mass distributions in 3 centrality bins
- Comparison to N_{coll}-scaled pp reference:
 - Clear suppression of excited states.

• Report results for sum of 3 states, and for ground state.

STAR Hypothesis testing, |y|<1

- Measurements: vertical line
 - R_{dAu}
 - R_{AA}, 0-10% most central
 - pink band: syst. unc.
- Hypothesis test:
 - Run pseudoexperiments for various scenarios
 - Stat. unc.: width of distributions
 - No suppression: RAA=1
 - A^{α} scaling for dAu (CNM effect)
 - As seen by E776 at Fermilab
 - $A^{2\alpha}$ for AuAu
 - QGP effects only
 - Based on Strickland et al.
 - QGP effects + A^α scaling
- A^α scaling: consistent with dAu data
- QGP+A^α scaling: consistent with AuAu data
- Other scenarios are disfavored.

STAR Hypothesis testing, |y|<0.5

Hypothesis tests:

- No suppression: RAA=1
- A^α scaling for dAu (CNM effect)
 - A^{2α} for AuAu
- QGP effects only
 - Based on Strickland et al.
- QGP effects + A^{α} scaling
- Clear: |y|<0.5 shows large suppression in dAu.
 - Comparable to central AuAu!
 - No particular scenario is favored.
 - pAu run at RHIC from 2015, stay tuned!

ATLAS, RpPb Υ (1S) vs. N_{part}

Y(1S): No modification seen vs. N_{part} in pPb.
 ATLAS and ALICE do a "bias correction".

Y Double ratio, pPb and pp

- Key feature of double ratio:
 - All initial-state effects should cancel
 - e.g. shadowing modifies excited and ground state in the same way
- Observation:
 - Double ratio < 1 in pPb</p>
 - Double ratio in pPb higher than in PbPb
 - Similar for 2S than for 3S
- Implication: possible presence of final state effects in pPb which affect excited states more than ground state

Expect small Y absorption in hadronic matter Lin & Ko, PLB 503 (2001) 104 But absorption depends on radius: Larger absorption for 2S and 3S

1/March/2016

M. Calderón de la Barca Sánchez

Y Summary plot vs. binding energy

- Overall pattern of sequential suppression is observed.
 - But there are important details that indicate additional physics...