Physics Highlights of future ee colliders

98th Plenary ECFA meeting CERN, November 19, 2015

DESY (Hamburg)

(christophe.grojean@cern.ch)

The Higgs discovery has been a great success... ...but the experimentalists haven't found what the BSM theorists told them they will find in addition to the Higgs boson:

no susy, no BH, no extra dimensions, nothing ...

CERN, NOV. 19, 2015

The Higgs discovery has been a great success... ...but the experimentalists haven't found what the BSM theorists told them they will find in addition to the Higgs boson:

no susy, no BH, no extra dimensions, nothing ...

CERN, NOV. 19, 2015

The Higgs discovery has been a great success... ...but the experimentalists haven't found what the BSM theorists told them they will find in addition to the Higgs boson:

no susy, no BH, no extra dimensions, nothing ...

Furthermore we are left with big questions that the SM cannot address Origin of quark and lepton flavor, origin of neutrino masses Only a description of EW symmetry breaking, not an explanation No place for the particle(s) that make up the cosmic DM

Does not explain the asymmetry matter-antimatter

CERN, NOV. 19, 2015

The Higgs discovery has been a great success... ...but the experimentalists haven't found what the BSM theorists told them they will find in addition to the Higgs boson:

no susy, no BH, no extra dimensions, nothing ...

Furthermore we are left with big questions that the SM cannot address

Origin of quark and lepton flavor, origin of neutrino masses
Are there some global flavor symmetry (incl. lepton #)?
Only a description of EW symmetry breaking, not an explanation
What separates the EW scale from the Planck scale?
No place for the particle(s) that make up the cosmic DM
What are the DM particles?
Does not explain the asymmetry matter-antimatter
Are the conditions realized to allow for EW baryogenesis?

CERN, NOV. 19, 2015

The Higgs discovery has been a great success... ...but the experimentalists haven't found what the BSM theorists told them they will find in addition to the Higgs boson:

no susy, no BH, no extra dimensions, nothing ...

Furthermore we are left with big questions that the SM cannot address

Origin of quark and lepton flavor, origin of neutrino masses
Are there some global flavor symmetry (incl. lepton #)?
Only a description of EW symmetry breaking, not an explanation
What separates the EW scale from the Planck scale?
No place for the particle(s) that make up the cosmic DM
What are the DM particles?
Does not explain the asymmetry matter-antimatter

Are the conditions realized to allow for EW baryogenesis?

Where and how does the SM break down?

Which machine(s) will reveal (best) this breakdown?

Christophe Grojean

Physics Highlights of future ee colliders 2/36

Which Machine(s)?

Hadrons

large mass reach ⇒ exploration?
S/B ~ 10⁻¹⁰ (w/o trigger)
S/B ~ 0.1 (w/ trigger)
requires multiple detectors (w/ optimized design)
only pdf access to √ŝ
⇒ couplings to quarks and gluons

Circular

√s limited by synchroton radiation
 higher luminosity
 several interaction points
 precise E-beam measurement

(O(0.1MeV) @ FCC-ee via resonant depolarization)

Leptons \circ S/B ~ 1 \Rightarrow measurement? • polarized beams (handle to chose the dominant process) O limited (direct) mass reach ° identifiable final states $\circ \Rightarrow \mathsf{EW}$ couplings Linear

easier to upgrade in energy
easier to polarize beams
large beamsthralung
greener: less power consumption

Christophe Grojean

Physics Highlights of future ee colliders 3 /36

Energy vs. Luminosity

Test of SM bones

Christophe Grojean

80.3

155

Physics Highlights of future ee colliders 5/36

80.35

195

171.5

172

172.5

173

173.5

174

174.5

Top mass (GeV)

175

0 100

175

m, [GeV]

Test of SM bones

a [Zr		Present precision		TLEP stat Syst Precision	TLEP key	Challenge	ican: OkuW
20	ALI DEI L3 OP2	M _z [MeV]	91187.5 <u>+</u> 2.1	Z Line shape scan	0.005 MeV <±0.1 MeV	E_cal	QED corrections	
10 -	error ba by fac	Γ _z [MeV]	2495.2 ±2.3	Z Line shape scan	0.008 MeV <±0.1 MeV	E_cal	QED corrections	Racoon/WW /ertex (Gentle) change (Gentle)
0	86 • I	R	20.767 ± 0.025	Z Peak	0.0001 ± 0.002 - 0.0002	Statistics	QED corrections	200 √s (GeV)
b	es	N _v	2.984 ±0.008	Z Peak Z+γ(161 GeV)	0.00008 ±0.004 0.0004-0.001	->lumi meast Statistics	QED corrections to Bhabha scat.	ГeV)
17 th Lomono col / C(R _b	0.21629 ±0.00066	Z Peak	0.000003 ±0.000020 - 60	Statistics, small IP	Hemisphere correlations	
	CWS'#5	A _{LR}	0.1514 ±0.0022	Z peak, polarized	±0.000015	4 bunch scheme	Design experiment	
	tte @ L	M _w [MeV]	80385 ± 15	Threshold (161 GeV)	0.3 MeV <1 MeV	E_cal & Statistics	QED corections	
	KIU	M _{top} [MeV]	173200 ± 900	Threshold scan	10 MeV	E_cal & Statistics	Theory limit at 100 MeV?	
Requires a significant theory program								

m_t [GeV]

Physics Highlights of future ee colliders 5/36

CERN, NOV. 19, 2015

Christophe Grojean

Accessing SM input parameters

By running six months at each of 88 and 95 GeV points: Could potentially reach a precision of : $\delta \alpha / \alpha = 2 \times 10^{-5}$ $\alpha_{QCD}(m_Z)$

Dam @ EPS'15

$$R_I = \Gamma_{had} / \Gamma_I$$

LEP measurements with

- (1) new N³LO results
- (2) improved m_{top}

(3) m_{Higgs}

 $\delta (\alpha_s(m_Z))_{LEP} = \pm 0.0038 \text{ (exp.)} \pm 0.0002 \text{ (others)}$

stat. limited

CERN, NOV. 19, 2015

TLEP statistics

$$\delta (\alpha_s(m_Z))_{FCC-ee} = \pm 0.00015$$

Christophe Grojean

Ζ

Key goals of the ee machines as BSM probes

in order to address the physics questions outside the SM boundaries the physics program of the future ee colliders is built around three key goals

Measurement of the properties of the newly-discovered **Higgs** boson with very high precision. \Rightarrow Is it elementary? Does it have siblings/relatives? What keeps it light? Why does it freeze in?

Measurement of the properties of the **top** quark with very high precision to indirectly constrain new physics

Direct searches for and studies of (uncolored) **new particles** expected in models of physics at the TeV energy scale. Complementary to LHC searches.

Higgs and top properties are fundamental SM input parameters that need to be measured as precisely to reduce theoretical systematics in searches for BSM

Christophe Grojean

CERN, NOV. 19, 2015

ILC (2027?*-2047?)

*ready for construction once approved

Christophe Grojean

Physics Highlights of future ee colliders 8/36

ILC (2027?*-2047?)

*ready for construction once approved

ILC Operating Scenarios

June 2015

arXiv:1506.07830

ILC Parameters Joint Working Group

Physics Case for the International Linear Collider

June 2015

arXiv:1506.05992

LCC PHYSICS WORKING GROUP

THE INTERNATIONAL LINEAR COLLIDER
TECHNIk for a classifier to make

The International Linear Collider

Jim Brau[†], Paul Grannis[‡], Mike Harrison[#], Michael Peskin^{*}, Marc Ross^{*}, Harry Weerts[§] for the ILC Collaboration April 9, 2013

submitted to the Community Summer Study (Snowmass on the Mississippi), July 2013

The Physics Case for an e⁺e⁻ Linear Collider

James E. Brau^{*a*}, Rohini M. Godbole^{*b*}, Francois R. Le Diberder^{*c*}, M.A. Thomson^{*d*}, Harry Weerts^{*e*}, Georg Weiglein^{*f*}, James D. Wells^{*g*}, Hitoshi Yamamoto^{*h*}

A Report Commissioned by the Linear Collider Community †

Physics Case for the ILC Project: Perspective from Beyond the Standard Model

Howard Baer¹, Mikael Berggren², Jenny List², Mihoko M. Nojiri^{3,4}, Maxim Perelstein⁵, Aaron Pierce⁶, Werner Porod⁷, Tomohiko Tanabe⁸

Physics at the e^+e^- Linear Collider

Christophe Grojean

Physics Highlights of future ee colliders 8 /36

CLIC (post HL-LHC-x+20)

(350)/1000/3000 GeV - 5/ab

Parameter	Unit	380 GeV	3 TeV
Centre-of-mass energy	TeV	0.38	3
Total luminosity	10 ³⁴ cm ⁻² s ⁻¹	1.5	5.9
Luminosity above 99% of vs	10 ³⁴ cm ⁻² s ⁻¹	0.9	2.0
Repetition frequency	Hz	50	50
Number of bunches per train		352	312
Bunch separation	ns	0.5	0.5
Acceleration gradient	MV/m	72	100
Site length	km	11	50

sub-percent Higgs coupling measurements
few percents Higgs width
top mass, top EW couplings
direct RSM sensitivity in the multi-TeV region

NOV. 19, 2015

CLIC (post HL-LHC-x+20)

(350)/1000/3000 GeV - 5/ab

FCC-ee (post HL-LHC-x+20)/CepC (??-??) 240/350/(500) - 10/ab

- For example, Qin-Huang-Dao

Thursday, April 23, 15

Christophe Grojean

Physics Highlights of future ee colliders 10/36

FCC-ee (post HL-LHC-x+20)/CepC (??-??) 240/350/(500) - 10/ab

A CONTRACT	parameter		-CC- <u>ee</u>		CEPC	LEP2	
	energy/beam [GeV]	45	120	175	120	105	5269 5251 5023
Aug M	bunches/beam	13000- 60000	500- 1400	51-98	50	4	5048 汕海关区 秦皇岛前÷
A BASSIN	beam current [mA]	1450	30	6.6	16.6	3	
R. A.S.	luminosity/IP x 10 ³⁴ cm ⁻² s ⁻¹	21 - 280	5 - 11	1.5 - 2.6	2.0	0.0012	
LEGEND	energy loss/turn [GeV]	0.03	1.67	7.55	3.1	3.34	
HE_LHC Bokm option potential shall location	synchrotron power [MW]		100		103	22	GEBCO Google earth
- For example, Q	RF voltage [GV]	0.2-2.5	3.6-5.5	11	6.9	3.5	

- 0-10°H 高能用
- O 10¹² Z possible upgrade to 10¹³ Z
- 0 10⁸ W (mass)
- O 3x10¹⁰ tau/muon pairs
- $O \frac{1}{2 \times 10^{11}} \frac{1}{2 \times$
- O TLEP@340/500: 10⁶ top pairs (pole mass, probe FCNC decays, top Yukawa)

Christophe Grojean

Physics Highlights of future ee colliders 10 /36

Thursday, April 23, 15

(line-shape, mass & width, probe rare (FCNC) decays)

CERN, NOV. 19, 2015

FCC-ee/CepC_(??-??) 240/350/(500) - 10/ab

Higgs physics

Christophe Grojean

Physics Highlights of future ee colliders 12/36

The Higgs is related to some of the deepest problems of HEP

 $\mathcal{L}_{\text{Higgs}} = V_0 - \mu^2 H^{\dagger} H + \lambda \left(H^{\dagger} H \right)^2 + \left(y_{ij} \bar{\psi}_{Li} \psi_{Rj} H + h.c. \right)$ hierarchy problem triviality/stability mass and mixing Vacuum energy flavour & CP of EW vacuum hierarchy cosmological constant $m_H \approx 100 \text{ GeV} \ll M_{\text{Pl}}$ $V_0 \approx (2 \times 10^{-3} \text{ eV})^4 \ll M_{\rm PL}^4$

Christophe Grojean

CERN, NOV. 19, 2015

The Higgs is related to some of the deepest problems of HEP

gauge symmetry is the organizing principle for interactions in the gauge sector not in the Higgs sector \Rightarrow many free parameters!

Christophe Grojean

CERN, NOV. 19, 2015

The Higgs is related to some of the deepest problems of HEP

gauge symmetry is the organizing principle for interactions in the gauge sector not in the Higgs sector \Rightarrow many free parameters! but they obey 3 basic structures

(1) proportionality: $g_{hff} \propto m_f$ $g_{hVV} \propto m_V^2$

(2) factor of proportionality: $g_{hff}/m_f = \sqrt{2}/v$

(3) flavor alignment: $g_{hf_if_j} \propto \delta_{ij}$

Christophe Grojean

CERN, NOV. 19, 2015

The Higgs is related to some of the deepest problems of HEP

gauge symmetry is the organizing principle for interactions in the gauge sector not in the Higgs sector \Rightarrow many free parameters! but they obey 3 basic structures

> (1) proportionality: $g_{hff} \propto m_f$ $g_{hVV} \propto m_V^2$ \implies test for extended Higgs sectors

(2) factor of proportionality: $g_{hff}/m_f = \sqrt{2}/v$

test for extended Higgs sectors

test for Higgs compositeness

(3) flavor alignment: $g_{hf_if_j} \propto \delta_{ij}$

test for flavor models, origin of fermion masses

CERN, NOV. 19, 2015

Christophe Grojean

The Higgs thresholds

Christophe Grojean

Physics Highlights of future ee colliders 14/36

The Higgs thresholds

Higgs: ee colliders vs. LHC

~~ significant steps in precision study of Higgs properties ~~

(1) Higgs kinematic parameters: m_H and Γ_H

- -> reduce parametric uncertainties in xs and BR
- control the fate of EW vacuum within the SM
- constrain new physics models (e.g. MSSM)

(2) Precise and model-independent access to Higgs couplings

- » 1% level
- identification of correlation patterns among deviations
- -> indirect test of extended Higgs sectors/composite nature
- wultimate test of naturalness

(3) Access to decays modes that are background dominated @ LHC

- >> bb/cc/gg
- * exotic decay modes (
 portal models of Dark Matter)
 *

(4) Constraints on Higgs flavor violating couplings

 $\ensuremath{\twoheadrightarrow}$ shed light on the origin of fermion masses and flavors

Christophe Grojean

CERN, NOV. 19, 2015

Higgs: ee colliders vs. LHC

Higgs mass

Remember that Δm_H = 200 MeV shifts prediction for BR(H \rightarrow VV) by 2%

Higgs couplings and model discriminations

The pattern of Higgs coupling deviations is a signature of the underlying dynamics beyond the Standard Model Elementary v.s. Composite

ILC Physics WG, '15 arXiv:1506.05992

CERN, NOV. 19, 2015

Christophe Grojean

Higgs couplings and model discriminations

The pattern of Higgs coupling deviations is a signature of the underlying ~~ expected largest relative deviations ~~

	hff	hVV	hγγ	hγZ	hGG	h ³
MSSM	\checkmark		\checkmark	√	\checkmark	
NMSSM		\checkmark	\checkmark	\checkmark	\checkmark	
PGB Composite	\checkmark	\checkmark		\checkmark		\checkmark
SUSY Composite	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
SUSY partly-composite			\checkmark	\checkmark	\checkmark	\checkmark
"Bosonic TC"						\checkmark
Higgs as a dilaton			\checkmark	\checkmark		\checkmark

A. Pomarol, Naturalness '15

Christophe Grojean

Physics Highlights of future ee colliders 17/36

Higgs couplings measurement projections

Table 1-20. Expected precisions on the Higgs couplings and total width from a constrained 7-parameter fit assuming no non-SM production or decay modes. The fit assumes generation universality ($\kappa_u \equiv \kappa_t = \kappa_c$, $\kappa_d \equiv \kappa_b = \kappa_s$, and $\kappa_\ell \equiv \kappa_\tau = \kappa_\mu$). The ranges shown for LHC and HL-LHC represent the conservative and optimistic scenarios for systematic and theory uncertainties. ILC numbers assume (e^- , e^+) polarizations of (-0.8, 0.3) at 250 and 500 GeV and (-0.8, 0.2) at 1000 GeV, plus a 0.5% theory uncertainty. CLIC numbers assume polarizations of (-0.8, 0.3) for energies above 1 TeV. TLEP numbers assume unpolarized beams.

Facility	LHC	HL-LHC	ILC500	ILC500-up	ILC1000	ILC1000-up	CLIC	TLEP (4 IPs)
$\sqrt{s} \; ({\rm GeV})$	14,000	$14,\!000$	250/500	250/500	250/500/1000	250/500/1000	350/1400/3000	240/350
$\int \mathcal{L} dt \ (\mathrm{fb}^{-1})$	300/expt	3000/expt	250 + 500	1150 + 1600	250 + 500 + 1000	1150 + 1600 + 2500	500 + 1500 + 2000	10,000+2600
κ_{γ}	5 - 7%	2 - 5%	8.3%	4.4%	3.8%	2.3%	-/5.5/<5.5%	1.45%
κ_g	6-8%	3-5%	2.0%	1.1%	1.1%	0.67%	3.6/0.79/0.56%	0.79%
κ_W	4-6%	2-5%	0.39%	0.21%	0.21%	0.2%	1.5/0.15/0.11%	0.10%
κ_Z	4-6%	2-4%	0.49%	0.24%	0.50%	0.3%	0.49/0.33/0.24%	0.05%
κ_ℓ	6-8%	2-5%	1.9%	0.98%	1.3%	0.72%	$3.5/1.4/{<}1.3\%$	0.51%
$\kappa_d = \kappa_b$	10-13%	4-7%	0.93%	0.60%	0.51%	0.4%	1.7/0.32/0.19%	0.39%
$\kappa_u = \kappa_t$	14 - 15%	7-10%	2.5%	1.3%	1.3%	0.9%	3.1/1.0/0.7%	0.69%

estimates done soon after Higgs discovery, a lot of work since then and results have been refined

Rich experimental program of (sub)percent precision

CERN, NOV. 19, 2015

Higgs couplings measurement projections

Rich experimental program of (sub)percent precision Nice synergy/complementarity LHC-ILC (hyy)

use BR ratios from hh with absolute precise BR from ee

to export ee precision to Higgs decays that are limited by statistics in ee

Christophe Grojean

Physics Highlights of future ee colliders 18/36

Higgs couplings as a test of naturalness

Christophe Grojean

Physics Highlights of future ee colliders 19/36

+

CERN, NOV. 19, 2015

Christophe Grojean

CERN, NOV. 19, 2015

7th Lomonosov Conf., Moscow, Aug'15

23/28

David d'Enterria (CERN)

Christophe Grojean

CERN, NOV. 19, 2015

7th Lomonosov Conf., Moscow, Aug'15

23/28

David d'Enterria (CERN)

Christophe Grojean

CERN, NOV. 19, 2015

Higgs portals and Higgs exotic decays

|H|² and HL are SM-singlet of low dimension

they can have large (renormalizable) couplings to hidden/dark sector that could (i) make up the DM relic abundance

or (ii) be key agents in models of neutral naturalness

Christophe Grojean

CERN, NOV. 19, 2015

Christophe Grojean

Physics Highlights of future ee colliders 21/36

Higgs and Flavor Origin

it is core property of the origin of fermion masses in the SM that the Higgs doesn't mediate FCNC at tree-level Seeing any large flavor violating Higgs channels, we'll have unique implications

Christophe Grojean

Physics Highlights of future ee colliders 22/36

Higgs and Flavor Origin

it is core property of the origin of fermion masses in the SM that the Higgs doesn't mediate FCNC at tree-level Seeing any large flavor violating Higgs channels, we'll have unique implications

ß

Christophe Grojean

Physics Highlights of future ee colliders 22/36

Higgs and Flavor Origin

it is core property of the origin of fermion masses in the SM that the Higgs doesn't mediate FCNC at tree-level Seeing any large flavor violating Higgs channels, we'll have unique implications

ee prospects on $t \rightarrow ch$

Basic event selection:

- 1 lepton + Etmiss + 4 jets, among which 3 b-jets
- 0 lepton, no Etmiss, 6 jets, among which 3 b-jets

F. Zarnecki, Valencia'15

Christophe Grojean

Physics Highlights of future ee colliders 22/36

10⁻⁴

10⁻⁵

ES 50%

10⁵

CERN, NOV. 19, 2015

10⁶

Top pairs produced

Higgs @ high thresholds (unique to ILC/CLIC)

ttH

direct access to top Yukawa coupling (vacuum stability, Higgs mass hierarchy)

final states analyzed:

"8 jets": $t(\rightarrow qqb)t(\rightarrow qqb)H(\rightarrow bb)$ "6 jets": $t(\rightarrow qqb)t(\rightarrow lvb)H(\rightarrow bb)$ ["4 jets": $t(\rightarrow lvb)t(\rightarrow lvb)H(\rightarrow bb)$]

crucial assets of ee colliders:

• jet reconstruction in complex final states

14

300

(14 - 15)%

LCWS15 @ Whistler

- flavor tagging
- charged lepton identification
- missing energy reconstruction

Higgs self-coupling

Higgs potential (dynamics of phase transition, baryogenesis)

ILC current studies:

(4b and 2b2W modes) 29%@4/ab, 500GeV 16%@2/ab, 1TeV 10%@5/ab, 1TeV

CLIC studies:

(VBF w/ 80% e⁻-pola) 24%@1.5/ab, 1.4TeV 12%@2/ab, 3TeV

need to disentangle Линн and динvv

CERN, NOV. 19, 2015

top WG @ Snowmass'13 arXiv:1311.2028

LHC

14

3000

(7-10)%

ILC

0.5

1000

10%

3% if √s ⁄ 550GeV

ILC

1.0

1000

4%

CLIC

1.4

1500

4%

6.3% (update) Marcel Vos (marcel.vos@ific.uv.es)

Can high thresholds be probed by combining LHC+low threshold ee?

Christophe Grojean

Collider

CM Energy [TeV]

Luminosity $[fb^{-1}]$

Top Yukawa coupling κ_t

Top physics

Christophe Grojean

Physics Highlights of future ee colliders 24/36

Top programme @ ee colliders

three-fold programme

(1) study of the threshold for tt product atom for strong interactions", i.e. bound s quark confining interactions
(2) measure the top-Higgs coupling (see tthe (3) study of top quark production and de top EW couplings

Top pair production @ threshold

MS-on-shell relation at four-loop order

LO QCD Marquard et al '15

ntial non-relativistic QCD

QCD corrections

eneke, Kiyo, Marquard, Penin, Piclum, Steinhauser 2015]

Christophe Grojean

dependence on Yukawa coupling rather weak - precise external α_s helps

Top EW couplings

. extract all ten form factors simultaneously using ME method

Physics Highlights of future ee colliders 27/36

 \tilde{F}_{1A}^{Z}

 \tilde{F}_{2V}^{γ}

 \tilde{F}_{2V}^{Z}

 \tilde{F}_{1V}^{γ}

 \tilde{F}_{1V}^{Z}

CERN, NOV. 19, 2015

. cross-over region (365GeV)

well under control?

Christophe Grojean

ILC sensitivity down to 0.5% (factor 10 improvement over TESLA estimates) ⇒ probe New Physics resonances up to 15-20 TeV, way above direct LHC access

Christophe Grojean

Physics Highlights of future ee colliders 28/36

New Physics Searches

Christophe Grojean

Physics Highlights of future ee colliders 29/36

no BSM particle discovered @ LHC: is it still worth searching? LHC searches left territories unexplored DM, neutral naturalness come with light uncolored particles that are best searched for at ee colliders! Even compressed gluinos are good ee-targets

CERN, NOV. 19, 2015

no BSM particle discovered @ LHC: is it still worth searching? LHC searches left territories unexplored DM, neutral naturalness come with light uncolored particles that are best searched for at ee colliders! Even compressed gluinos are good ee-targets

~~ a few examples for illustration ~~

(1) compressed spectra (mLSP~mNLSP)

- -> well-tempered neutralino DM
- weak LHC bounds (soft decay, small MET)

(2) light staus (similarly for higgsinos)

- weak LHC bound (~90GeV)
 DM with stau-neutralino co-annihilation
- -> enhance di-photon Higgs decay rate

(3) heavy neutral leptons (aka as ν_R)

- neutrino masses
- » possibly DM and matter-antimatter asymmetry

Christophe Grojean

CERN, NOV. 19, 2015

(1) compressed spectra (mLSP~mNLSP)

- well-tempered neutralino DM
 weak LHC bounds (soft decay, small MET)

LHC: Difficulty when mass difference is small

ILC:

Good sensitivity up to kinematic limit for (essentially) any mass difference

Christophe Grojean

Physics Highlights of future ee colliders 31 /36

(2) light staus (similarly for higgsinos)

- weak LHC bound (~90GeV)
 DM with stau-neutralino co-annihilation
- -> enhance di-photon Higgs decay rate

stau pair production dominates over background mass determination: stau~200 MeV, neutralino~400 MeV EW quantum numbers of stau determined by production rates with polarized beams

Christophe Grojean

Physics Highlights of future ee colliders 32/36

(3) heavy neutral leptons (aka as ν_R)

- » neutrino masses
- » possibly DM and matter-antimatter asymmetry

Seesaw formula $m_D \sim Y_{I\alpha} < \phi > \text{ and } m_\nu = \frac{m_D^2}{M}$

- if $Y \sim 1$ implies $M \sim 10^{14} \text{GeV}$
- if $M_N \sim 1 {\rm GeV}$ implies $Y_\nu \sim 10^{-7}$

remember $Y_{top} \sim 1$. and $Y_e \sim 10^{-6}$

 v_R are produced in the 10¹² TLEP Z decays

FCC-ee - SHiP complementarity to probe the interesting region

33 /36

A. Blondel et al. '14

Probing heavy SUSY (model-dependent)

Gluino search at LHC

Chargino/Neutralino search at ILC

→ Comparison assuming gaugino mass relations

* Assumptions: MSUGRA/GMSB relation $M_1 : M_2 : M_3 = 1 : 2 : 6$; AMSB relation $M_1 : M_2 : M_3 = 3.3 : 1 : 10.5$

Christophe Grojean

Physics Highlights of future ee colliders 34/36

Probing high scale NP @ CLIC

Table 1.6: Discovery reach of various theory models for different colliders and various levels of integrated luminosity, \mathscr{L} [73]. LHC14 and the luminosity-upgraded SLHC are both at \sqrt{s} =14 TeV. LC800 is an 800 GeV e⁺e⁻ collider and CLIC3 is \sqrt{s} =3 TeV. TGC is short for Triple Gauge Coupling, and " μ contact scale" is short for LL μ contact interaction scale Λ with g = 1 (see Section 1.4).

New particle	collider: \mathscr{L} :	LHC14 100 fb ⁻¹	SLHC 1 ab^{-1}	$LC800 \\ 500 \text{ fb}^{-1}$	CLIC3 1 ab^{-1}
squarks [TeV]		2.5	3	0.4	1.5
sleptons [TeV]		0.3	-	0.4	1.5
Z' (SM couplings) [TeV]		5	7	8	20
2 extra dims M_D [TeV]		9	12	5-8.5	20-30
TGC (95%) (λ_{γ} coupling)		0.001	0.0006	0.0004	0.0001
μ contact scale [TeV]		15	-	20	60
Higgs compos. scale [TeV]		5-7	9-12	45	60

CLIC CDR arXiv:1202.5940

CERN, NOV. 19, 2015

Christophe Grojean

Physics Highlights of future ee colliders 36/36

TANCLUSIANS

Main questions and main approaches to address them

	High-E colliders	Dedicated high-precision experiments	Neutrino experiments	Dedicated searches	Cosmic surveys
H, EWSB	×	×		×	
Neutrinos	X (v _R)		×	×	X
Dark Matter	×			×	×
Flavour, CP, matter/antimatter	X	×	×	×	×
New particles, forces, symmetries	×	×		×	
Universe acceleration					×

Combination of these complementary approaches is crucial to explore the largest range of E scales (directly and indirectly) and couplings, and properly interpret signs of new physics \rightarrow hopefully build a coherent picture of the underlying theory.

there is a enticing case for Higgs/top factory and we need a continuity in the field with a running machine and more than ever importance of the synergy and complementarity of experimental program

Christophe Grojean

F. Gianoti EPS '15

Physics Highlights of future ee colliders 36/36