eQCD 2016

6-11 March 2016, Costa da Caparica

Light quark mass differences
in the $\pi - \eta - \eta'$ system.

A. A. Osipov, B. Hiller, A. H. Blin, J. Moreira

U. Coimbra, Portugal

Relevance of the $\pi_0 - \eta$ and $\pi_0 - \eta'$ mixing angles ϵ and ϵ'

- In the determination of light quark mass ratio $\frac{m_u}{m_d}$
- In the decays of $\eta \to 3\pi$ and $\eta' \to 3\pi$
- In the determination of the ratio $\frac{\epsilon}{\epsilon'}|_{CP}$ related to $K^0 \to \pi^0\pi^0$
- Studies of spontaneous breaking of strong CP symmetry.
- Deeper insight in studies of restoration of chiral and $U_A(1)$ symmetries in the QCD phase diagram at finite T, μ, B.
Isospin breaking observables

<table>
<thead>
<tr>
<th>Effect</th>
<th>$m_u - m_d$</th>
<th>EM</th>
</tr>
</thead>
<tbody>
<tr>
<td>$M_{\pi^+} - M_{\pi^0} = 4.6$ MeV</td>
<td>subleading</td>
<td>√</td>
</tr>
<tr>
<td>$M_{K^+} - M_{K^0} = -3.99$ MeV</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>$M_{D^+} - M_{D^0} = 4.78$ MeV</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>$\eta \rightarrow 3\pi$</td>
<td>√</td>
<td>subleading</td>
</tr>
<tr>
<td>$M_{B^+} - M_{B^0} = -0.33$ MeV</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>$M_{n} - M_{p} = 1.29$ MeV</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>$M_{\Sigma^-} - M_{\Sigma^0} = 4.8$ MeV</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>$M_{\Sigma^+} - M_{\Sigma^0} = -3.27$ MeV</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>$M_{\Xi^-} - M_{\Xi^0} = 6.48$ MeV</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>$\rho - \omega$ mixing</td>
<td>√</td>
<td>subleading</td>
</tr>
<tr>
<td>$\pi^0 - \eta$, $\pi^0 - \eta'$ mixings</td>
<td>√</td>
<td>subleading</td>
</tr>
<tr>
<td>F_{π^+}/F_{π^0}</td>
<td>subleading</td>
<td>√</td>
</tr>
<tr>
<td>$\pi^0 \rightarrow \gamma\gamma$</td>
<td>√</td>
<td>subleading</td>
</tr>
</tbody>
</table>
Current quark mass values

PDG:2014 At renormalization scale \(\mu = 2 \text{GeV} \).

Mass Ratios: RG invariant.

Lattice data: Isospin symmetric limit \(m_u = m_d = \bar{m} \)

\[\bar{m} = 3.4 \pm 0.25 \quad m_s = 93.5 \pm 2.5 \text{MeV} \quad \frac{m_s}{\bar{m}} = 27.5 \pm 0.3 \]

Estimations of \(m_u \) and \(m_d \):

Combined Lattice data + isospin breaking effects from ChPT + phenomenology: MILC collaboration (2009), BMW Collaboration (2011), Flavinet Lattice Averaging Group (2011),

\[m_u = 2.15(15) \text{MeV} \quad m_d = 4.70(20) \text{MeV} \quad \frac{m_u}{m_d} = 0.46(5) \]

Our ratio: \(m_u / m_d \sim 0.46 \) (NLO in \(N_c \))

Moderate correction \(~ 20\% \) to
LO ChPT \(m_u / m_d = 0.56 \) Weinberg:1977
MAIN ASSUMPTIONS

1. Scales of nonperturbative QCD:

\[\Lambda_{QCD} \sim \Lambda_{\text{conf}} < \Lambda_{\chi_{SB}} \approx 4\pi f_{\pi}. \]

In the regime \(\Lambda_{\text{conf}} < \Lambda < \Lambda_{\chi_{SB}} \) the induced effective interaction between quarks is of the form

\[L = \bar{q} \left(i\gamma^\mu \partial_\mu - m \right) q + \frac{G}{\Lambda^2} \left(\bar{q} \Gamma q \right)^2 + \frac{K}{\Lambda^5} \left(\bar{q} \Gamma q \right)^3 + \ldots, \]

where \(\Lambda \) is determined by the chiral symmetry-breaking scale. If instantons are responsible for multi-quark interactions, then

\[\Lambda \sim \rho^{-1} \approx \left(0.33 \text{ fm} \right)^{-1} \]
2. Chiral symmetry restrictions

The color quark fields possess definite transformation properties with respect to the chiral flavor $U(3)_R \otimes U(3)_L$ global symmetry of the QCD Lagrangian with massless quarks.

To study scalar and pseudoscalar modes it is convenient to introduce the $U(3)$ Lie-algebra valued field:

$$\Sigma = (s_a - ip_a) \frac{\lambda^a}{2}, \quad s_a = \bar{q} \lambda_a q, \quad p_a = \bar{q} \lambda_a i \gamma_5 q.$$

and the external source χ, which generate the explicit symmetry breaking effects - future mass terms and mass dependent interactions, with the transformation properties:

$$\Sigma' = V_R \Sigma V_L^+, \quad \chi' = V_R \chi V_L^+.$$
MULTI-QUARK INTERACTIONS WITHOUT DERIVATIVES

\[L_i \propto \frac{g_i}{\Lambda^{\gamma}} \chi^\alpha \Sigma^\beta \]

a). Dimensional arguments:

Therefore,

\[\alpha + 3\beta - \gamma = 4 \]
b). The regime of dynamical chiral symmetry breaking: effective potential is

\[V_{\text{eff}}(\sigma) = \]

\[\sim \Lambda^3 \quad \sim \frac{\Lambda^4}{\Lambda^2} \quad \sim \frac{\Lambda^6}{\Lambda^5} \quad \sim \frac{\Lambda^8}{\Lambda^8} \quad \sim \frac{\Lambda^{2\beta}}{\Lambda^\gamma} \]

i.e. the leading contributions to the effective potential give the vertices with

\[2\beta - \gamma \geq 0 \]
Combining both restrictions we come to the conclusion that only vertices with
\[\alpha + \beta \leq 4 \]
must be taken into account at leading order.

1). \(\alpha = 0, \beta = 1,2,3,4 \) these are 4, 6 and 8-quark interactions:

where
\[L_{\text{int}} = L_{4q} + L_{6q} + L_{8q}, \]

\[L_{4q} = \frac{\bar{G}}{\Lambda^2} Tr(\Sigma^+ \Sigma), \quad L_{6q} = \frac{\bar{K}}{\Lambda^5} \left(\det \Sigma + \det \Sigma^+ \right), \]

\[L^{(1)}_{8q} = \frac{\bar{g}_1}{\Lambda^8} \left[Tr \left(\Sigma^+ \Sigma \right) \right]^2, \quad L^{(2)}_{8q} = \frac{\bar{g}_2}{\Lambda^8} Tr \left(\Sigma^+ \Sigma \Sigma^+ \Sigma \right). \]
2). There are only six classes of vertices depending on external sources χ, they are:

$$\alpha = 1, \beta = 1, 2, 3; \quad \alpha = 2, \beta = 1, 2; \quad \alpha = 3, \beta = 1.$$

This group contains 11 terms:

$$L_\chi = \sum_{i=0}^{10} L_i,$$

$$L_0 = -Tr\left(\Sigma^+ \chi + \chi^+ \Sigma\right),$$

$$L_1 = -\frac{K_1}{\Lambda} e_{ijk} e_{mnl} \Sigma_{im} \chi_{jn} \chi_{kl} + h.c.,$$

$$L_2 = \frac{K_2}{\Lambda^3} e_{ijk} e_{mnl} \chi_{im} \Sigma_{jn} \Sigma_{kl} + h.c.,$$

$$L_3 = \frac{g_3}{\Lambda^6} Tr\left(\Sigma^+ \Sigma \Sigma^+ \chi\right) + h.c.,$$
\[L_4 = \frac{g_4}{\Lambda^6} Tr(\Sigma^+\Sigma)Tr(\Sigma^+\chi) + h.c., \]
\[L_5 = \frac{g_5}{\Lambda^4} Tr(\Sigma^+\chi\Sigma^+\chi) + h.c., \]
\[L_6 = \frac{g_6}{\Lambda^4} Tr(\Sigma \Sigma^+\chi\chi^+ + \Sigma^+\Sigma\chi^+\chi), \]
\[L_7 = \frac{g_7}{\Lambda^4} (Tr\Sigma^+\chi + h.c.)^2, \]
\[L_8 = \frac{g_8}{\Lambda^4} (Tr\Sigma^+\chi - h.c.)^2, \]
\[L_9 = -\frac{g_9}{\Lambda^2} Tr(\Sigma^+\chi\chi^+\chi) + h.c., \]
\[L_{10} = -\frac{g_{10}}{\Lambda^2} Tr(\chi^+\chi)Tr(\chi^+\Sigma) + h.c. \]
Explicit chiral symmetry breaking interactions

Put $\chi = \frac{\mu}{2}$ with $\mu = \text{diag}(\mu_u, \mu_d, \mu_s)$

\[
\frac{\bar{K}^2}{\Lambda^3} \quad \frac{\bar{g}^6 \ldots 8}{\Lambda^4} \quad \frac{\bar{g}^{3,4}}{\Lambda^6}
\]
Current quark mass term

\[\Lambda^2 N_c \times (1 + \frac{\bar{K}_1}{\Lambda N_c} + \frac{\bar{g}_{9,10}}{\Lambda^2 N_c}) \]

\[\mu \xrightarrow{\approx} \hat{m} \mathcal{O}(\Lambda^2 \times N_c) \]

Kaplan Manohar ambiguity allows to set \(\bar{K}_1 = \bar{g}_9 = \bar{g}_{10} = 0 \)

\(\mu \rightarrow \hat{m} \)
\(\mathcal{N}_c \) assignments:

\[\Sigma \sim \mathcal{N}_c; \quad \Lambda \sim \mathcal{N}_c^0 \sim 1; \quad \chi \sim \mathcal{N}_c^0 \sim 1 \]

- Then we get exactly that the diagrams which survive as \(\Lambda \to \infty \) also survive as \(\mathcal{N}_c \to \infty \) and comply with the usual requirements:

- Leading quark contribution to the vacuum energy from 4q interactions known to be of order \(\mathcal{N}_c \to \mathbb{G} \sim \frac{1}{\mathcal{N}_c} \)

- \(U_A(1) \) anomaly contribution (\(i\zeta \frac{1}{2} t \) Hooft interaction) is suppressed by one power of \(\frac{1}{\mathcal{N}_c} \to \kappa \sim \frac{1}{\mathcal{N}_c^3} \).

- Zweig’s rule violating effects are always of order \(\frac{1}{\mathcal{N}_c} \) with respect to leading contribution: e.g. \(g_1 \sim \frac{1}{\mathcal{N}_c^4} \).
• We have L_{4q} and L_0 of $O(N_c)$ and all other terms in the Lagrangian of $O(N_c^0)$.

• Non OZI-violating Lagrangian pieces scaling as $O(N_c^0)$ represent NLO contributions with one internal quark loop in N_c counting. The coupling encodes the admixture of four quark component $\bar{q}q\bar{q}q$ to the leading $\bar{q}q$ at $N_c \to \infty$.

• Diagrams tracing Zweig’s rule violation:
 $\kappa, \kappa_1, \kappa_2, g_1, g_4, g_7, g_8, g_{10}$

• Diagrams with admixture of 4 quark and 2 quark states:
 g_2, g_3, g_5, g_6, g_9.

• Phenomenology of terms L_0, G, κ, g_1, g_2 have been mostly studied until now. The role of the remaining 10 terms should be carefully addressed to be consistent with the generic $\frac{1}{N_c}$ expansion of QCD.
BOSONIZATION

Let us introduce in the vacuum functional

\[Z = \int dq \, d\bar{q} \exp\left(i \int d^4x L \right) \]

the functional unity (Alkofer, Reinhardt, 1988)

\[1 = \int \prod_a ds_a \, dp_a \, \delta(s_a - \bar{q} \lambda_a q) \delta(p_a - \bar{q} i \gamma_5 \lambda_a q) \]

\[= \int \prod_a ds_a \, dp_a \, d\sigma_a \, d\phi_a \exp\left\{ i \int d^4x \left[\sigma_a \left(s_a - \bar{q} \lambda_a q \right) + \phi_a \left(p_a - \bar{q} i \gamma_5 \lambda_a q \right) \right] \right\} \]

thus obtaining

\[Z = \int \prod_a d\sigma_a \, d\phi_a \, dq \, d\bar{q} \exp\left(i \int d^4x L_{q\bar{q}} \right) \int \prod_a ds_a \, dp_a \exp\left(i \int d^4x L_{aux} \right). \]

Gaussian integral
heat kernel expansion
stationary phase approx.
Here

\[L_{q\bar{q}} = \bar{q} \left[i\gamma^\mu \partial_\mu - (\sigma + i\gamma_5 \phi) \right] q \equiv \bar{q} D q \]

\[L_{aux} = s_a \left(\sigma_a - m_a \right) + p_a \phi_a + L_{int}(s,p) + \sum_{i=2}^{8} L'_i(s,p,\mu) \]

- quartic polynomial in auxiliary fields
- cubic polynomial in auxiliary fields

\[L_{int}(s,p) = L_{4q} + L_{6q} + L_{8q} \]
INTEGRATION OVER AUXILIARY FIELDS

The stationary phase trajectory are given by the extremum conditions

\[\frac{\partial L_{aux}}{\partial s_a} = 0, \quad \frac{\partial L_{aux}}{\partial p_a} = 0. \]

which must be fulfilled in the neighborhood of the uniform vacuum state of the theory, i.e. \(\sigma \rightarrow \sigma + M, \quad \langle \sigma \rangle = 0. \) We seek solutions in the form

\[s_{st}^a = h_a + h_{ab}^{(1)} \sigma_b + h_{abc}^{(1)} \sigma_b \sigma_c + h_{abc}^{(2)} \phi_b \phi_c + \ldots \]

\[p_{st}^a = h_{ab}^{(2)} \phi_b + h_{abc}^{(3)} \sigma_b \phi_c + \ldots \]

We are led to the result:

\[L_{aux} = h_a \sigma_a + \frac{1}{2} h_{ab}^{(1)} \sigma_a \sigma_b + \frac{1}{2} h_{ab}^{(2)} \phi_a \phi_b + \ldots \]
THE TOTAL LAGRANGIAN OF THE BOSONIZED THEORY

a). The gap equation

\[h_i + \frac{N_c}{6\pi^2} M_i \left[3I_0 - \left(3M_i^2 - M^2 \right) I_1 \right] = 0. \]

where

\[M^2 = M_u^2 + M_d^2 + M_s^2. \]
... solved self-consistently with

\[M_i - m_i + \frac{\kappa}{4} t_{ijk} h_j h_k + \frac{h_i}{2} (2G + g_1 h^2 + g_4 mh) + \frac{g_2}{2} h_i^3 \]
\[+ \frac{m_i}{4} \left[3g_3 h_i^2 + g_4 h^2 + 2(g_5 + g_6) m_i h_i + 4g_7 mh \right] \]
\[+ \kappa_2 t_{ijk} m_j h_k = 0. \] (1)

\(t_{ijk} \) is a totally symmetric quantity, whose nonzero components are \(t_{uds} = 1 \); there is no summation over the open index \(i \) but we sum over the dummy indices, e.g.
\[h^2 = h_u^2 + h_d^2 + h_s^2, \]
\[mh = m_u h_u + m_d h_d + m_s h_s. \]
b.) Small perturbations

\[L_{\text{kin}} + L_{\text{mass}} = \frac{N_c I_1}{16\pi^2} \text{tr}(\partial \phi)^2 + \frac{N_c I_0}{4\pi^2} \phi_a^2 \]

\[- \frac{N_c I_1}{24\pi^2} \left\{ \left[\phi_u^2 (2M_u^2 - M_d^2 - M_s^2) + \phi_d^2 (2M_d^2 - M_u^2 - M_s^2) \right] + \phi_s^2 (2M_s^2 - M_u^2 - M_d^2) \right\} + \frac{1}{2} h^{(2)}_{ab} \phi_a \phi_b + \ldots \] (2)

\(h^{(2)}_{ab} \) carries all the dependence on the model couplings.

\(M_i \) only indirectly through gap equations.

The kinetic term requires a redefinition of meson fields

\[\phi_a = g \phi^R_a \quad g^2 = \frac{4\pi^2}{N_c I_1} = \frac{(M_u + M_d)^2}{2f^2_\pi}. \]

\[\phi_u = \phi_3 + \frac{\sqrt{2}\phi_0 + \phi_8}{\sqrt{3}} = \phi_3 + \eta_{ns} \quad \phi_d = -\phi_3 + \frac{\sqrt{2}\phi_0 + \phi_8}{\sqrt{3}} = -\phi_3 + \eta_{ns} \quad \phi_s = \sqrt{\frac{2}{3}} \phi_0 + \frac{2\phi_8}{\sqrt{3}} = \sqrt{2} \eta_s. \]
Defining $m_\Delta = \frac{1}{2}(m_d - m_u)$, $m_\Sigma = \frac{1}{2}(m_d + m_u)$, $h_\Delta = \frac{1}{2}(h_d - h_u)$ and $h_\Sigma = \frac{1}{2}(h_d + h_u)$, one has

$$
\sqrt{6}(h_{03}^{(2)})^{-1} = h_\Delta(2g_2 h_\Sigma + \kappa + g_3 m_\Sigma)
\]
\[+ m_\Delta[g_3 h_\Sigma + 2(\kappa_2 - g_8(m_s + 2m_\Sigma))
\] - (g_5 - g_6)m_\Sigma].
\]

(3)

and a quite similar expression for $(h_{38}^{(2)})^{-1}$.

$(h_{03}^{(2)})^{-1} \neq 0$ ONLY if NLO in N_c terms contribute.

(i) ESB couplings $\neq 0 \rightarrow$ Explicit m_i dependence.
(ii) Absence of ESB couplings \rightarrow effects of ESB present in difference of the condensates $h_\Delta \neq 0$ if the conventional QCD mass term $m_u \neq m_d$.
(iii) In case (ii) only the 't Hooft $\sim \kappa$ and and the $8q \sim g_2$ contribute.
For comparison

\[3\sqrt{2}(h_{08}^{(2)})^{-1} = \kappa(h_s - h_\Sigma) + g_2(h_\Delta^2 - h_s^2 + h_\Sigma^2) \\
- g_3(h_\Sigma m_\Sigma + m_\Delta h_\Delta - h_s m_s) + 2\kappa_2(m_s - m_\Sigma) \\
+ (g_5 - g_6)(m_\Sigma^2 + m_\Delta^2 - m_s^2) \\
- 2g_8(m_s^2 + m_s m_\Sigma + 2m_\Sigma^2). \] \((4) \)
Meson Mass matrix diagonalization

π_0, η, η' are related to the symmetric pseudoscalar meson mass matrix B_{ij} by $S = \mathcal{U} \mathcal{V}$

\[
(\phi_3, \phi_0, \phi_8) S^{-1} S \begin{pmatrix} B_{33} & B_{03} & B_{38} \\ B_{03} & B_{00} & B_{08} \\ B_{38} & B_{08} & B_{88} \end{pmatrix} S^{-1} S \begin{pmatrix} \phi_3 \\ \phi_0 \\ \phi_8 \end{pmatrix},
\]

(5)

\[
\begin{pmatrix} \phi_3 \\ \eta_{ns} \\ \eta_s \end{pmatrix} = \mathcal{V} \begin{pmatrix} \phi_3 \\ \phi_0 \\ \phi_8 \end{pmatrix}
\]

(6)

\[
\mathcal{V} = \frac{1}{\sqrt{3}} \begin{pmatrix} \sqrt{3} & 0 & 0 \\ 0 & \sqrt{2} & 1 \\ 0 & 1 & -\sqrt{2} \end{pmatrix},
\]

(7)
Unitary transformation \mathcal{U} relates strange non-strange basis to the physical states, Kroll:2005

$$
\begin{pmatrix}
\pi^0 \\
\eta \\
\eta'
\end{pmatrix} = \mathcal{U}(\epsilon_1, \epsilon_2, \psi)
\begin{pmatrix}
\phi_3 \\
\eta_{ns} \\
\eta_s
\end{pmatrix},
$$

(8)

\mathcal{U} is linearized in the $\pi^0 - \eta$ and $\pi^0 - \eta'$ mixing angles, because ϕ_3 couples weakly to the η_{ns} and η_s states, decoupling in the isospin limit, while the mixing for the $\eta - \eta'$ system is strong.

$$
\mathcal{U} =
\begin{pmatrix}
1 & \epsilon_1 + \epsilon_2 \cos \psi & -\epsilon_2 \sin \psi \\
-\epsilon_2 - \epsilon_1 \cos \psi & \cos \psi & -\sin \psi \\
-\epsilon_1 \sin \psi & \sin \psi & \cos \psi
\end{pmatrix}
$$

(9)

$\epsilon = \epsilon_2 + \epsilon_1 \cos \psi$, $\epsilon' = \epsilon_1 \sin \psi$.
The diagonalization of the mass matrix can also be done exactly using the explicit analytical expressions for the eigenvalues of a symmetric 3×3 matrix1

$$
\begin{align*}
\lambda_1 &= \xi - \sqrt{\varsigma} \left(\cos [\varphi] + \sqrt{3} \sin [\varphi] \right) \\
\lambda_2 &= \xi - \sqrt{\varsigma} \left(\cos [\varphi] - \sqrt{3} \sin [\varphi] \right) \\
\lambda_3 &= \xi + 2\sqrt{\varsigma} \cos [\varphi],
\end{align*}
$$

where we use the abbreviations: $\xi = \frac{\text{tr}[M]}{3}$, $\mathcal{M} = M - \xi \mathbb{1}$, $\varsigma = \frac{1}{6} \sum_i \sum_j (\mathcal{M}_{ij})^2$, $\vartheta = \frac{1}{2} \det [\mathcal{M}]$, $\varphi = \frac{1}{6} \text{ArcTan} \left[\frac{\sqrt{\varsigma^2 - \vartheta}}{\vartheta} \right]$.1

1 O. K. Smith, Commun. ACM 4, 168 (1961), ISSN 0001-0782
The eigenvectors can then be obtained by normalizing the vectors given by:

\[\vec{v}_i = \left((\vec{M}_1 - \lambda_i \hat{e}_1) \times (\vec{M}_2 - \lambda_i \hat{e}_2) \right)^* , \]

where \(\vec{M}_j \) corresponds to the \(j \) column of \(M \). These are then used to build the diagonalization matrix which using the standard parametrization of the CKM matrix (with the abbreviation \(C_{ij} \equiv \cos[\theta_{ij}], S_{ij} \equiv \sin[\theta_{ij}] \)):

\[\theta_{12} = -\epsilon \quad \theta_{13} = -\epsilon' \quad \theta_{23} = \psi \]

\[U = \begin{bmatrix}
C_{12}C_{13} & -S_{12}C_{23} - C_{12}S_{13}S_{23} & S_{12}S_{23} - C_{12}S_{13}C_{23} \\
S_{12}C_{13} & C_{12}C_{23} - S_{12}S_{13}S_{23} & -S_{12}S_{23} - S_{12}S_{13}C_{23} \\
S_{13} & C_{13}S_{23} & C_{13}C_{23}
\end{bmatrix} \]
Weak decay constants

Model’s axial-vector current

\[A^a_\mu = \frac{1}{4} \text{tr} \left[\{ \sigma^R + Mg^{-1}, \partial_\mu \phi^R \} - \{ \partial_\mu \sigma^R, \phi^R \} \right] \lambda_a \] + \ldots \ (10)

\[\langle 0 | A^a_\mu (0) | \phi^b_R \rangle = if^{ab} p_\mu. \]

\[\langle 0 | A^{1+i2}_\mu (0) | \pi (p) \rangle = i \sqrt{2} f_\pi p_\mu \]

\[\langle 0 | A^{4+i5}_\mu (0) | K (p) \rangle = i \sqrt{2} f_K p_\mu \]

\[f_\pi = \frac{M_u + M_d}{2g} \quad f_K = \frac{M_u + M_s}{2g}. \]

\(\sigma^R, \phi^R \): normalized fields

\(M = M_a \lambda_a \): constituent quark mass matrix
Table: The pseudoscalar masses and weak decay constants (MeV) in the isospin limit used as input (marked with *) for different sets of the model. Sets a, b contain ESB interactions and allow for a fit of the scalar masses and their strong decays as well, \(m_\sigma = 550 \) MeV, \(m_\kappa = 850 \) MeV, \(m_{a_0} = m_{f_0} = 980 \) MeV Osipov:2013; set (c) does not. Set (a) corresponds to \(\theta_P = -12^\circ \), b) to \(\theta_P = -15^\circ \).

<table>
<thead>
<tr>
<th>Sets</th>
<th>(m_\pi)</th>
<th>(m_K)</th>
<th>(m_\eta)</th>
<th>(m_{\eta'})</th>
<th>(f_\pi)</th>
<th>(f_K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a,b</td>
<td>138*</td>
<td>494*</td>
<td>547*</td>
<td>958*</td>
<td>92*</td>
<td>113*</td>
</tr>
<tr>
<td>c</td>
<td>138*</td>
<td>494*</td>
<td>475*</td>
<td>958*</td>
<td>92*</td>
<td>115.7</td>
</tr>
</tbody>
</table>

\(m_K < m_\eta \): only with ESB interactions.
Table: The mixing angles in the $\eta - \eta'$ system in isospin limit, and related weak decay constants Osipov:2006, Osipov:2015 and in comparison with different approaches.

<table>
<thead>
<tr>
<th>Sets</th>
<th>θ_P°</th>
<th>θ_0°</th>
<th>θ_8°</th>
<th>f_0^2 / f_π^2</th>
<th>f_8^2 / f_π^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>-12*</td>
<td>-1.42</td>
<td>-21.37</td>
<td>1.172</td>
<td>1.318</td>
</tr>
<tr>
<td>b</td>
<td>-15*</td>
<td>-4.42</td>
<td>-24.37</td>
<td>1.172</td>
<td>1.322</td>
</tr>
<tr>
<td>c</td>
<td>-14.5</td>
<td>-2.82</td>
<td>-24.78</td>
<td>1.197</td>
<td>1.365</td>
</tr>
<tr>
<td>Goity:2002 CHPT</td>
<td>-10.5</td>
<td>-1.5</td>
<td>-20.0</td>
<td>1.24</td>
<td>1.31</td>
</tr>
<tr>
<td>Kaiser:2000 CHPT</td>
<td>-</td>
<td>-4.</td>
<td>-20.5</td>
<td>1.10</td>
<td>1.28</td>
</tr>
<tr>
<td>de Fazio:2000 sum rules</td>
<td>-</td>
<td>-15.6</td>
<td>-10.8</td>
<td>1.39</td>
<td>1.39</td>
</tr>
</tbody>
</table>

$\theta_0 = \psi - \arctan(\sqrt{2} \frac{M_s}{M_u})$

$\theta_8 = \psi - \arctan(\sqrt{2} \frac{M_u}{M_s})$

$\psi = \theta_P + \arctan\sqrt{2}$

$f_0^2 = \frac{2f_K^2 + f_\pi^2}{3} + \frac{f_\pi^2}{6} \left(\frac{M_s}{M_u} - 1 \right)^2$

$f_8^2 = \frac{4f_K^2 - f_\pi^2}{3} + \frac{(M_s - M_u)^2}{3g^2}$
Table: Empirical input used in the fits with isospin breaking, sets A and B with ESB interactions, set C without. Primes indicate which masses of the pion and kaon multiplets have been used for the fit, the other being output. Masses in units of MeV, angle ψ in degrees.

<table>
<thead>
<tr>
<th>Sets</th>
<th>m^0_π</th>
<th>m^{\pm}_π</th>
<th>m_η</th>
<th>m'_η</th>
<th>m^0_K</th>
<th>m^{\pm}_K</th>
<th>f_π</th>
<th>f_K</th>
<th>ψ</th>
</tr>
</thead>
<tbody>
<tr>
<td>A,B</td>
<td>136'</td>
<td>136.6</td>
<td>547</td>
<td>958</td>
<td>500</td>
<td>494'</td>
<td>92</td>
<td>113</td>
<td>39.7</td>
</tr>
<tr>
<td>C</td>
<td>136'</td>
<td>137.0</td>
<td>477</td>
<td>958</td>
<td>501</td>
<td>497'</td>
<td>92</td>
<td>116</td>
<td>39.7</td>
</tr>
</tbody>
</table>

ESB interactions do not account for empirical $m^0_\pi - m^{+}_\pi \approx 4.6$MeV. EM interactions must be taken into account.

ESB largely determine fraction of empirical $m^{+}_K - m^{0}_K \sim -4$MeV. Overestimate by ~ 2MeV in sets A, B.
Table: \(\frac{m_u}{m_d} = 0.46 \), current and constituent quark masses \(m_u, m_d, m_s \), \(M_u, M_d, M_s \) in MeV, \(\pi^0 - \eta, \pi^0 - \eta' \) mixing angles \(\epsilon \) and \(\epsilon' \).

<table>
<thead>
<tr>
<th>(m_u)</th>
<th>(m_d)</th>
<th>(m_s)</th>
<th>(M_u)</th>
<th>(M_d)</th>
<th>(M_s)</th>
<th>(\epsilon)</th>
<th>(\epsilon')</th>
<th>(\frac{\epsilon}{\epsilon'})</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.179</td>
<td>4.760</td>
<td>95*</td>
<td>372</td>
<td>375</td>
<td>544</td>
<td>0.014*</td>
<td>0.0037*</td>
<td>3.78</td>
</tr>
<tr>
<td>2.166</td>
<td>4.733</td>
<td>95*</td>
<td>372</td>
<td>375</td>
<td>544</td>
<td>0.017*</td>
<td>0.0045*</td>
<td>3.95</td>
</tr>
<tr>
<td>3.774</td>
<td>8.246</td>
<td>194</td>
<td>373</td>
<td>380</td>
<td>573</td>
<td>0.022</td>
<td>0.0025</td>
<td>8.78</td>
</tr>
</tbody>
</table>

Table: \(\epsilon \) and \(\epsilon' \) values in the literature.

<table>
<thead>
<tr>
<th>Source</th>
<th>(\epsilon)</th>
<th>(\epsilon')</th>
<th>(\frac{\epsilon}{\epsilon'})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feldmann:1999 phen.</td>
<td>0.014</td>
<td>0.0037</td>
<td>3.78</td>
</tr>
<tr>
<td>Kroll:2005 phen.</td>
<td>0.017 ± 0.002</td>
<td>0.004 ± 0.001</td>
<td>4.25 ± 1.1</td>
</tr>
<tr>
<td>Goity:2002 ChPt NLO</td>
<td>0.014 ÷ 0.016</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Coon:1986 phen.</td>
<td>0.021</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>BES:2004 Exp.</td>
<td>0.030 ± 0.002</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tippens:2001 Exp.</td>
<td>0.026 ± 0.007</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Conclusions

- The explicit symmetry breaking interactions of the generalized NJL Lagrangian considered are crucial to obtain the phenomenological quoted value for the ratio $\frac{\epsilon}{\epsilon'}$.

- We obtain values for the ϵ mixing angle which lie within the results discussed in the literature. Unfortunately the value for ϵ' is much less discussed.

- We obtain ϵ and ϵ' reasonably close to the ones indicated in Feldmann:1999, Kroll:2005 for current quark mass values in agreement with the presently quoted average values.

- The sets with explicit breaking interactions are also the ones which yield the best fits to other empirical data within the model variants.