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Introduction

• understand hadron suppression in pA before AA

• several effects have been proposed:

• shadowing/nPDF effects
• CGC/saturation effects
• in-medium ‘nuclear absorption’

• parton radiative energy loss

this talk:  parton radiative energy loss

no real consensus on relative importance of those effects 
(especially at collider energies)

(could be the main effect in pA,
with also crucial consequences for AA)



Gavin-Milana model for J/psi pA suppression (1992)

• at that time: spread belief that any induced �E
should be bounded when E ! 1

• Gavin-Milan ‘explanation’ was put aside

�E / E advocated by some groups:still,(
Frankfurt & Strikman 2007; Kopeliovich et al 2005 )
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(1) parton suddenly produced in QCD medium
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(2) forward scattering of  fast ‘asymptotic parton’
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(1) energetic parton suddenly produced in medium
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features of induced radiative energy loss 
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average energy loss
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• Arleo, S.P., Sami  PRD 83 (2011) 114036

• derivation at first order in opacity extrapolated to all orders
• Feynman diagrams + opacity expansion 

• hard process: g ! QQ̄ mediated by octet t-channel exchange

• Armesto et al PLB 717 (2012) 280, JHEP 1312 (2013) 052
• semi-classical method + opacity expansion 

• hard process: q ! q mediated by singlet t-channel exchange
• harmonic oscillator approximation

(2)  hard forward scattering 1 ! 1

• parton mass dependence
•  rigorous calculation for Coulomb rescattering

• opacity expansion 
1 ! 1• hard process: all

• general rule for color factor

• S.P.,  Arleo, Kolevatov (PAK14) 1402.1671 (2014)
PRD 93 (2016) 014006

• Munier, S.P., Petreska 1603.01028 
• saturation formalism • hard process: q ! q, g ! g



setup: high-energy p-A collision in nucleus rest frame

• tag energetic hadron with p0?|hard �
p

q̂L

• parent parton suffers:
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from fully coherent domain: tf ⇠ !
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(PAK14)explicit calculation )
general (approximate) pocket formula

for induced coherent spectrum:
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• generalizes results found previously in particular cases

• captures correct limiting behaviour at small
x

• at large 
x

: proper normalization requires working
beyond harmonic oscillator approximation

(see PAK14 for exact expression)



generalization to 1 ! 2 hard forward processes 
K1?, xh

K2?, 1� xh
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Ki? ⇠ O (Qhard)

xh ⇠ O (1)

Liou & Mueller PRD 89 (2014) 074026
• saturation formalism -- symmetric dijet (xh = 1/2)

g ! qq̄ q ! qg,

S.P., Kolevatov JHEP 01 (2015) 141
• Feynman diagrams + opacity expansion

q ! qg , g ! gg
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1 ! 1effectively the same as for processes
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(compact)
color octet

xF > x

crit
F

p?small

coherent radiation g ! QQ̄associated to 

model for quarkonium pA suppression
Arleo, S.P., 1204.4609 and 1212.0434             
Arleo, Kolevatov, S.P., Rustamova 1304.0901             



2 ! 1 kinematics ) focus on low p? . M

d� pp/dxF• taken from experimental data
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Q

2
sp(x = 10�2) = 0.11� 0.14 GeV2q̂0 corresponds to

consistent with fits to DIS data Albacete et al (AAMQS) 2011



J/ NA3 Pt/p 



RHIC d-Au (PHENIX) 
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LHC p-Pb (ALICE) 
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(nPDF/saturation effects might be sizeable at collider energies,
 but cannot achieve such global description)

coherent radiation alone ‘‘explains’’ J/psi pA suppression
from fixed target to collider energies

�E / E leading effectcoherent energy loss 
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quarkonium suppression in AB collisions
Arleo, S.P. 1407.5054                                           



J/psi suppression in AB collisions
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Summary

• seems quantitatively crucial for J/psi pA suppression

medium-induced coherent radiation

• is a QCD prediction
• found in different formalisms and setups

• should play a role in all 1 ! n partonic processes 
e.g. in light hadron pA suppression at the LHC 

(Arleo, Kolevatov, S.P., work in progress)         

should be included before extraction of ‘hot’ effects
• is a sizable cold nuclear effect in AA


